Smithian Platform-Bearing Gondolellid Conodonts from Yiwagou Section, Northwestern China and Implications for Their Geographic Distribution in the Early Triassic

Total Page:16

File Type:pdf, Size:1020Kb

Smithian Platform-Bearing Gondolellid Conodonts from Yiwagou Section, Northwestern China and Implications for Their Geographic Distribution in the Early Triassic This is a repository copy of Smithian platform-bearing gondolellid conodonts from Yiwagou Section, northwestern China and implications for their geographic distribution in the Early Triassic. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/148042/ Version: Accepted Version Article: Li, H, Jiang, H, Chen, Y et al. (6 more authors) (2019) Smithian platform-bearing gondolellid conodonts from Yiwagou Section, northwestern China and implications for their geographic distribution in the Early Triassic. Journal of Paleontology, 93 (3). pp. 496-511. ISSN 0022-3360 https://doi.org/10.1017/jpa.2018.93 © 2019, The Paleontological Society. This article has been published in a revised form in Journal of Paleontology [http://doi.org10.1017/jpa.2018.93]. This version is free to view and download for private research and study only. Not for re-distribution, re-sale or use in derivative works. Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Journal of Paleontology For Review Only Smithian platform-bearing gondolellid conodonts from Yiwagou Section, northwestern China and implications for their geographic distribution in the Early Triassic Journal: Journal of Paleontology Manuscript ID JPA-RA-2018-0050.R3 Manuscript Type: Re ular Article Date Submitted by the Author: n/a Complete List of Authors: Lai, Xulon , China -ni.ersity of /eosciences, School of 0arth Sciences Li, 1an2iao, China -ni.ersity of /eosciences, School of 0arth Science Jian , 1aishui, China -ni.ersity of /eosciences, School of 0arth Science Chen, 3anlon , Northwest -ni.ersity, Department of /eolo y 6i nall, Paul, -ni.ersity of leeds, School of 0arth 7 0n.ironment 6u, 8ao9in, China -ni.ersity of /eosciences, School of 0arth Science :han , :aitian, China -ni.ersity of /eosciences, Colle e of Marine Science 7 Technolo y :han , Muhui, China -ni.ersity of /eosciences, School of 0arth Science Ouyan , :humin, China -ni.ersity of /eosciences, School of 0arth Science Ta2onomy: Conodonta 8road /eolo ic Time: Triassic < Mesozoic Detailed /eolo ic Time: Smithian (0arly Traissic), Smithian Sub9ect area /eo raphic Asia (eastern) Location: Cambridge University Press Page 1 of 56 Journal of Paleontology 1 1 Smithian platform-bearing gondolellid conodonts from Yiwagou 2 Section, northwestern China and implications for their geographic 3 distribution in the Early Triassic 4 5 Hanxiao Li1, Haishui Jiang1,2, Yanlong Chen3, Paul B. Wignall4, Baojin Wu1, Zaitian Zhang5, 1,2 1 1,2 6 Muhui Zhang , Zhumin ForOuyang andReview Xulong Lai * Only 7 8 1School of Earth Science, China University of Geosciences, Wuhan, Hubei 430074, China 9 <[email protected]> <[email protected]> <[email protected]> 10 <[email protected]> <[email protected]> 11 2State Key Laboratory of Geobiology and Environmental Geology, China University of 12 Geosciences, Wuhan, Hubei 430074, China 13 3Department of Geology, Northwest University, North Taibai Road 229, Xi’an 710069, China 14 <[email protected]> 15 4School of Earth & Environment, University of Leeds, Leeds, LS2 9JT, UK 16 <[email protected]> 17 5College of Marine Science & Technology, China University of Geosciences, Wuhan, Hubei 18 430074, China <[email protected]> 19 20 Abstract.—Abundant platformE.earing gondolellid conodonts including: Scythogondolella Cambridge University Press Journal of Paleontology Page 2 of 56 2 21 mosheri (:o8ur and Mostler), Sc. phryna Orchard and Zonne,eld, Scythogondolella cf. milleri 22 (MIller) ha,e been disco,ered fro the Yiwagou Section of Tewo, together with Novispathodus 23 waageni waageni (Sweet), Nv. w. eowaageni Zhao and Orchard. This is the first report of 24 S ithian platfor E.earing gondolellids fro the PaleoETethys region. In addition, 25 Eurygnathodus costatus Staesche, E. hamadai (:oike), Parafurnishius xuanhanensis Yang et al., 26 and the genera PachycladinaFor Staesche, Review Parachirognathus Only Clark, Hadrodontina Staesche ha,e 27 also been reco,ered fro Dienerian to S ithian strata at Yiwagou Section. Three conodont zones 28 are esta.lished, in ascending order: Eurygnathodus costatus-E. hamadai Asse .lage Zone, 29 Novispathodus waageni-Scythogondolella mosheri Asse .lage Zone, and the 30 PachycladinaEParachirognathus Asse .lage Zone. 31 The platfor E.earing gondolellids were globally distri.uted just after the endEPer ian mass 32 extinction, but the for erly a.undant Clarkina Ko8ur disappeared in the late Gries.achian. 33 Platfor E.earing gondolellids dra atically decreased to a mini u of di,ersity and extent in 34 the Dienerian before reco,ering in the S ithian. Scythogondolella Ko8ur, proba.ly a 35 ther ophilic and euryther ic genus, li,ed in all latitudes at this ti e whilst other genera did not 36 cope with S ithian high te peratures and so beco e restricted to the highElatitude regions. 37 Howe,er, the maxi u te perature in late S ithian likely caused the extinction of al ost all 38 platfor E.earing gonodlellids. Finally, the group returned to e5uatorial regions and achie,ed 39 global distri.ution again in the cooler conditions of the late Spathian. We conclude that 40 te perature (and to a lesser extent oxygen le,els) exerted a strong control on the geographical Cambridge University Press Page 3 of 56 Journal of Paleontology 3 41 distri.ution and e,olution of platfor E.earing gondolellids in the Early Triassic. 42 43 Introduction 44 45 The endEPer ian mass extinction was the most se,ere in geological history and saw the 46 disappearance of the majorityFor of marine Review organis s (e.g. Only Wignall, 2015). Ecosyste reco,ery 47 took se,eral million years and was hindered by the S ithianESpathian extinction around two 48 illion years after the main crisis. Early Triassic sea surface te peratures were especially high 49 and reached their zenith in the late S ithian (Sun et al., 2012L Ro ano et al., 2012). Black shales 50 and other anoxic facies were also widespread, especially in the late S ithian, although oxic 51 arine red beds (MRBs) .eca e co on in the early Spathian (Sun et al., 2015L Song et al., 52 2010). Thus, high seawater te peratures and anoxia in late S ithian may ha,e caused the 53 second order extinction e,ent at this ti e as seen a ongst conodonts (Orchard, 2000L Stanley, 54 2003), a onoids (Halla and Wignall, 1330L Brayard et al., 2003L Stanley, 2003) and bi,al,es 55 (Chen, 2004). The s all si8e of organis s (the Lilliput Effect), such as conodonts (Chen et al., 56 2013L Maekawa and Ko atsu, 2014) and gastropods (Piestch et al., 2014) ay also be 57 attri.uta.le to the high te peratures. 58 The ter ‘gondolellid’ deri,es fro the Fa ily -ondolellidae and is co posed of two 59 groups, seg iniplanate, platfor E.earing genera (eg. Neogondolella, Scythogondolella), and 60 seg inate, platfor Eless genera (eg. Neospathodus, Novispathodus). The fate of Cambridge University Press Journal of Paleontology Page 4 of 56 4 61 platfor E.earing gondolellid conodonts during the vicissitudes of the Early Triassic is unclear. 62 They were globally prosperous prior to the endEPer ian mass extinction and once again 63 successful in the Middle Triassic. Howe,er, in Early Triassic, conodonts in low latitude regions, 64 such as South China, were mostly do inated by bladeEshaped (or seg inate) instead of 65 platfor E.earing gondolellids. By co parison, in northern high latitude areas and the southern 66 argin of NeoETethys, theFor platfor ReviewE.earing gondolellids Only beco e more co on (e.g., Orchard 67 and Zonne,eld, 2003, Konstantino, et al., 2013L Bondarenko et al., 2015). Atte pts to elucidate 68 conodont biogeographic real s in the Early Triassic (e.g., Yang et al., 2001L Klets, 2008) are 69 currently ha pered by inco plete data fro so e regions. In this paper, we report newly 70 disco,ered and a.undant S ithian platfor E.earing gondolellid conodonts fro the Yiwagou 71 Section of Tewo County, -ansu Pro,ince, northwestern China that ena.les us to ad,ance 72 discussions of the e,olution of this i portant Triassic group. In addition a taxono ic description 73 is pro,ided for so e of the less well known conodonts (Parafurnishius xuanhanensis and se,eral 74 Scythogondolella species). 75 76 eological setting and stratigraphy 77 78 The Early Triassic Ninling Basin was a major seaway between the South China and Northern 79 China blocks that narrowed to the east and opened to PaleoETethys in the west (Lai et al., 1332, 80 1335, Yin and Peng, 1335, Feng et al., 1334). The studied Yiwagou Section was located in a Cambridge University Press Page 5 of 56 Journal of Paleontology 5 81 shallowEwater, car.onate platfor at the northern argin of South China Block and on the 82 southern side of the Basin (Fig. 1). There has been little research in the region because of its 83 inaccessi.ility and high altitude (.ut see Yin et al., 1388, 1332L Yin and Peng, 1335L Lai et al., 84 1332, 1334, 1335). The Yiwagou Section lies along a ra,ine near Zhagana village, Tewo County 85 (start point GPS 34.256N, 103.204E, Fig.
Recommended publications
  • 1 Revision 2 1 K-Bentonites
    1 Revision 2 2 K-Bentonites: A Review 3 Warren D. Huff 4 Department of Geology, University of Cincinnati, Cincinnati, OH 45221 USA 5 Email: [email protected] 6 Keywords: K-bentonite, bentonite, tephra, explosive volcanism, volcanic ash 7 Abstract 8 Pyroclastic material in the form of altered volcanic ash or tephra has been reported and described 9 from one or more stratigraphic units from the Proterozoic to the Tertiary. This altered tephra, 10 variously called bentonite or K-bentonite or tonstein depending on the degree of alteration and 11 chemical composition, is often linked to large explosive volcanic eruptions that have occurred 12 repeatedly in the past. K-bentonite and bentonite layers are the key components of a larger group of 13 altered tephras that are useful for stratigraphic correlation and for interpreting the geodynamic 14 evolution of our planet. Bentonites generally form by diagenetic or hydrothermal alteration under 15 the influence of fluids with high Mg content and that leach alkali elements. Smectite composition is 16 partly controlled by parent rock chemistry. Studies have shown that K-bentonites often display 17 variations in layer charge and mixed-layer clay ratios and that these correlate with physical 18 properties and diagenetic history. The following is a review of known K-bentonite and related 19 occurrences of altered tephra throughout the time scale from Precambrian to Cenozoic. 20 Introduction 21 Volcanic eruptions are often, although by no means always, associated with a profuse output 22 of fine pyroclastic material, tephra. Tephra is a term used to describe all of the solid material 23 produced from a volcano during an eruption (Thorarinsson, 1944).
    [Show full text]
  • First Report of Swimming Trace Fossils of Fish from the Upper Permian and Lower Triassic of the Dolomites (Italy)
    Annales Societatis Geologorum Poloniae (2018), vol. 88: ...–... doi: https://doi.org/10.14241/asgp.2018.013 FIRST REPORT OF SWIMMING TRACE FOSSILS OF FISH FROM THE UPPER PERMIAN AND LOWER TRIASSIC OF THE DOLOMITES (ITALY) Ausonio RONCHI1, Giuseppe SANTI1, Lorenzo MARCHETTI 2, Massimo BERNARDI 3 & Piero GIANOLLA4 1 Dipartimento di Scienze della Terra e dell’Ambiente, University of Pavia, Italy; e-mails: [email protected]; [email protected] 2 Urweltmuseum GEOSKOP/Burg Lichtenberg (Pfalz), Thallichtenberg, Germany; e-mail: [email protected] 3 MUSE – Museo delle Scienze, Trento, Italy; e-mail: [email protected] 4 Dipartimento di Fisica e Scienze della Terra, University of Ferrara, Italy; e-mail: [email protected] Ronchi, A., Santi, G., Marchetti, L, Bernardi, M. & Gianolla, R., 2018. First report of swimming trace fossils of fish from the Upper Permian and Lower Triassic of the Dolomites (Italy). Annales Societatis Geologorum Poloniae, 88: xxx-xxx Abstract: In the Upper Permian continental to marginal-marine succession of the Southern Alps (Dolomites, north Italy), the ichnological record consists of diverse vertebrate footprints and non-diverse invertebrate trace fossils, mainly occurring in the “Bletterbach ichnoassociation” of the Val Gardena Sandstone Formation. After the Perm- ian-Triassic Boundary event, vertebrate ichnoassociations are scarce until the Middle Triassic (Anisian), whereas the uppermost Permian–Lower Triassic Werfen Formation preserves a rich invertebrate trace-fossil record. To date, fish body and trace fossils (Undichna) are very rare in the pre- and post-extinction deposits of the Dolomites; only Undichna gosiutensis Gibert, 2001 was identified in the “Voltago Conglomerate” (Middle Anisian), whereas some unidentified fossil fish casts were found in the Permian Val Gardena Sandstone and some fish remains in the overlying Werfen Formation.
    [Show full text]
  • GUIDEBOOK the Mid-Triassic Muschelkalk in Southern Poland: Shallow-Marine Carbonate Sedimentation in a Tectonically Active Basin
    31st IAS Meeting of Sedimentology Kraków 2015 GUIDEBOOK The Mid-Triassic Muschelkalk in southern Poland: shallow-marine carbonate sedimentation in a tectonically active basin Guide to field trip B5 • 26–27 June 2015 Joachim Szulc, Michał Matysik, Hans Hagdorn 31st IAS Meeting of Sedimentology INTERNATIONAL ASSOCIATION Kraków, Poland • June 2015 OF SEDIMENTOLOGISTS 225 Guide to field trip B5 (26–27 June 2015) The Mid-Triassic Muschelkalk in southern Poland: shallow-marine carbonate sedimentation in a tectonically active basin Joachim Szulc1, Michał Matysik2, Hans Hagdorn3 1Institute of Geological Sciences, Jagiellonian University, Kraków, Poland ([email protected]) 2Natural History Museum of Denmark, University of Copenhagen, Denmark ([email protected]) 3Muschelkalk Musem, Ingelfingen, Germany (encrinus@hagdorn-ingelfingen) Route (Fig. 1): From Kraków we take motorway (Żyglin quarry, stop B5.3). From Żyglin we drive by A4 west to Chrzanów; we leave it for road 781 to Płaza road 908 to Tarnowskie Góry then to NW by road 11 to (Kans-Pol quarry, stop B5.1). From Płaza we return to Tworog. From Tworog west by road 907 to Toszek and A4, continue west to Mysłowice and leave for road A1 then west by road 94 to Strzelce Opolskie. From Strzelce to Siewierz (GZD quarry, stop B5.2). From Siewierz Opolskie we take road 409 to Kalinów and then turn we drive A1 south to Podskale cross where we leave south onto a local road to Góra Sw. Anny (accomoda- for S1 westbound to Pyrzowice and then by road 78 to tion). From Góra św. Anny we drive north by a local road Niezdara.
    [Show full text]
  • Upper Cretaceous Deposits in the Northwest of Saratov Region, Part 2: Problems of Chronostratigraphy and Regional Geological History A
    ISSN 0869-5938, Stratigraphy and Geological Correlation, 2008, Vol. 16, No. 3, pp. 267–294. © Pleiades Publishing, Ltd., 2008. Original Russian Text © A.G. Olfer’ev, V.N. Beniamovski, V.S. Vishnevskaya, A.V. Ivanov, L.F. Kopaevich, M.N. Ovechkina, E.M. Pervushov, V.B. Sel’tser, E.M. Tesakova, V.M. Kharitonov, E.A. Shcherbinina, 2008, published in Stratigrafiya. Geologicheskaya Korrelyatsiya, 2008, Vol. 16, No. 3, pp. 47–74. Upper Cretaceous Deposits in the Northwest of Saratov Region, Part 2: Problems of Chronostratigraphy and Regional Geological History A. G. Olfer’eva, V. N. Beniamovskib, V. S. Vishnevskayab, A. V. Ivanovc, L. F. Kopaevichd, M. N. Ovechkinaa, E. M. Pervushovc, V. B. Sel’tserc, E. M. Tesakovad, V. M. Kharitonovc, and E. A. Shcherbininab a Paleontological Institute, Russian Academy of Sciences, Profsoyuznaya ul. 123, Moscow, 117997 Russia b Geological Institute, Russian Academy of Sciences, Pyzhevskii per. 7, Moscow, 119017 Russia c Saratov State University, Astrakhanskaya ul., 83, Saratov, 410012 Russia d Moscow State University, Vorob’evy Gory, Moscow, 119991 Russia Received November 7, 2006; in final form, March 21, 2007 Abstract—Problems of geochronological correlation are considered for the formations established in the study region with due account for data on the Mezino-Lapshinovka, Lokh and Teplovka sections studied earlier on the northwest of the Saratov region. New paleontological data are used to define more precisely stratigraphic ranges of some stratigraphic subdivisions, to consider correlation between standard and local zones established for different groups of fossils, and to suggest how the Upper Cretaceous regional scale of the East European platform can be improved.
    [Show full text]
  • Akoya Pearl Production from Hainan Province Is Less Than One Tonne (A
    1.2 Overview of the cultured marine pearl industry 13 Xuwen, harvest approximately 9-10 tonnes of pearls annually; Akoya pearl production from Hainan Province is less than one tonne (A. Wang, pers. comm., 2007). China produced 5-6 tonnes of marketable cultured marine pearls in 1993 and this stimulated Japanese investment in Chinese pearl farms and pearl factories. Pearl processing is done either in Japan or in Japanese- supported pearl factories in China. The majority of the higher quality Chinese Akoya pearls are exported to Japan. Additionally, MOP from pearl shells is used in handicrafts and as an ingredient Pearl farm workers clean and sort nets used for pearl oyster culture on a floating pontoon in Li’an Bay, Hainan Island, China. in cosmetics, while oyster meat is sold at local markets. India and other countries India began Akoya pearl culture research at the Central Marine Fisheries Research Institute (CMFRI) at Tuticorin in 1972 and the first experimental round pearl production occurred in 1973. Although a number of farms have been established, particularly along the southeastern coast, commercial pearl farming has not become established on a large scale (Upare, 2001). Akoya pearls from India generally have a diameter of less than 5-6 mm (Mohamed et al., 2006; Kripa et al., 2007). Halong Bay in the Gulf of Tonking in Viet Nam has been famous for its natural pearls for many centuries (Strack, 2006). Since 1990, more than twenty companies have established Akoya pearl farms in Viet Nam and production exceeded 1 000 kg in 2001. Akoya pearl culture has also been investigated on the Atlantic coast of South America (Urban, 2000; Lodeiros et al., 2002), in Australia (O’Connor et al., 2003), Korea (Choi and Chang, 2003) and in the Arabian Gulf (Behzadi, Parivak and Roustaian, 1997).
    [Show full text]
  • A Preliminary Assessment of Paleontological Resources at Bighorn Canyon National Recreation Area, Montana and Wyoming
    A PRELIMINARY ASSESSMENT OF PALEONTOLOGICAL RESOURCES AT BIGHORN CANYON NATIONAL RECREATION AREA, MONTANA AND WYOMING Vincent L. Santucci1, David Hays2, James Staebler2 And Michael Milstein3 1National Park Service, P.O. Box 592, Kemmerer, WY 83101 2Bighorn Canyon National Recreation Area, P.O. Box 7458, Fort Smith, MT 59035 3P.O. Box 821, Cody, WY 82414 ____________________ ABSTRACT - Paleontological resources occur throughout the Paleozoic and Mesozoic formations exposed in Bighorn Canyon National Recreation Area. Isolated research on specific geologic units within Bighorn Canyon has yielded data on a wide diversity of fossil forms. A comprehensive paleonotological survey has not been previously undertaken at Bighorn Canyon. Preliminary paleontologic resource data is presented in this report as an effort to establish baseline data. ____________________ INTRODUCTION ighorn Canyon National Recreation Area (BICA) consists of approximately 120,000 acres within the Bighorn Mountains of north-central Wyoming and south-central Montana B (Figure 1). The northwestern trending Bighorn Mountains consist of over 9,000 feet of sedimentary rock. The predominantly marine and near shore sedimentary units range from the Cambrian through the Lower Cretaceous. Many of these formations are extremely fossiliferous. The Bighorn Mountains were uplifted during the Laramide Orogeny beginning approximately 70 million years ago. Large volumes of sediments, rich in early Tertiary paleontological resources, were deposited in the adjoining basins. This report provides a preliminary assessment of paleontological resources identified at Bighorn Canyon National Recreation Area. STRATIGRAPHY The stratigraphic record at Bighorn Canyon National Recreation Area extends from the Cambrian through the Cretaceous (Figure 2). The only time period during this interval that is not represented is the Silurian.
    [Show full text]
  • This Article Appeared in a Journal Published by Elsevier. the Attached
    (This is a sample cover image for this issue. The actual cover is not yet available at this time.) This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Chemical Geology 322–323 (2012) 121–144 Contents lists available at SciVerse ScienceDirect Chemical Geology journal homepage: www.elsevier.com/locate/chemgeo The end‐Permian mass extinction: A rapid volcanic CO2 and CH4‐climatic catastrophe Uwe Brand a,⁎, Renato Posenato b, Rosemarie Came c, Hagit Affek d, Lucia Angiolini e, Karem Azmy f, Enzo Farabegoli g a Department of Earth Sciences, Brock University, St. Catharines, Ontario, Canada, L2S 3A1 b Dipartimento di Scienze della Terra, Università di Ferrara, Polo Scientifico-tecnologico, Via Saragat 1, 44100 Ferrara Italy c Department of Earth Sciences, The University of New Hampshire, Durham, NH 03824 USA d Department of Geology and Geophysics, Yale University, New Haven, CT 06520–8109 USA e Dipartimento di Scienze della Terra, Via Mangiagalli 34, Università di Milano, 20133 Milan Italy f Department of Earth Sciences, Memorial University, St.
    [Show full text]
  • Maquetación 1
    ISSN (print): 1698-6180. ISSN (online): 1886-7995 www.ucm.es /info/estratig/journal.htm Journal of Iberian Geology 33 (2) 2007: 163-172 Sephardiellinae, a new Middle Triassic conodont subfamily Sephardiellinae, una nueva subfamilia de conodontos del Triásico Medio P. Plasencia1, F. Hirsch2, A. Márquez- Aliaga1 1Instituto Cavanilles de Biodiversidad y Biología Evolutiva and Departamento de Geología. Universidad de Valencia, Dr. Moliner 50, 46100 Burjassot, Spain. [email protected], [email protected] 2Naruto University of Education, Naruto, Tokushima,Tokushima, Japan. [email protected] Received: 26/02/06 / Accepted: 09/10/06 Abstract Sephardiellinae (nov. subfam.) encompasses a Middle Triassic Gondolleloid lineage that originated in the Sephardic realm, west- ernmost shallow Neotethys, from where, in the course of the Ladinian and earliest Carnian, some of its species spread to the world oceans, before extinction as a result of the Carnian salinity crisis. It is composed of two genera, Sephardiella and Pseudofurnishius. Differential criteria in its septimembrate apparatus are the basal cavity structure of P1 element and morphological variations in the P2 and S3 elements. Keywords: Conodonts, Middle Triassic, Sephardiellinae, Sephardic Realm, Neotethys. Resumen La nueva subfamilia Sephardiellinae está comprendida dentro del linaje de Gondolellidae del Triásico Medio y se originó en el Dominio Sefardí, la parte más occidental del Neotetis. Durante el Ladiniense-Carniense Inferior, algunas de sus especies irradian y se distribuyen por todos los océanos. Su extinción está relacionada con la crisis de salinidad que tuvo lugar en el Carniense. La nueva subfamilia está constituida por dos géneros, Sephardiella y Pseudofurnishius las diferencias morfológicas de su aparato sep- timembrado, como son la estructura de la cavidad basal del elemento P1 y las variaciones morfológicas de los elementos P2 y S3, constituyen el criterio utilizado.
    [Show full text]
  • Permian (Artinskian to Wuchapingian) Conodont Biostratigraphy in the Tieqiao Section, Laibin Area, South China
    Permian (Artinskian to Wuchapingian) conodont biostratigraphy in the Tieqiao section, Laibin area, South China Y.D. Suna, b*, X.T. Liuc, J.X. Yana, B. Lid, B. Chene, D.P.G. Bondf, M.M. Joachimskib, P.B. Wignallg, X.L. Laia a State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China b GeoZentrum Nordbayern, Universität Erlangen-Nürnberg, Schlossgarten 5, 91054 Erlangen, Germany c Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China d Key Laboratory of Marine Mineral Resources, Guangzhou Marine Geological Survey, Ministry of Land and Resources, Guangzhou, 510075, China e State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, 39 East Beijing Road, Nanjing, 210008, R.P. China f School of Environmental Sciences, University of Hull, Hull HU6 7RX, UK g School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK *Corresponding authors Email: [email protected] (Y.D. Sun) © 2017, Elsevier. Licensed under the Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/ licenses/by-nc-nd/4.0/ 1 Abstract Permian strata from the Tieqiao section (Jiangnan Basin, South China) contain several distinctive conodont assemblages. Early Permian (Cisuralian) assemblages are dominated by the genera Sweetognathus, Pseudosweetognathus and Hindeodus with rare Neostreptognathodus and Gullodus. Gondolellids are absent until the end of the Kungurian stage—in contrast to many parts of the world where gondolellids and Neostreptognathodus are the dominant Kungurian conodonts. A conodont changeover is seen at Tieqiao and coincided with a rise of sea level in the late Kungurian to the early Roadian: the previously dominant sweetognathids were replaced by mesogondolellids.
    [Show full text]
  • AUSTRIAN JOURNAL of EARTH SCIENCES Volume 98 2005
    AUSTRIAN JOURNAL of EARTH SCIENCES [MITTEILUNGEN der ÖSTERREICHISCHEN GEOLOGISCHEN GESELLSCHAFT] an INTERNATIONAL JOURNAL of the AUSTRIAN GEOLOGICAL SOCIETY volume 98 2005 Gerd RANTITSCH & Barbara RUSSEGGER: Organic maturation within the Central Northern Calcareous Alps (Eastern Alps)________________________________ www.univie.ac.at/ajes EDITING: Grasemann Bernhard, Wagreich Michael PUBLISCHER: Österreichische Geologische Gesellschaft Rasumofskygasse 23, A-1031 Wien TYPESETTER: Irnberger Norbert, www.irnberger.net Copy-Shop Urban, Bahnstraße 26a, 2130 Mistelbach PRINTER: Holzhausen Druck & Medien GmbH Holzhausenplatz 1, 1140 Wien ISSN 0251-7493 Austrian Journal of Earth Sciences Volume 98 Vienna 2005 Organic maturation within the Central Northern Calca- reous Alps (Eastern Alps) Gerd RANTITSCH1) & Barbara RUSSEGGER2) KEYWORDS very low-grade metamorphism Northern Calcareous Alps 1) Department of Applied Geosciences and Geophysics, Montanuniversität Leoben, vitrinite reflectance Austria, A-8700 Leoben, Austria, Email: [email protected] thermal modeling Jurassic orogeny 2) Library of the University of Graz, A-8010 Graz, Austria Eastern Alps Abstract Organic maturation within the central Northern Calcareous Alps (Eastern Alps) has been investigated using vitrinite reflectance data from Upper Permian to Upper Cretaceous strata of the Stauffen-Höllengebirge Nappe, Dachstein Nappe, Tennengebirge Block and Lammer Unit. Within the Lammer Unit a metamorphic break is observed between the Strubberg Formation and the tectonically overlying
    [Show full text]
  • BIASES in INTERPRETATION of the FOSSIL RECORD of CONODONTS by MARK A
    [Special Papers in Palaeontology, 73, 2005, pp. 7–25] BETWEEN DEATH AND DATA: BIASES IN INTERPRETATION OF THE FOSSIL RECORD OF CONODONTS by MARK A. PURNELL* and PHILIP C. J. DONOGHUE *Department of Geology, University of Leicester, University Road, Leicester LE1 7RH, UK; e-mail: [email protected] Department of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, UK; e-mail: [email protected] Abstract: The fossil record of conodonts may be among and standing generic diversity. Analysis of epoch ⁄ stage-level the best of any group of organisms, but it is biased nonethe- data for the Ordovician–Devonian interval suggests that less. Pre- and syndepositional biases, including predation there is generally no correspondence between research effort and scavenging of carcasses, current activity, reworking and and generic diversity, and more research is required to bioturbation, cause loss, redistribution and breakage of ele- determine whether this indicates that sampling of the cono- ments. These biases may be exacerbated by the way in which dont record has reached a level of maturity where few genera rocks are collected and treated in the laboratory to extract remain to be discovered. One area of long-standing interest elements. As is the case for all fossils, intervals for which in potential biases and the conodont record concerns the there is no rock record cause inevitable gaps in the strati- pattern of recovery of different components of the skeleton graphic distribution of conodonts, and unpreserved environ- through time. We have found no evidence that the increas- ments lead to further impoverishment of the recorded ing abundance of P elements relative to S and M elements spatial and temporal distributions of taxa.
    [Show full text]
  • Paper Number: 4008
    Paper Number: 4008 Characterization of conodont biostratigraphy in the basal Moscovian boundary interval at the Naqing section, Loudian, Guizhou, South China Lambert, L. L.1, Qi, Y. P.2, Nemyrovska, T. I.3, Wang, X. D.2, Hu, K. Y.2, and Wang, Q. L.2 1Geological Sciences, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA [email protected] 2State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, PR China 3Institute of Geological Sciences, National Academy of Sciences of Ukraine, O. Gonchar Str. 55-b, 01601 Kiev, Ukraine ___________________________________________________________________________ A major criterion for selecting a Global Stratotype Section and Point (GSSP) is to demonstrate depositional continuity. Depositional continuity is most often accepted where there is a transitional morphocline from an ancestral species to its descendent. The GSSP is then selected to correspond with the phylogenetic first occurrence of the descendent species. Ideally, strata elsewhere are subsequently correlated with the GSSP using the local first appearance of the descendent species, or by other taxa associated with the GSSP providing supplementary biostratigraphic data. Any other stratigraphic methods can be used for correlation once the GSSP has been ratified by the International Union of Geological Sciences Commission on Stratigraphy. Multiple conodont lineages with complete transitional morphologies characterize the Bashkirian- Moscovian boundary interval in the Naqing section. The presence of all these chronoclines through the section demonstrates depositional continuity at Naqing, and provides numerous possible conodont- based levels available for selecting a basal Moscovian GSSP.
    [Show full text]