Chapter 16 Extratropical Cyclones
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Homeowners Handbook to Prepare for Natural Disasters
HOMEOWNERS HANDBOOK HANDBOOK HOMEOWNERS DELAWARE HOMEOWNERS TO PREPARE FOR FOR TO PREPARE HANDBOOK TO PREPARE FOR NATURAL HAZARDSNATURAL NATURAL HAZARDS TORNADOES COASTAL STORMS SECOND EDITION SECOND Delaware Sea Grant Delaware FLOODS 50% FPO 15-0319-579-5k ACKNOWLEDGMENTS This handbook was developed as a cooperative project among the Delaware Emergency Management Agency (DEMA), the Delaware Department of Natural Resources and Environmental Control (DNREC) and the Delaware Sea Grant College Program (DESG). A key priority of this project partnership is to increase the resiliency of coastal communities to natural hazards. One major component of strong communities is enhancing individual resilience and recognizing that adjustments to day-to- day living are necessary. This book is designed to promote individual resilience, thereby creating a fortified community. The second edition of the handbook would not have been possible without the support of the following individuals who lent their valuable input and review: Mike Powell, Jennifer Pongratz, Ashley Norton, David Warga, Jesse Hayden (DNREC); Damaris Slawik (DEMA); Darrin Gordon, Austin Calaman (Lewes Board of Public Works); John Apple (Town of Bethany Beach Code Enforcement); Henry Baynum, Robin Davis (City of Lewes Building Department); John Callahan, Tina Callahan, Kevin Brinson (University of Delaware); David Christopher (Delaware Sea Grant); Kevin McLaughlin (KMD Design Inc.); Mark Jolly-Van Bodegraven, Pam Donnelly and Tammy Beeson (DESG Environmental Public Education Office). Original content from the first edition of the handbook was drafted with assistance from: Mike Powell, Greg Williams, Kim McKenna, Jennifer Wheatley, Tony Pratt, Jennifer de Mooy and Morgan Ellis (DNREC); Ed Strouse, Dave Carlson, and Don Knox (DEMA); Joe Thomas (Sussex County Emergency Operations Center); Colin Faulkner (Kent County Department of Public Safety); Dave Carpenter, Jr. -
A Study of Synoptic-Scale Tornado Regimes
Garner, J. M., 2013: A study of synoptic-scale tornado regimes. Electronic J. Severe Storms Meteor., 8 (3), 1–25. A Study of Synoptic-Scale Tornado Regimes JONATHAN M. GARNER NOAA/NWS/Storm Prediction Center, Norman, OK (Submitted 21 November 2012; in final form 06 August 2013) ABSTRACT The significant tornado parameter (STP) has been used by severe-thunderstorm forecasters since 2003 to identify environments favoring development of strong to violent tornadoes. The STP and its individual components of mixed-layer (ML) CAPE, 0–6-km bulk wind difference (BWD), 0–1-km storm-relative helicity (SRH), and ML lifted condensation level (LCL) have been calculated here using archived surface objective analysis data, and then examined during the period 2003−2010 over the central and eastern United States. These components then were compared and contrasted in order to distinguish between environmental characteristics analyzed for three different synoptic-cyclone regimes that produced significantly tornadic supercells: cold fronts, warm fronts, and drylines. Results show that MLCAPE contributes strongly to the dryline significant-tornado environment, while it was less pronounced in cold- frontal significant-tornado regimes. The 0–6-km BWD was found to contribute equally to all three significant tornado regimes, while 0–1-km SRH more strongly contributed to the cold-frontal significant- tornado environment than for the warm-frontal and dryline regimes. –––––––––––––––––––––––– 1. Background and motivation As detailed in Hobbs et al. (1996), synoptic- scale cyclones that foster tornado development Parameter-based and pattern-recognition evolve with time as they emerge over the central forecast techniques have been essential and eastern contiguous United States (hereafter, components of anticipating tornadoes in the CONUS). -
The Poleward Motion of Extratropical Cyclones from a Potential Vorticity Tendency Analysis
APRIL 2016 T A M A R I N A N D K A S P I 1687 The Poleward Motion of Extratropical Cyclones from a Potential Vorticity Tendency Analysis TALIA TAMARIN AND YOHAI KASPI Department of Earth and Planetary Sciences, Weizmann Institute of Sciences, Rehovot, Israel (Manuscript received 22 June 2015, in final form 26 October 2015) ABSTRACT The poleward propagation of midlatitude storms is studied using a potential vorticity (PV) tendency analysis of cyclone-tracking composites, in an idealized zonally symmetric moist GCM. A detailed PV budget reveals the important role of the upper-level PV and diabatic heating associated with latent heat release. During the growth stage, the classic picture of baroclinic instability emerges, with an upper-level PV to the west of a low-level PV associated with the cyclone. This configuration not only promotes intensification, but also a poleward tendency that results from the nonlinear advection of the low-level anomaly by the upper- level PV. The separate contributions of the upper- and lower-level PV as well as the surface temperature anomaly are analyzed using a piecewise PV inversion, which shows the importance of the upper-level PV anomaly in advecting the cyclone poleward. The PV analysis also emphasizes the crucial role played by latent heat release in the poleward motion of the cyclone. The latent heat release tends to maximize on the northeastern side of cyclones, where the warm and moist air ascends. A positive PV tendency results at lower levels, propagating the anomaly eastward and poleward. It is also shown here that stronger cyclones have stronger latent heat release and poleward advection, hence, larger poleward propagation. -
Annual Bulletin on the Climate in WMO Region VI 2012 5
Annual Bulletin on the Climate in WMO Region VI - Europe and Middle East - 2012 This Bulletin is a cooperation of the National Meteorological and Hydrological Services in WMO RA VI ISSN: 1438 - 7522 Internet version: http://www.rccra6.org/rcccm Final version issued: 19.05.2014 Editor: Deutscher Wetterdienst P.O.Box 10 04 65, D-63004 Offenbach am Main, Germany Phone: +49 69 8062 2931 Fax: +49 69 8062 3759 E-mail: [email protected] Responsible: Helga Nitsche E-mail: [email protected] Acknowledgements: We thank F. Desiato (ISPRA) and V. Pavan (ARPA) for providing the Italian time series of temperature and precipitation and P. Löwe (BSH) for the ranking of North Sea temperatures. We also thank V. Cabrinha (IPMA), J. Cappelen (DMI) and C. Viel (MeteoFrance) for review contributions. The Bulletin is a summary of contributions from the following National Meteorological and Hydrological Services and was co-ordinated by the Deutscher Wetterdienst, Germany Armenia Austria Belgium Bosnia and Herzegovina Bulgaria Cyprus Czech Republi Denmark Estonia Finland France Georgia Germany Greece Hungary Ireland Iceland Israel Italy Kazakhstan Latvia Lithuania Luxembourg The former Yugoslav Republic of Macedonia Moldova Netherlands Norway Poland Portugal Romania Russia Serbia Slovakia Slovenia Spain Sweden Switzerland Turkey Ukraine United Kingdom Contents Introduction and references Annual and seasonal survey Outstanding events and anomalies Annual Survey Atmospheric Circulation Temperature, precipitation and sunshine Annual Maps Monthly and Annual Tables Seasonal and Annual Areal Means of Temperature Anomalies Annual extreme values Drought Snow cover Temporal evolution of climate elements Socio-economic Impacts of Extreme Climate or Weather Events Seasonal Survey Winter Spring Summer Autumn Monthly Survey Annual Bulletin on the Climate in WMO Region VI 2012 5 Introduction The Annual Bulletin on the Climate in WMO Region VI (Europe and Middle East) provides an overview of climate characteristics and phenomena in Europe and the Middle East for the preceding year. -
Disaster, Terror, War, and Chemical, Biological, Radiological, Nuclear, and Explosive (CBRNE) Events
Disaster, Terror, War, and Chemical, Biological, Radiological, Nuclear, and Explosive (CBRNE) Events Date Location Agent Notes Source 28 Apr Kano, Nigeria VBIED Five soldiers were killed and 40 wounded when a Boko http://www.dailystar.com.lb/News/World/2017/ 2017 Haram militant drove his VBIED into a convoy. Apr-28/403711-suicide-bomber-kills-five-troops- in-ne-nigeria-sources.ashx 25 Apr Pakistan Land mine A passenger van travelling within Parachinar hit a https://www.dawn.com/news/1329140/14- 2017 landmine, killing fourteen and wounding nine. killed-as-landmine-blast-hits-van-carrying- census-workers-in-kurram 24 Apr Sukma, India Small arms Maoist rebels ambushed CRPF forces and killed 25, http://odishasuntimes.com/2017/04/24/12-crpf- 2017 wounding six or so. troopers-killed-in-maoist-attack/ 15 Apr Aleppo, Syria VBIED 126 or more people were killed and an unknown https://en.wikipedia.org/wiki/2017_Aleppo_suici 2017 number wounded in ISIS attacks against a convoy of de_car_bombing buses carrying refugees. 10 Apr Somalia Suicide Two al-Shabaab suicide bombs detonated in and near http://www.reuters.com/article/us-somalia- 2017 bombings Mogadishu killed nine soldiers and a civil servant. security-blast-idUSKBN17C0JV?il=0 10 Apr Wau, South Ethnic violence At least sixteen people were killed and ten wounded in http://www.reuters.com/article/us-southsudan- 2017 Sudan ethnic violence in a town in South Sudan. violence-idUSKBN17C0SO?il=0 10 Apr Kirkuk, Iraq Small arms Twelve ISIS prisoners were killed by a firing squad, for http://www.iraqinews.com/iraq-war/islamic- 2017 reasons unknown. -
History of Frontal Concepts Tn Meteorology
HISTORY OF FRONTAL CONCEPTS TN METEOROLOGY: THE ACCEPTANCE OF THE NORWEGIAN THEORY by Gardner Perry III Submitted in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June, 1961 Signature of'Author . ~ . ........ Department of Humangties, May 17, 1959 Certified by . v/ .-- '-- -T * ~ . ..... Thesis Supervisor Accepted by Chairman0 0 e 0 o mmite0 0 Chairman, Departmental Committee on Theses II ACKNOWLEDGMENTS The research for and the development of this thesis could not have been nearly as complete as it is without the assistance of innumerable persons; to any that I may have momentarily forgotten, my sincerest apologies. Conversations with Professors Giorgio de Santilw lana and Huston Smith provided many helpful and stimulat- ing thoughts. Professor Frederick Sanders injected thought pro- voking and clarifying comments at precisely the correct moments. This contribution has proven invaluable. The personnel of the following libraries were most cooperative with my many requests for assistance: Human- ities Library (M.I.T.), Science Library (M.I.T.), Engineer- ing Library (M.I.T.), Gordon MacKay Library (Harvard), and the Weather Bureau Library (Suitland, Md.). Also, the American Meteorological Society and Mr. David Ludlum were helpful in suggesting sources of material. In getting through the myriad of minor technical details Professor Roy Lamson and Mrs. Blender were indis-. pensable. And finally, whatever typing that I could not find time to do my wife, Mary, has willingly done. ABSTRACT The frontal concept, as developed by the Norwegian Meteorologists, is the foundation of modern synoptic mete- orology. The Norwegian theory, when presented, was rapidly accepted by the world's meteorologists, even though its several precursors had been rejected or Ignored. -
Village of Manchester Hazard Mitigation Plan Village of Manchester, Vermont
Village of Manchester Hazard Mitigation Plan , 2017 Village of Manchester, Vermont Table of Contents List of Tables ................................................................................................................................................. 2 List of Figures ................................................................................................................................................ 2 I. Introduction .......................................................................................................................................... 3 A. Purpose ............................................................................................................................................. 3 B. Mitigation Goals ................................................................................................................................ 3 II. Village Profile ........................................................................................................................................ 4 A. Regional Context ............................................................................................................................... 4 B. Demography and Land Use ............................................................................................................... 4 C. Economic and Cultural Resources ..................................................................................................... 4 D. Critical Facilities ............................................................................................................................... -
Extratropical Cyclones and Anticyclones
© Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION Courtesy of Jeff Schmaltz, the MODIS Rapid Response Team at NASA GSFC/NASA Extratropical Cyclones 10 and Anticyclones CHAPTER OUTLINE INTRODUCTION A TIME AND PLACE OF TRAGEDY A LiFE CYCLE OF GROWTH AND DEATH DAY 1: BIRTH OF AN EXTRATROPICAL CYCLONE ■■ Typical Extratropical Cyclone Paths DaY 2: WiTH THE FI TZ ■■ Portrait of the Cyclone as a Young Adult ■■ Cyclones and Fronts: On the Ground ■■ Cyclones and Fronts: In the Sky ■■ Back with the Fitz: A Fateful Course Correction ■■ Cyclones and Jet Streams 298 9781284027372_CH10_0298.indd 298 8/10/13 5:00 PM © Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION Introduction 299 DaY 3: THE MaTURE CYCLONE ■■ Bittersweet Badge of Adulthood: The Occlusion Process ■■ Hurricane West Wind ■■ One of the Worst . ■■ “Nosedive” DaY 4 (AND BEYOND): DEATH ■■ The Cyclone ■■ The Fitzgerald ■■ The Sailors THE EXTRATROPICAL ANTICYCLONE HIGH PRESSURE, HiGH HEAT: THE DEADLY EUROPEAN HEAT WaVE OF 2003 PUTTING IT ALL TOGETHER ■■ Summary ■■ Key Terms ■■ Review Questions ■■ Observation Activities AFTER COMPLETING THIS CHAPTER, YOU SHOULD BE ABLE TO: • Describe the different life-cycle stages in the Norwegian model of the extratropical cyclone, identifying the stages when the cyclone possesses cold, warm, and occluded fronts and life-threatening conditions • Explain the relationship between a surface cyclone and winds at the jet-stream level and how the two interact to intensify the cyclone • Differentiate between extratropical cyclones and anticyclones in terms of their birthplaces, life cycles, relationships to air masses and jet-stream winds, threats to life and property, and their appearance on satellite images INTRODUCTION What do you see in the diagram to the right: a vase or two faces? This classic psychology experiment exploits our amazing ability to recognize visual patterns. -
NWS Unified Surface Analysis Manual
Unified Surface Analysis Manual Weather Prediction Center Ocean Prediction Center National Hurricane Center Honolulu Forecast Office November 21, 2013 Table of Contents Chapter 1: Surface Analysis – Its History at the Analysis Centers…………….3 Chapter 2: Datasets available for creation of the Unified Analysis………...…..5 Chapter 3: The Unified Surface Analysis and related features.……….……….19 Chapter 4: Creation/Merging of the Unified Surface Analysis………….……..24 Chapter 5: Bibliography………………………………………………….…….30 Appendix A: Unified Graphics Legend showing Ocean Center symbols.….…33 2 Chapter 1: Surface Analysis – Its History at the Analysis Centers 1. INTRODUCTION Since 1942, surface analyses produced by several different offices within the U.S. Weather Bureau (USWB) and the National Oceanic and Atmospheric Administration’s (NOAA’s) National Weather Service (NWS) were generally based on the Norwegian Cyclone Model (Bjerknes 1919) over land, and in recent decades, the Shapiro-Keyser Model over the mid-latitudes of the ocean. The graphic below shows a typical evolution according to both models of cyclone development. Conceptual models of cyclone evolution showing lower-tropospheric (e.g., 850-hPa) geopotential height and fronts (top), and lower-tropospheric potential temperature (bottom). (a) Norwegian cyclone model: (I) incipient frontal cyclone, (II) and (III) narrowing warm sector, (IV) occlusion; (b) Shapiro–Keyser cyclone model: (I) incipient frontal cyclone, (II) frontal fracture, (III) frontal T-bone and bent-back front, (IV) frontal T-bone and warm seclusion. Panel (b) is adapted from Shapiro and Keyser (1990) , their FIG. 10.27 ) to enhance the zonal elongation of the cyclone and fronts and to reflect the continued existence of the frontal T-bone in stage IV. -
Coniglio Et Al. (2006)
P1.30 FORECASTING THE SPEED AND LONGEVITY OF SEVERE MESOSCALE CONVECTIVE SYSTEMS Michael C. Coniglio∗1 and Stephen F. Corfidi2 1NOAA/National Severe Storms Laboratory, Norman, OK 2NOAA/Storm Prediction Center, Norman, OK 1. INTRODUCTION b. MCS maintenance Forecasting the details of mesoscale convective Predicting MCS maintenance is fraught with systems (MCSs) (Zipser 1982) continues to be a difficult challenges such as understanding how deep convection problem. Recent advances in numerical weather is sustained through system/environment interactions prediction models and computing power have allowed (Weisman and Rotunno 2004, Coniglio et al. 2004b, for explicit real-time prediction of MCSs over the past Coniglio et al. 2005), how pre-existing mesoscale few years, some of which have supported field features influence the system (Fritsch and Forbes 2001, programs (Davis et al. 2004) and collaborative Trier and Davis 2005), and how the disturbances experiments between researchers and forecasters at generated by the system itself can alter the system the Storm Prediction Center (SPC) (Kain et al. 2005). structure and longevity (Parker and Johnson 2004c). While these numerical forecasts of MCSs are promising, the utility of these forecasts and how to best use the From an observational perspective, Evans and capabilities of the high-resolution models in support of Doswell (2001) suggest that the strength of the mean operations is unclear, especially from the perspective of wind (0-6 km) and its effects on cold pool development the Storm Prediction Center (SPC) (Kain et al. 2005). and MCS motion play a significant role in sustaining Therefore, refining our knowledge of the interactions of long-lived forward-propagating MCSs that produce MCSs with their environment remains central to damaging surface winds (derechos) through modifying advancing our near-term ability to forecast MCSs. -
An Examination of the Mesoscale Environment of the James Island Memorial Day Tornado
19.6 AN EXAMINATION OF THE MESOSCALE ENVIRONMENT OF THE JAMES ISLAND MEMORIAL DAY TORNADO STEVEN B. TAYLOR NOAA/NATIONAL WEATHER SERVICE FORECAST OFFICE CHARLESTON, SC 1. INTRODUCTION conditions also induced weak cyclogenesis along the front near the vicinity of KVDI. By 1200 UTC A cluster of severe thunderstorms the surface low was located between KNBC and moved across portions of south coastal South KCHS. This low and its influences on the Carolina during the early morning hours of 30 kinematic environment as well as the eventual May 2006. Around 1135 UTC, a severe position of the surface frontal boundary will prove thunderstorm spawned an F-1 tornado in the to be the main contributing factors leading to the James Island community of Charleston, SC. The development of the James Island tornado. tornado produced wind and structural damage as it moved rapidly NE through several residential neighborhoods. The tornado was on the ground for approximately 0.1 mi before it emerged into the Atlantic Ocean as a large waterspout near the entrance to the Charleston Harbor. Timely tornado warnings were issued by the NOAA/National Weather Service Forecast Office (WFO) in Charleston, SC (CHS), despite the event occurring during a climatologically rare time of day. This study will concentrate on the mesoscale factors that supported the genesis of the tornado and its parent severe thunderstorm. Radar data generated by the KCLX WSR-88D will also be presented. 2. SYNOPTIC ENVIRONMENT The synoptic environment supported the development of scattered convective precipitation Fig 1. Map of eastern SC/GA across much of the coastal areas of the Carolinas and Georgia. -
Extreme Weather Events and Property Values Assessing New Investment Frameworks for the Decades Ahead
Extreme weather events and property values Assessing new investment frameworks for the decades ahead A ULI Europe Policy & Practice Committee Report Author: Professor Sven Bienert Visiting Fellow, ULI Europe About ULI The mission of the Urban Land Institute is to provide leadership in the responsible use of land and in creating and sustaining thriving communities worldwide. ULI is committed to: • Bringing together leaders from across the fields of real estate and land use policy to exchange best practices and serve community needs; • Fostering collaboration within and beyond ULI’s membership through mentoring, dialogue, and problem solving; • Exploring issues of urbanisation, conservation, regeneration, land use, capital for mation, and sustainable development; • Advancing land use policies and design practices that respect the uniqueness of both the built and natural environment; • Sharing knowledge through education, applied research, publishing, and electronic media; and • Sustaining a diverse global network of local practice and advisory efforts that address current and future challenges. Established in 1936, the Institute today has more than 30,000 members worldwide, repre senting the entire spectrum of the land use and development disciplines. ULI relies heavily on the experience of its members. It is through member involvement and information resources that ULI has been able to set standards of excellence in devel opment practice. The Institute has long been recognised as one of the world’s most respected and widely quoted sources of objective information on urban planning, growth, and development. To download information on ULI reports, events and activities please visit www.uli-europe.org About the Author Credits Sven Bienert is professor of sustainable real estate at the Author University of Regensburg and ULI Europe’s Visiting Fellow Professor Sven Bienert on sustainability.