<<

Lecture 11 – Quantum Confinement

EECS 598-002 Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.Ku Schedule for the rest of the semester

„ Introduction to light-matter interaction (1/26):

„ How to determine ε(r)?

„ The relationship to basic excitations. „ Basic excitations and measurement of ε(r). (1/31) „ Structure dependence of ε(r) overview (2/2) „ Surface effects (2/7):

„ Surface EM wave

„ Surface polaritons

„ Size dependence „ Case studies (2/9 – 2/16):

„ Quantum wells, wires, and dots

„ Nanophotonics in microscopy

„ Nanophotonics in plasmonics „ Dispersion engineering (2/21 – 3/7):

„ Material dispersion

„ Waveguide dispersion (photonic crystals)

EECS 598-002 Nanophotonics and Nanoscale Fabrication by P.C.Ku 2 Quantum confinement review

g(E) =

dot wire bulk sheet

3D 2D 1D 0D g(E) g(E) g(E) g(E)

Eg E Eg E Eg E Eg E

EECS 598-002 Nanophotonics and Nanoscale Fabrication by P.C.Ku 3 Quantum wells and double heterostructures

NP

Recombination of and hole pairs generate radiation.

EECS 598-002 Nanophotonics and Nanoscale Fabrication by P.C.Ku 4 Quantum well

~3λ >100λ

Gain

νν Free Spectral Range

νν EECS 598-002 Nanophotonics and Nanoscale Fabrication by P.C.Ku 5 DFB v.s. DBR structures

Distributed Feedback Distributed Bragg Reflector DFB DBR

Λ n1

w n2 n3 EECS 598-002 Nanophotonics and Nanoscale Fabrication by P.C.Ku 6 Cross section of DFB Lasers

EECS 598-002 Nanophotonics and Nanoscale Fabrication by P.C.Ku 7

Ref: Prasad, chapter 4, figures 10 and 11.

EECS 598-002 Nanophotonics and Nanoscale Fabrication by P.C.Ku 8 Intersubband transition

„ Intersubband transition can be used to generate or detect mid-infrared radiation (~ 10 µm).

Ref: H. Page et al., Appl. Phys. Lett., 78 (2001) 3529.

EECS 598-002 Nanophotonics and Nanoscale Fabrication by P.C.Ku 9 Quantum confined (QCSE)

Ref: J. S. Weiner et al., Appl. Phys. Lett., 47 (1985) 1148.

EECS 598-002 Nanophotonics and Nanoscale Fabrication by P.C.Ku 10 2D plasmons realization

Ref: S. J. Allen et al., Phys. Rev. Lett., 38 (1977) 980.

EECS 598-002 Nanophotonics and Nanoscale Fabrication by P.C.Ku 11 Increase of quantum confinement in indirect

„ Confinement of and holes in a small volume increase the possibly allowed ∆k and therefore enhances the emission efficiency of an indirect semiconductor, e.g. silicon.

Ref: W. D. Kirkey et al., MRS Symp. 789 (2004) N15.30.1.

EECS 598-002 Nanophotonics and Nanoscale Fabrication by P.C.Ku 12 lasers

„ Reduction of threshold current

„ Reduction of temperature dependence Æ uncooled operation „ Increase in differential gain Better high-speed „ Smaller linewidth enhancement factor performance

Y. Arakawa and H. Sakaki, Appl. Phys. Lett., 40 (1982) 939.

M. Asada et al, J. Quantum Elec., 22 (1986) 1915.

EECS 598-002 Nanophotonics and Nanoscale Fabrication by P.C.Ku 13 α – linewidth enhancement factor

„ Change of carrier density (e.g. due to amplitude modulation) Æ change in absorption/gain Æ change in refractive index (via Kramers-Kronig relation) ∂∂Reε / N α ≡ ∂∂Im / N ε

Ref: J. Oksanen and J. Tulkki, J. Appl. Phys., 94 (2003) 1983.

EECS 598-002 Nanophotonics and Nanoscale Fabrication by P.C.Ku 14 in semiconductor QD’s

„ Rabi oscillation:

Ref: T. H. Stievater et al., Phys. Rev. Lett., 87 (2001) 133603.

EECS 598-002 Nanophotonics and Nanoscale Fabrication by P.C.Ku 15 Quantum dot biosensors

FRET = fluorescence energy transfer

Ref: C. Y. Zhang et al., Nature Mat., 4 (2005) 826.

EECS 598-002 Nanophotonics and Nanoscale Fabrication by P.C.Ku 16 Nonlinear optical properties in semiconductors

„ Plasmon screening Exciton signature reduction „ Exciton ionization

„ Bandfilling Æ blue shift

„ Bandgap renormalization Æ red shift

„ Thermal nonlinearities Æ red shift for most of materials

EECS 598-002 Nanophotonics and Nanoscale Fabrication by P.C.Ku 17