Storm Kyrill
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Annual Bulletin on the Climate in WMO Region VI 2012 5
Annual Bulletin on the Climate in WMO Region VI - Europe and Middle East - 2012 This Bulletin is a cooperation of the National Meteorological and Hydrological Services in WMO RA VI ISSN: 1438 - 7522 Internet version: http://www.rccra6.org/rcccm Final version issued: 19.05.2014 Editor: Deutscher Wetterdienst P.O.Box 10 04 65, D-63004 Offenbach am Main, Germany Phone: +49 69 8062 2931 Fax: +49 69 8062 3759 E-mail: [email protected] Responsible: Helga Nitsche E-mail: [email protected] Acknowledgements: We thank F. Desiato (ISPRA) and V. Pavan (ARPA) for providing the Italian time series of temperature and precipitation and P. Löwe (BSH) for the ranking of North Sea temperatures. We also thank V. Cabrinha (IPMA), J. Cappelen (DMI) and C. Viel (MeteoFrance) for review contributions. The Bulletin is a summary of contributions from the following National Meteorological and Hydrological Services and was co-ordinated by the Deutscher Wetterdienst, Germany Armenia Austria Belgium Bosnia and Herzegovina Bulgaria Cyprus Czech Republi Denmark Estonia Finland France Georgia Germany Greece Hungary Ireland Iceland Israel Italy Kazakhstan Latvia Lithuania Luxembourg The former Yugoslav Republic of Macedonia Moldova Netherlands Norway Poland Portugal Romania Russia Serbia Slovakia Slovenia Spain Sweden Switzerland Turkey Ukraine United Kingdom Contents Introduction and references Annual and seasonal survey Outstanding events and anomalies Annual Survey Atmospheric Circulation Temperature, precipitation and sunshine Annual Maps Monthly and Annual Tables Seasonal and Annual Areal Means of Temperature Anomalies Annual extreme values Drought Snow cover Temporal evolution of climate elements Socio-economic Impacts of Extreme Climate or Weather Events Seasonal Survey Winter Spring Summer Autumn Monthly Survey Annual Bulletin on the Climate in WMO Region VI 2012 5 Introduction The Annual Bulletin on the Climate in WMO Region VI (Europe and Middle East) provides an overview of climate characteristics and phenomena in Europe and the Middle East for the preceding year. -
The East Coast Tidal Surge of 5 December 2013 Lincolnshire
OFFICIAL Lincolnshire’s Tidal Surge Response & Recovery ‘After Action’ Report The East Coast Tidal Surge of 5th December 2013 Lincolnshire Resilience Forum’s Response & Recovery ‘After Action’ Report 20th March 2014 1 OFFICIAL Lincolnshire’s Tidal Surge Response & Recovery ‘After Action’ Report Foreword On Thursday 5th December 2013 a deepening pressure system combined with high astronomical tides and strong to gale force ‘north westerly’ winds to generate a coastal surge along the whole of the east coast of England, the largest surge since the ‘great storm’ of 1953. Due to advances in surge forecasting, flood prediction and contingency planning at national, sub-national and local levels we were able to ‘get ahead’ of the storm. From Tuesday 3rd December partners began deploying one of the largest multi-agency emergency response and recovery operations ever conducted in Lincolnshire. This included the most significant evacuation operation in recent memory, the rescue of a number of people who became isolated by floodwaters, and work to ensure critical services were maintained and damaged infrastructure quickly repaired. Thankfully there were only 3 (relatively minor) casualties as a result of the surge, but more than 720 residential and commercial properties were inundated from the resultant overtopping and breach of defences. I would like to pass on my sympathy and support to those whose households and businesses flooded. We continue to work to support a full community recovery, and I commend the work of colleagues at Boston Borough Council who have led this work. In the circumstances this was a very good, forecast-led response and recovery effort. -
Extreme Weather Events and Property Values Assessing New Investment Frameworks for the Decades Ahead
Extreme weather events and property values Assessing new investment frameworks for the decades ahead A ULI Europe Policy & Practice Committee Report Author: Professor Sven Bienert Visiting Fellow, ULI Europe About ULI The mission of the Urban Land Institute is to provide leadership in the responsible use of land and in creating and sustaining thriving communities worldwide. ULI is committed to: • Bringing together leaders from across the fields of real estate and land use policy to exchange best practices and serve community needs; • Fostering collaboration within and beyond ULI’s membership through mentoring, dialogue, and problem solving; • Exploring issues of urbanisation, conservation, regeneration, land use, capital for mation, and sustainable development; • Advancing land use policies and design practices that respect the uniqueness of both the built and natural environment; • Sharing knowledge through education, applied research, publishing, and electronic media; and • Sustaining a diverse global network of local practice and advisory efforts that address current and future challenges. Established in 1936, the Institute today has more than 30,000 members worldwide, repre senting the entire spectrum of the land use and development disciplines. ULI relies heavily on the experience of its members. It is through member involvement and information resources that ULI has been able to set standards of excellence in devel opment practice. The Institute has long been recognised as one of the world’s most respected and widely quoted sources of objective information on urban planning, growth, and development. To download information on ULI reports, events and activities please visit www.uli-europe.org About the Author Credits Sven Bienert is professor of sustainable real estate at the Author University of Regensburg and ULI Europe’s Visiting Fellow Professor Sven Bienert on sustainability. -
ANNUAL SUMMARY Atlantic Hurricane Season of 2005
MARCH 2008 ANNUAL SUMMARY 1109 ANNUAL SUMMARY Atlantic Hurricane Season of 2005 JOHN L. BEVEN II, LIXION A. AVILA,ERIC S. BLAKE,DANIEL P. BROWN,JAMES L. FRANKLIN, RICHARD D. KNABB,RICHARD J. PASCH,JAMIE R. RHOME, AND STACY R. STEWART Tropical Prediction Center, NOAA/NWS/National Hurricane Center, Miami, Florida (Manuscript received 2 November 2006, in final form 30 April 2007) ABSTRACT The 2005 Atlantic hurricane season was the most active of record. Twenty-eight storms occurred, includ- ing 27 tropical storms and one subtropical storm. Fifteen of the storms became hurricanes, and seven of these became major hurricanes. Additionally, there were two tropical depressions and one subtropical depression. Numerous records for single-season activity were set, including most storms, most hurricanes, and highest accumulated cyclone energy index. Five hurricanes and two tropical storms made landfall in the United States, including four major hurricanes. Eight other cyclones made landfall elsewhere in the basin, and five systems that did not make landfall nonetheless impacted land areas. The 2005 storms directly caused nearly 1700 deaths. This includes approximately 1500 in the United States from Hurricane Katrina— the deadliest U.S. hurricane since 1928. The storms also caused well over $100 billion in damages in the United States alone, making 2005 the costliest hurricane season of record. 1. Introduction intervals for all tropical and subtropical cyclones with intensities of 34 kt or greater; Bell et al. 2000), the 2005 By almost all standards of measure, the 2005 Atlantic season had a record value of about 256% of the long- hurricane season was the most active of record. -
Flooding After Storm Desmond PERC UK 2015 Flooding in Cumbria After Storm Desmond PERC UK 2015
Flooding after Storm Desmond PERC UK 2015 Flooding in Cumbria after Storm Desmond PERC UK 2015 The storms that battered the north of England and parts of Scotland at the end of 2015 and early 2016 caused significant damage and disruption to families and businesses across tight knit rural communities and larger towns and cities. This came just two years after Storm Xaver inflicted significant damage to the east coast of England. Flooding is not a new threat to the residents of the Lake District, but the severity of the events in December 2015 certainly appears to have been regarded as surprising. While the immediate priority is always to ensure that defence measures are overwhelmed. We have also these communities and businesses are back up on their looked at the role of community flood action groups feet as quickly and effectively as possible, it is also in the response and recovery from severe flooding. important that all those involved in the response take Our main recommendations revolve around three key the opportunity to review their own procedures and themes. The first is around flood risk communication, actions. It is often the case that when our response is including the need for better communication of hazard, put to the test in a ‘real world’ scenario that we risk and what actions to take when providing early discover things that could have been done better, or warning services to communities. The second centres differently, and can make changes to ensure continuous around residual risk when the first line of flood improvement. This is true of insurers as much as it is of defences, typically the large, constructed schemes central and local government and the emergency protecting entire cities or areas, are either breached services, because events like these demand a truly or over-topped. -
Supplement of Storm Xaver Over Europe in December 2013: Overview of Energy Impacts and North Sea Events
Supplement of Adv. Geosci., 54, 137–147, 2020 https://doi.org/10.5194/adgeo-54-137-2020-supplement © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Supplement of Storm Xaver over Europe in December 2013: Overview of energy impacts and North Sea events Anthony James Kettle Correspondence to: Anthony James Kettle ([email protected]) The copyright of individual parts of the supplement might differ from the CC BY 4.0 License. SECTION I. Supplement figures Figure S1. Wind speed (10 minute average, adjusted to 10 m height) and wind direction on 5 Dec. 2013 at 18:00 GMT for selected station records in the National Climate Data Center (NCDC) database. Figure S2. Maximum significant wave height for the 5–6 Dec. 2013. The data has been compiled from CEFAS-Wavenet (wavenet.cefas.co.uk) for the UK sector, from time series diagrams from the website of the Bundesamt für Seeschifffahrt und Hydrolographie (BSH) for German sites, from time series data from Denmark's Kystdirektoratet website (https://kyst.dk/soeterritoriet/maalinger-og-data/), from RWS (2014) for three Netherlands stations, and from time series diagrams from the MIROS monthly data reports for the Norwegian platforms of Draugen, Ekofisk, Gullfaks, Heidrun, Norne, Ormen Lange, Sleipner, and Troll. Figure S3. Thematic map of energy impacts by Storm Xaver on 5–6 Dec. 2013. The platform identifiers are: BU Buchan Alpha, EK Ekofisk, VA? Valhall, The wind turbine accident letter identifiers are: B blade damage, L lightning strike, T tower collapse, X? 'exploded'. The numbers are the number of customers (households and businesses) without power at some point during the storm. -
Electricity Sector Adaptation to Heat Waves
ELECTRICITY SECTOR ADAPTATION TO HEAT WAVES By Sofia Aivalioti January 2015 Disclaimer: This paper is an academic study provided for informational purposes only and does not constitute legal advice. Transmission of the information is not intended to create, and the receipt does not constitute, an attorney-client relationship between sender and receiver. No party should act or rely on any information contained in this White Paper without first seeking the advice of an attorney. This paper is the responsibility of The Sabin Center for Climate Change Law alone, and does not reflect the views of Columbia Law School or Columbia University. © 2015 Sabin Center for Climate Change Law, Columbia Law School The Sabin Center for Climate Change Law develops legal techniques to fight climate change, trains law students and lawyers in their use, and provides the legal profession and the public with up-to-date resources on key topics in climate law and regulation. It works closely with the scientists at Columbia University's Earth Institute and with a wide range of governmental, non- governmental and academic organizations. About the author: Sophia Aivalioti is a graduate student enrolled in the Erasmus Mundus Joint European Master in Environmental Studies - Cities & Sustainability (JEMES CiSu). In 2014, she was a Visiting Scholar at the Sabin Center for Climate Change Law. Sabin Center for Climate Change Law Columbia Law School 435 West 116th Street New York, NY 10027 Tel: +1 (212) 854-3287 Email: [email protected] Web: http://www.ColumbiaClimateLaw.com Twitter: @ColumbiaClimate Blog: http://blogs.law.columbia.edu/climatechange Electricity Sector Adaptation to Heat Waves EXECUTIVE SUMMARY Electricity is very important for human settlements and a key accelerator for development and prosperity. -
London's Flood Risk and Flood Defence Management in Times of Climate
Bachelor of Science in Umweltwissenschaften (Environmental Science) Bachelor thesis Topic: London’s flood risk and flood defence management in times of climate change written by: Diana Süsser Supervising mentor: Prof. Dr. Ingo Mose Second mentor: Dr. Stuart Downward Oldenburg, 30 September 2010 1 Abstract (English version) The thesis analyses the subject of flooding and its management in the London Thames estuary. Flooding is an important topic for the large metropolis London and contains a high risk for people, their properties and our environment. London's catchment is crossed by the river Thames and provides a low lying coastal area which was affected by historical storm surges from time to time. The current flood defences including walls, embankments, barriers, gates and culverts offer a high standard of protection. However, there is a disagreement between the present defence and required protection in the future. This prospective flooding will be affected a rising sea level, increasing tide surges, severe and frequent rain storms as well as land movement caused by climate and environmental change. Therefore and because of the fact that the defences will reach the end of their term. This requires a long-term flood management in order to preserve the standard of protection through adaptation to the changing conditions. There are various options that including the improvement and rising of present defences, the construction of new defences and the structure of a new barrier in the main Thames river. In the end, a decision about the future flood risk management is approximately made until 2050, including a first investment programme up to 2049. -
Chapter 16 Extratropical Cyclones
CHAPTER 16 SCHULTZ ET AL. 16.1 Chapter 16 Extratropical Cyclones: A Century of Research on Meteorology’s Centerpiece a b c d DAVID M. SCHULTZ, LANCE F. BOSART, BRIAN A. COLLE, HUW C. DAVIES, e b f g CHRISTOPHER DEARDEN, DANIEL KEYSER, OLIVIA MARTIUS, PAUL J. ROEBBER, h i b W. JAMES STEENBURGH, HANS VOLKERT, AND ANDREW C. WINTERS a Centre for Atmospheric Science, School of Earth and Environmental Sciences, University of Manchester, Manchester, United Kingdom b Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, New York c School of Marine and Atmospheric Sciences, Stony Brook University, State University of New York, Stony Brook, New York d Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland e Centre of Excellence for Modelling the Atmosphere and Climate, School of Earth and Environment, University of Leeds, Leeds, United Kingdom f Oeschger Centre for Climate Change Research, Institute of Geography, University of Bern, Bern, Switzerland g Atmospheric Science Group, Department of Mathematical Sciences, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin h Department of Atmospheric Sciences, University of Utah, Salt Lake City, Utah i Deutsches Zentrum fur€ Luft- und Raumfahrt, Institut fur€ Physik der Atmosphare,€ Oberpfaffenhofen, Germany ABSTRACT The year 1919 was important in meteorology, not only because it was the year that the American Meteorological Society was founded, but also for two other reasons. One of the foundational papers in extratropical cyclone structure by Jakob Bjerknes was published in 1919, leading to what is now known as the Norwegian cyclone model. Also that year, a series of meetings was held that led to the formation of organizations that promoted the in- ternational collaboration and scientific exchange required for extratropical cyclone research, which by necessity involves spatial scales spanning national borders. -
Europe Lloyd’S City Risk Index Europe
Lloyd’s City Risk Index Europe Lloyd’s City Risk Index Europe Overview 1 Cities 12 2 Threats 18 3 Resilience 30 References 33 Acknowledgements 34 Lloyd’s City Risk Index. Europe The Lloyd’s City Risk Index measures the GDP@Risk of 279 cities across the world from 22 threats in five Lloyd’s City Risk Index categories: finance, economics and trade; geopolitics and security; health and humanity; natural catastrophe 279 cities. 22 threats and climate and technology and space. The cities in the index are some of the world’s leading cities, which $546.5bn at risk together generate 41% of global GDP. The index shows how much economic output (GDP) a city would lose annually as a consequence of various types of rare risk events that might only take place once every few years, such as an earthquake, or from more frequently occurring events such as cyber attacks. GDP@Risk is an expected loss figure – in other words it is a projection based on the likelihood of the loss of economic output from the threat. The resilience levels of each city are taken into account, including the city’s governance, social coherence, access to capital and the state of its infrastructure. If some or all of these are resilient they can reduce the overall expected loss. One way of thinking about GDP@Risk is as the money a prudent city needs to put aside each year to cover the cost of risk events. The concept of GDP@Risk helps policymakers, businesses and societies understand the financial impact of risk in their cities, a first step to building greater resilience. -
MAS8306 Topics in Statistics: Environmental Extremes
MAS8306 Topics in Statistics: Environmental Extremes Dr. Lee Fawcett Semester 2 2017/18 1 Background and motivation 1.1 Introduction Finally, there is almost1 a global consensus amongst scientists that our planet’s climate is changing. Evidence for climatic change has been collected from a variety of sources, some of which can be used to reconstruct the earth’s changing climates over tens of thousands of years. Reasonably complete global records of the earth’s surface tempera- ture since the early 1800’s indicate a positive trend in the average annual temperature, and maximum annual temperature, most noticeable at the earth’s poles. Glaciers are considered amongst the most sensitive indicators of climate change. As the earth warms, glaciers retreat and ice sheets melt, which – over the last 30 years or so – has resulted in a gradual increase in sea and ocean levels. Apart from the consequences on ocean ecosystems, rising sea levels pose a direct threat to low–lying inhabited areas of land. Less direct, but certainly noticeable in the last fiteen years or so, is the effect of rising sea levels on the earth’s weather systems. A larger amount of warmer water in the Atlantic Ocean, for example, has certainly resulted in stronger, and more frequent, 1Almost... — 3 — 1 Background and motivation tropical storms and hurricanes; unless you’ve been living under a rock over the last few years, you would have noticed this in the media (e.g. Hurricane Katrina in 2005, Superstorm Sandy in 2012). Most recently, and as reported in the New York Times in January 2018, the 2017 hurricane season was “.. -
North Carolina Climate Science Report North Carolina Climate Science Report
North Carolina Climate Science Report North Carolina Climate Science Report Authors Kenneth E. Kunkel D. Reide Corbett L. Baker Perry David R. Easterling Kathie D. Dello Walter A. Robinson Andrew Ballinger Jenny Dissen Laura E. Stevens Solomon Bililign Gary M. Lackmann Brooke C. Stewart Sarah M. Champion Richard A. Luettich Jr. Adam J. Terando Revised May 2020—See Errata for Details Recommended Citation Kunkel, K.E., D.R. Easterling, A. Ballinger, S. Bililign, S.M. Champion, D.R. Corbett, K.D. Dello, J. Dissen, G.M. Lackmann, R.A. Luettich, Jr., L.B. Perry, W.A. Robinson, L.E. Stevens, B.C. Stewart, and A.J. Terando, 2020:North Carolina Climate Science Report. North Carolina Institute for Climate Studies, 233 pp. https://ncics.org/nccsr Climate Science Advisory Panel Kenneth E. Kunkel | David R. Easterling | Ana P. Barros | Solomon Bililign | D. Reide Corbett Kathie D. Dello | Gary M. Lackmann | Wenhong Li | Yuh-lang Lin | Richard A. Luettich Jr. Douglas Miller | L. Baker Perry | Walter A. Robinson | Adam J. Terando Foreword The North Carolina Climate Science Report is a scientific assessment of historical climate trends and potential future climate change in North Carolina under increased greenhouse gas concentrations. It supports Governor Cooper’s Executive Order 80 (EO80), “North Carolina’s Commitment to Address Climate Change and Transition to a Clean Energy Economy,” by providing an independent peer-reviewed scientific contribution to the EO80. The report was prepared independently by North Carolina–based climate experts informed by (i) the scientific consensus on climate change represented in the United States Fourth National Climate Assessment and the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, (ii) the latest research published in credible scientific journals, and (iii) information in the North Carolina State Climate Summary.