Spatial Survey of Tephra Deposits in the Middle Lahn Valley (Hesse, Germany)

Total Page:16

File Type:pdf, Size:1020Kb

Spatial Survey of Tephra Deposits in the Middle Lahn Valley (Hesse, Germany) Express report E&G Quaternary Sci. J., 70, 165–169, 2021 https://doi.org/10.5194/egqsj-70-165-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Spatial survey of tephra deposits in the middle Lahn valley (Hesse, Germany) Collin J. Weber, Volker M. H. Dickhardt, and Stefan Harnischmacher Department of Geography, Philipps-University Marburg, Marburg, 35032, Germany Correspondence: Collin J. Weber ([email protected]) Relevant dates: Received: 26 March 2021 – Revised: 11 May 2021 – Accepted: 1 June 2021 – Published: 1 July 2021 How to cite: Weber, C. J., Dickhardt, V. M. H., and Harnischmacher, S.: Spatial survey of tephra de- posits in the middle Lahn valley (Hesse, Germany), E&G Quaternary Sci. J., 70, 165–169, https://doi.org/10.5194/egqsj-70-165-2021, 2021. 1 Introduction 2003; Lomax et al., 2018). Further well-summarized infor- mation about the situation within the Niederweimar gravel Tephra deposits and especially Laacher See tephra (LST) quarry can be found in Lomax et al. (2018) or on the website deposits resulting from the Laacher See eruption (12.9 ka) of the archaeological survey of Hesse (https://lfd.hessen.de/, are an important stratigraphic marker for the Allerød period last access: 21 March 2021). in central Europe (van den Bogaard and Schmincke, 1995). The evidence of LST in the Lahn valley, as in other valley Within the central German low mountain range (Rhenish sediments, is often limited to gravel pits (other larger excava- Massif and eastern areas) the LST was found within soils tions). These pits and their profiles offer very good insights (initial deposits, sheltered slope positions) and valleys (relo- (e.g. detailed lithostratigraphic description of profiles), but cated deposits) (Bos and Urz, 2003; Hahn and Opp, 2005). they are always limited to a comparatively small spatial sec- The Niederweimar gravel quarry, located on the lower ter- tion of the entire floodplain (gravel pit area). Therefore, the race in the middle reach of the Lahn River valley south of objective of the presented study is to provide a spatial sur- Marburg (Hesse, Germany), is known for its high-resolution vey of LST deposits in the middle Lahn valley, covering the stratigraphy of Quaternary gravel deposits and late glacial, entire floodplain cross section. The following two questions as well as Holocene, floodplain fines (Lomax et al., 2018). form the focus of the spatial survey. (1) How is the lateral This particular stratigraphy is mainly achieved by the up to and vertical extension of the LST deposits within the Lahn 2 m thick LST deposits, which consist of pure LST beds and valley floodplain? (2) Does the spatial distribution provide a multitude of fine LST bands (partly interbedded with black overarching information about the deposition dynamics of sands or interrupted by clay bands). The origin of the LST the LST? For this purpose, a transect-based survey with qual- in the floodplain is attributed to an extensive deposition (ae- itative analysis of LST grains based on density separation and olian, directly in the floodplain), as well as later fragmenta- visual identification (stereomicroscope) was applied. tion of the tephra deposits by surface erosion and renewed deposition of LST from the catchment area through chang- ing river systems (Bos and Urz, 2003; Lomax et al., 2018). 2 Methods The surroundings of the gravel quarry are also rich in archae- ological finds reaching more or less continuously from the Survey and sampling of tephra samples was conducted at Mesolithic (11.7 to 7.5 ka) to the Middle Ages (Bos and Urz, three floodplain transects (including active floodplain zone and lower terrace) in the south of Niederweimar gravel Published by Copernicus Publications on behalf of the Deutsche Quartärvereinigung (DEUQUA) e.V. 166 C. J. Weber et al.: Tephra deposits in the Lahn valley quarry where the floodplain shows one of its greatest trans- 3 Results and discussion verse expansions (Fig. 1). Transects cover a maximum width of 973.9 m and are at 170.9 m a.s.l. (above sea level) with a In total 56 tephra containing stratigraphically distinguishable height difference of ±1:4 m. Sampling was carried out with layers were identified and sampled. Qualitative tephra anal- the help of a hand auger (Pürckhauer, Ø 2 cm, 2 m depth) and yses within the laboratory show a positive rate of 69.6 % in pile core probing (Ø 6–8 cm, 3 m depth). Soil properties and which case tephra could be detected under the microscope stratigraphy were documented in the field according to the for the 56 samples. In 30.4 % of the layers, no tephra grains national standard soil classification scheme (KA5, Ad-hoc or larger fragments could be found even if the Greasing ef- AG Boden, 2005). Tephra-containing layers were identified fect occurred in the field. The applied method is therefore visually (visible tephra grains) or by smeary consistence (ow- suitable for qualitative detection, is fast and inexpensive, and ing to higher contents of allophane) (Jahn et al., 2006), pro- can be extended by other methods such as mineral analy- portion documented (percentage of tephra grains estimated sis and dating. Tephra grains occur usually entire with grey- by area according to KA5), and extracted for further analy- brown to greenish colours, clear holes and glassy surface sis. structure (Fig. 2). The length to width ratio of the grains from Samples for method validation and as comparison mate- a random sample of 30 grains comprises an average length rial (reference samples) were taken from a recently exca- of 782.7 (±288:4) µm and width of 557.12 (±179:5) µm. vated profile (32U 480710 5621590) in the Niederweimar Grain surface and average and maximum length (1565.9 µm) gravel quarry, which was excavated during archaeological correspond clearly to the reference samples (same colour, work. The profile consists of Holocene floodplain loams (silt holes and glassy structure) with an average length of 724.3 to sandy loam) above four LST layers (sandy loam, partwise (±245:6) µm. alternating with black sands and ripple) and flood loam (late Tephra layers come up at average depths of 68.6 cm below Pleistocene) at the base (Fig. 2). Three samples were taken surface and end at average depths of 166.5 cm (±46:3 cm). from the upper (LST bands mixed with sandy loam), mid- Tephra layers have thicknesses from 6.0 up to 132.0 cm with dle (thick LST bands, between black sands) and lower (LST an average thickness of 52.0 cm (Figs. 1b and 2). Grain size bands interrupted by black sands with ripple shapes) parts of analyses of tephra-containing layers has a mean distribution the LST layer (Fig. 2). of 30.2 % clay, 46.8 % silt and 23.1 % sand. However, the Reference samples and samples from the transects were share of sand is ranging between 2.7 % and 57.9 %, resulting dried at 100 ◦C (drying chamber) under weight loss con- in the samples comprising the grain size classes clay, silty trol, subsequently carefully ground, and sieved to < 2 mm clay, silty clay loam to silt loam (outliers within loam and (stainless steel sieve, Retsch, Haan, Germany). Subsample sandy loam), and they are thus very heterogeneous. material (20g per sample) was then mixed with 150 mL Stratigraphic classification of tephra layers corresponds saturated NaCl solution (density adjusted, ρ D 1:2 g cm−3) to the findings of our reference profile and other profiles within glass beakers, stirred (1 min, magnetic stirrer) and al- within the Niederweimar quarry (e.g. Lomax et al., 2018): lowed to sediment for 20 min. This allows the tephra grains The tephra layers are covered by Holocene floodplain sedi- to be separated from other mineral components (sand to ments (floodplain loams, silty loams) and rarely with single clay grains), despite the heavy minerals contained (Lomax et clay layers or isolated gravel deposits. The lowermost tephra al., 2018), because the grains float in the dry state due to their layers, partly with the same pattern of banding (LST bands many cavities (volcanic origin). The floating tephra grains and black sands) (Fig. 2), however, are only poorly visible were then sieved to > 50 µm (Atechnik, Leinburg, Germany) within the drill sample in contrast to quarry profiles. Below to separate clay and/or silt particles and filtered by vacuum the tephra, a thin band (approx. 5 cm) of sand with gravel filtration (cellulose filter, LLG-Labware, Meckenheim, Ger- occurs, followed by a thick layer of clay (dark and rich in or- many) to rinse out remaining salts. Dried filters were visu- ganic matter), before the gravel deposits of the lower terrace ally examined using a stereomicroscope (Motic SMZ-161 begin. TL, Motic, Hong Kong). From the reference samples, 30 ran- Regarding the vertical and lateral spatial distribution of domly selected tephra grains were extracted and measured tephra layers it can be stated that it is present nearly all over (Moticam, Motic, Hong Kong). Samples from the transects the floodplain area of the middle Lahn valley. The interpola- were inspected according to the presented method, and the tion of the upper and lower tephra boundaries (Fig. 1b) shows presence of tephra grains or their fragments was considered that it is independent of the terrain surface today. This indi- a positive finding. In addition, 19 samples containing proven cates that the tephra follows the morphology of Pleistocene LST were selected, and the particle size distribution was de- gravel and flood loam deposits, as observed within the quarry termined according to DIN ISO 11277 (2002) and the inte- (reference profile).
Recommended publications
  • Collected Sequence of the Rhine and Nahe Terraces at Bingen
    Results of recent Terrace Research in the Middle Rhine Valley Fig. 1.: Downstream Correlation Diagram of River-Terraces in the Lower Nahe & Upper Middle Rhine Valley. Fig. 2 & Tab. 1: Collected Sequence of the Rhine and Nahe Terraces at Bingen-Trechtingshausen Downstream Correlation Diagram of River Terraces in the Lower Nahe & Upper Middle Rhine Valley correlated with Pollen Records and Marine Isotope Stages. Collected Terrace- MIS Elevation of Assumed Difference Incision at Lower Nahe Valley Upper Middle Rhine Valley Lower Lahn Valley Age Palaeomagnetic Marine Isotope Stages (MIS) Mean Temp.°C Sequence Base NW-European Age labels Terr. Base Mean in Age Collected 18 Nahe / Rhein LowerGÖRG Nahe(1984) Valley Upper PMiddleREUSS, BURGER & SRhineIEGLER (2015) Valley Lower ALahnNDRES & SEWERING Valley(1983); (Ma) Record (Ma) (δ OOcean‰) in July (Pollen) (m a.s.l.) Stages (Ma) Nahe / Nahe/Rhine Age Nahe/Rhine Sequence 5 4 0° 10° 20° SEWERING (1993) tRh 11.2 78 Rhine (No.) (m a.s.l.) (Ma) (Ma) Nahe/Rhine GÖRG (1984) PREUSS, BURGER & SIEGLER (2015) ANDRES & SEWERING (1983); 2 tRh 11.1 81 Weichselian (mm/a) 4 tRh 10 84 SEWERING (1993) 6 Eemian tNa 12. 1 75 0,00 0,01 0,30 tRh 9. 90 Saalian tNa 11.2 1-2 78 0,01 0,01 0,30 8 tRh 8.2 94 tNa 11.1 2 81 0,02 0,04 0,08 10 tRh 8.1 101 Holsteinian tNa 10. 4 84 0,06 0,08 0,08 12 tRh 7.4 108 Elsterian tRh 7.3 114 tNa 9. 6 90 0,14 0,11 0,04 Elevation m a.s.l.
    [Show full text]
  • Olympiatauben Mit Züchter 404.Xlsx
    regionareiseVver z-nr ReiseVereinigungen_na S_GSMT_name pr pkt t-nat t-ver t-jahr t-nr t-gescRegionalverbaende_name 404 10 5 6 Gießen Nord Göhler, E.+Th. 3 22640 6680 17 0097 Lahn-Sieg-Dill 404 10 5 6 Gießen Nord Göhler, E.+Th. 3 20314 6680 17 0181 Lahn-Sieg-Dill 404 10 6 11 Gießen Nord Kostka ,Bernhard 3 27048 6914 17 0103 Lahn-Sieg-Dill 404 10 6 11 Gießen Nord Kostka ,Bernhard 3 26817 6914 17 0101 Lahn-Sieg-Dill 404 10 6 11 Gießen Nord Kostka ,Bernhard 3 25402 6914 17 0157 Lahn-Sieg-Dill 404 10 6 11 Gießen Nord Kostka ,Bernhard 3 19550 6914 17 0134 Lahn-Sieg-Dill 404 10 12 3 Gießen Nord Schwarz, Klaus 3 25485 3725 17 0278 Lahn-Sieg-Dill 404 10 16 1 Gießen Nord Jochum Benjamin 3 28582 4695 17 1313 Lahn-Sieg-Dill 404 10 16 1 Gießen Nord Jochum Benjamin 3 28154 4695 17 1326 Lahn-Sieg-Dill 404 10 16 1 Gießen Nord Jochum Benjamin 3 27608 6680 17 0388 Lahn-Sieg-Dill 404 10 16 1 Gießen Nord Jochum Benjamin 3 27589 4695 17 1301 Lahn-Sieg-Dill 404 10 16 1 Gießen Nord Jochum Benjamin 3 27580 4695 17 1374 Lahn-Sieg-Dill 404 10 16 1 Gießen Nord Jochum Benjamin 3 26983 4695 17 1333 Lahn-Sieg-Dill 404 10 16 1 Gießen Nord Jochum Benjamin 3 26748 4695 17 1025 Lahn-Sieg-Dill 404 10 16 1 Gießen Nord Jochum Benjamin 3 26576 6680 17 0333 Lahn-Sieg-Dill 404 10 16 1 Gießen Nord Jochum Benjamin 3 25652 4695 17 1316 Lahn-Sieg-Dill 404 10 16 1 Gießen Nord Jochum Benjamin 3 25494 4695 17 1343 Lahn-Sieg-Dill 404 10 16 1 Gießen Nord Jochum Benjamin 3 24906 4695 17 1321 Lahn-Sieg-Dill 404 10 16 1 Gießen Nord Jochum Benjamin 3 24721 0986 17 0116 Lahn-Sieg-Dill 404
    [Show full text]
  • Marble from the Lahn
    Marble from the Lahn A historical project on the quarrying of stone Quarrying is also part of mining. Stones, chalk, sand and gravel may at first glance seem less valuable, and quarries less interesting. However, these materials were and still are an essential component of our civilization. There would be no flour without millstones, no pottery without clay, no castles without stones, and no modern roads without road metal. This is why the department of mining history also deals with this important industry. Following on from the work of Christoph Bartels (slate villages) and Meinrad Pohl (millstones, tuff and trass from the volcanic eastern Eifel region), the plan is to investigate a further example from the industry within the framework of a dissertation project. This time the focus is on a type of stone which was used for building and decoration, the so-called “Nassau marble” or “Lahn marble”. From a geologist’s point of view this is a cuttable, polishable limestone, formed about 380 million years ago from a tropical reef. The deposits are part of the Rhenish Massif (Rheinisches Schiefergebirge) and extend over a strip approx. 60 km long on both sides of the Lahn. “Lahn marble” was quarried and processed from the 16th century (if not earlier) until the 1970s. Evidence of a highly developed “Lahn marble” industry can be found in a multitude of churches and palaces, public and private buildings, town squares and facades. The spectrum ranges from the mighty tombstones in the Mainz cathedral to the splendid Baroque staircase of the Würzburg Residenz and the sumptuous decoration of some of Wiesbaden’s villas and hotels.
    [Show full text]
  • Stocking Measures with Big Salmonids in the Rhine System 2017
    Stocking measures with big salmonids in the Rhine system 2017 Country/Water body Stocking smolt Kind and stage Number Origin Marking equivalent Switzerland Wiese Lp 3500 Petite Camargue B1K3 genetics Rhine Riehenteich Lp 1.000 Petite Camargue K1K2K4K4a genetics Birs Lp 4.000 Petite Camargue K1K2K4K4a genetics Arisdörferbach Lp 1.500 Petite Camargue F1 Wild genetics Hintere Frenke Lp 2.500 Petite Camargue K1K2K4K4a genetics Ergolz Lp 3.500 Petite Camargue K7C1 genetics Fluebach Harbotswil Lp 1.300 Petite Camargue K7C1 genetics Magdenerbach Lp 3.900 Petite Camargue K5 genetics Möhlinbach (Bachtele, Möhlin) Lp 600 Petite Camargue B7B8 genetics Möhlinbach (Möhlin / Zeiningen) Lp 2.000 Petite Camargue B7B8 genetics Möhlinbach (Zuzgen, Hellikon) Lp 3.500 Petite Camargue B7B8 genetics Etzgerbach Lp 4.500 Petite Camargue K5 genetics Rhine Lp 1.000 Petite Camargue B2K6 genetics Old Rhine Lp 2.500 Petite Camargue B2K6 genetics Bachtalbach Lp 1.000 Petite Camargue B2K6 genetics Inland canal Klingnau Lp 1.000 Petite Camargue B2K6 genetics Surb Lp 1.000 Petite Camargue B2K6 genetics Bünz Lp 1.000 Petite Camargue B2K6 genetics Sum 39.300 France L0 269.147 Allier 13457 Rhein (Alt-/Restrhein) L0 142.000 Rhine 7100 La 31.500 Rhine 3150 L0 5.000 Rhine 250 Doller La 21.900 Rhine 2190 L0 2.500 Rhine 125 Thur La 12.000 Rhine 1200 L0 2.500 Rhine 125 Lauch La 5.000 Rhine 500 Fecht und Zuflüsse L0 10.000 Rhine 500 La 39.000 Rhine 3900 L0 4.200 Rhine 210 Ill La 17.500 Rhine 1750 Giessen und Zuflüsse L0 10.000 Rhine 500 La 28.472 Rhine 2847 L0 10.500 Rhine 525
    [Show full text]
  • Sediment Management for a Living River - the Lahn River Case
    Sediment management for a living river - the Lahn River case Alexandra Brinke, Denise Spira, Michael Schleuter, Georg Reifferscheid, Peter Heininger & Ute Feiler Federal Institute of Hydrology, Germany „LiLa - Living Lahn“ SedNet 2017 Genua, .15 JUNE 2017 Starting point for LiLa North Rhine-Westphalia Hesse Rhineland- Palatinate Project Location Lahn River „LiLa - Living Lahn“ SedNet 2017 Genua, .15 JUNE 2017 Starting point for LiLa minor waterway that carries no freight today New National Navigation Concept „LiLa - Living Lahn“ SedNet 2017 Genua, .15 JUNE 2017 Starting point for LiLa Hesse Rhineland- Palatinate Ecological status under WFD ecological status and potential "unsatisfactory" or "bad” „LiLa - Living Lahn“ SedNet 2017 Genua, .15 JUNE 2017 Starting point for LiLa LiLa-Living Lahn “One river, many interests” „LiLa - Living Lahn“ SedNet 2017 Genua, .15 JUNE 2017 Starting point for LiLa Federal Authorities Integrated EU-LIFE-Project Hesse „LiLa-Living Lahn River“ Duration: 10 years (2015 bis 2025) Budget: 15.7 Mio. Euro (EU-Contribution 8.5 Mio. Euro) Rhineland-Palatinate „LiLa - Living Lahn“ SedNet 2017 Genua, .15 JUNE 2017 Main topics in LiLa… Ecological upgrading/ Development concept for Renaturalization measures the Lahn river (WFD and Natura 2000) Cross-administrative collaboration in regional projects „LiLa - Living Lahn“ SedNet 2017 Genua, .15 JUNE 2017 Main topics in LiLa… Ecological upgrading/ Renaturalization measures (WFD and Natura 2000) Ecological upgrading/Renaturalization measures in the context of WFD and Natura
    [Show full text]
  • The Euphrates in Crisis: Channels of Cooperation for Channels of Cooperation the Euphratesa Threatened in Crisis: River Research Paper M
    The Euphrates in Crisis:The Euphrates a Channels of Cooperation for Research Paper M. Nouar Shamout with Glada Lahn Energy, Environment and Resources | April 2015 The Euphrates in Crisis Threatened River Threatened Channels of Cooperation for a Threatened River M. Nouar Shamout withM. Nouar Glada Lahn Chatham House Contents Summary 2 Introduction 7 The Euphrates’ Characteristics and Infrastructure 10 What is Happening to the Euphrates? 19 Shared Future Challenges 21 The Way Forward 26 Conclusion 35 Appendix A: Indicators and Methodology 37 Appendix B: The History of Interstate Negotiations 39 Over the Euphrates River About the Authors 42 Acknowledgments 43 1 | Chatham House The Euphrates in Crisis: Channels of Cooperation for a Threatened River Summary The Euphrates River is of critical importance for water, food and energy security in Turkey, Syria and Iraq. Flowing south-east for 2,700 kilometres from eastern Turkey to the Persian Gulf, it supports over 60 million people and – along with the Tigris, with which it runs almost in parallel – has a rich history of sustaining civilization on the Mesopotamian plains. This vast water resource is in crisis. Degradation of the river from over-exploitation, population growth, pollution and other factors has been a serious problem for many years. Now war and violent upheaval in Syria and Iraq are worsening the situation: threatening key infrastructure and preventing policy cooperation. Without urgent attention, stresses on the river’s resources will add to the already catastrophic humanitarian crisis created by the conflict. In the longer term, a vision for cross-border coordination is essential if the river is to retain its vital role in the region.
    [Show full text]
  • Aach Aach, Stadt Aachen, Stadt Aalen, Stadt Aarbergen Aasbüttel
    Die im Folgenden aufgeführten Gemeinden (oder entsprechenden kommunalen Verwaltungen) sind mit dem jeweiligen teilnehmenden Land (Bundesministerium für Verkehr und digitale Infrastruktur) als die Liste der in Betracht kommenden Einrichtungen vereinbart worden und können sich für das WiFi4EU-Programm bewerben. „Gemeindeverbände“, sofern sie für jedes Land festgelegt und nachstehend aufgeführt sind, können sich im Namen ihrer Mitgliedsgemeinden registrieren, müssen den endgültigen Antrag jedoch für jede Gemeinde in ihrer Registrierung einzeln online einreichen. Jeder Gutschein wird an eine einzelne Gemeinde als Antragsteller vergeben. Während der gesamten Laufzeit der Initiative kann jede Gemeinde nur einen einzigen Gutschein einsetzen. Daher dürfen Gemeinden, die im Rahmen einer Aufforderung für einen Gutschein ausgewählt wurden, bei weiteren Aufforderungen nicht mehr mitmachen, wohingegen sich Gemeinden, die einen Antrag gestellt, aber keinen Gutschein erhalten haben, in einer späteren Runde wieder bewerben können. Gemeinden (oder entsprechende kommunale Verwaltungen) Aach Adelshofen (Fürstenfeldbruck) Aach, Stadt Adelshofen (Ansbach, Landkreis) Aachen, Stadt Adelsried Aalen, Stadt Adelzhausen Aarbergen Adenau, Stadt Aasbüttel Adenbach Abenberg, St Adenbüttel Abensberg, St Adendorf Abentheuer Adlkofen Absberg, M Admannshagen-Bargeshagen Abstatt Adorf/Vogtl., Stadt Abtsbessingen Aebtissinwisch Abtsgmünd Aerzen, Flecken Abtsteinach Affalterbach Abtswind, M Affing Abtweiler Affinghausen Achberg Affler Achern, Stadt Agathenburg Achim, Stadt
    [Show full text]
  • Der Rhein Eine Reise
    Elke Heidenreich Fotografie Tom Krausz Der Rhein Eine Reise | Bilder | Geschichten Zu des Rheins gestreckten Hügeln, hochgesegneten Gebreiten, Auen, die den Fluss bespiegeln, weingeschmückten Landesweiten möget, mit Gedankenflügeln, ihr den treuen Freund begleiten. Johann Wolfgang von Goethe, 1814 Inhalt Alles fließt 13 Der Rhein und ich 17 Die Quellen 25 Der junge Rhein 39 Der Rhein wird erwachsen 51 Ein letztes Aufbäumen 61 Es wird ungemütlich 69 Basel 77 Die Schiffsreise beginnt 87 Der Rhein kriegt ein Korsett 95 Der Rhein als Zankapfel 99 Straßburg 103 Seele und Charakter 111 Das Rheingold 115 Speyer 123 Worms, Nibelungen, Luther – das ganze Programm 135 Erst noch richtig Dreck, dann aber wirklich Wein 145 Mainz und Wiesbaden 159 Die Burgen 165 Die Loreley 179 Die Germania und die Drosselgasse 187 Mein Köln 199 Drachenfels und Rolandseck 211 Das Ruhrgebiet 225 Der Niederrhein 235 Wieder zuhause oder: Peking 249 Anhang 251 Hamburg Bremen Nordsee Amsterdam Ijssel Rotterdam Rhein 13 Maas Nimwegen Lippe Xanten Holland Duisburg Ruhr Deutschland Alles fließt Düsseldorf Wupper Köln uf unserer Reise entlang des Rheins sahen und erlebten Belgien Sieg A wir vor allem eins: »Alles fließt.« Das hat der antike grie- Bonn chische Philosoph Heraklit gesagt, panta rhei, alles fließt. Rhea, Lahn die Fließende – sie war eine Titanin und die Gemahlin ihres Rhein Bruders Kronos, mit dem sie gemeinsam den ewigen Fluss der Koblenz Zeit und der Generationen bestimmte. Wiesbaden »Man kann nicht zweimal in denselben Fluss steigen«, auch Main das sagte Heraklit. Ja, man sieht auch nicht zweimal denselben Bingen Mainz Fluss. Weil alles fließt, verändert sich alles, und so sehen, so Luxem- Mosel sahen wir den Vater Rhein mit unseren Augen, der Fotograf Tom burg Worms Krausz und ich, die Erzählerin.
    [Show full text]
  • Germany's Most Romantic Ride!
    Rhine Germany‘sGermany‘sGermany‘sTime MMMOSTOSTOST RRROMANTICOMANTICOMANTIC RRRIDESIDESIDES BINGEN - LORELEY - MOSEL - EIFEL VOLCANOS - BONN - COLOGNE: TOURING THROUGH HISTORY WITH CUSTOM CHROME EURope‘s „BoLT ON AND Ride“ BIKES. Custom Chrome Europe GmbH Carl-von-Ossietzky-Strasse 8 D-55459 Grolsheim Phone: +49 (0) 6721 - 4 007 - 0 Fax: +49 (0) 6721 - 4 007 - 100 e-mail: [email protected] www.custom-chrome-europe.com CUSTOM CHROME EUROPE Bolt On And Ride Tour Rhein Time – Germany’s most romantic ride! The Niederwald-Memorial... ...and the 2018 CCE BOAR Tour on the new Rhine road opposite Bingen. CUSTOM CHROME EUROPE PRESS RELEASE - PUBLICATION FREE OF CHARGE TOP LEFT: Just opposite of Assmanshausen, Rheinstein Castle looks back to a mixed history, but today is open as a museum and restaurant (www.burg-rheinstein.de). TOP RIGHT: From the road near Ehrenfels, to the Bingen „Mouse Tower“ once ran a chain to block the entrance into the Rhine narrows. The Rhine valley between Rüdesheim and Koblenz on the route choosen – that was to be travelled in Heritage Site attraction? You can spend two weeks is one of the most scenic landscapes of Germany less than four hours. Rhine valley, Eifel and histo- on this short route and may not have seen it all! As – add the confluence of the Mosel river at Koblenz ry expert „Motographer“ Horst Roesler“ plotted a a matter of fact, when performing the two rides in and the Rhine up to Bonn and Cologne, you also trip that would be scenic, superb riding and get the that super sunny August of 2018, few of the partici- travel a route of historic significance! In 2018, the participants through some of the most spectacular pants did realize or knew what they were passing, Custom Chrome Europe Team travelled twice along scenes of recent and older history of the Middle crossing or riding along and in whose footstep they the Rhine valley – once as a staff tour, then joining Rhine Gorge: Battles and wars are known to have travelled.
    [Show full text]
  • Rare Earth Elements As Emerging Contaminants in the Rhine River, Germany and Its Tributaries
    Rare earth elements as emerging contaminants in the Rhine River, Germany and its tributaries by Serkan Kulaksız A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Geochemistry Approved, Thesis Committee _____________________________________ Prof. Dr. Michael Bau, Chair Jacobs University Bremen _____________________________________ Prof. Dr. Andrea Koschinsky Jacobs University Bremen _____________________________________ Dr. Dieter Garbe-Schönberg Universität Kiel Date of Defense: June 7th, 2012 _____________________________________ School of Engineering and Science TABLE OF CONTENTS CHAPTER I – INTRODUCTION 1 1. Outline 1 2. Research Goals 4 3. Geochemistry of the Rare Earth Elements 6 3.1 Controls on Rare Earth Elements in River Waters 6 3.2 Rare Earth Elements in Estuaries and Seawater 8 3.3 Anthropogenic Gadolinium 9 3.3.1 Controls on Anthropogenic Gadolinium 10 4. Demand for Rare Earth Elements 12 5 Rare Earth Element Toxicity 16 6. Study Area 17 7. References 19 Acknowledgements 28 CHAPTER II – SAMPLING AND METHODS 31 1. Sample Preparation 31 1.1 Pre‐concentration 32 2. Methods 34 2.1 HCO3 titration 34 2.2 Ion Chromatography 34 2.3 Inductively Coupled Plasma – Optical Emission Spectrometer 35 2.4 Inductively Coupled Plasma – Mass Spectrometer 35 2.4.1 Method reliability 36 3. References 41 CHAPTER III – RARE EARTH ELEMENTS IN THE RHINE RIVER, GERMANY: FIRST CASE OF ANTHROPOGENIC LANTHANUM AS A DISSOLVED MICROCONTAMINANT IN THE HYDROSPHERE 43 Abstract 44 1. Introduction 44 2. Sampling sites and Methods 46 2.1 Samples 46 2.2 Methods 46 2.3 Quantification of REE anomalies 47 3. Results and Discussion 48 4.
    [Show full text]
  • 3 Messstellen-Übersicht
    26 Organische Spurenstoffe in rheinland-pfälzischen Fließgewässern 1985–2003 12/2006 3 Messstellen-Übersicht Tabelle III.1 enthält eine nach Bearbeitungsgebieten und Gewässern gegliederte Übersicht zu den 172 Messstellen, von denen die in dieser Studie ausgewerteten Gewässerproben aus den Jahren 1985- 2003 stammen. Die Reihenfolge der Messstellen entspricht ihrer relativen Lage an den jeweiligen Gewässern. Tab. III.1: Messstellen nach Bearbeitungsgebieten, Gewässern, Anzahl der Werte und Messzeitraum Gewässer/ Messstellenbezeichnung Werte/ Messzeit- Anz. d. Werte/ Werte/ Messstel- Mess- raum Bepro- Gewäs- Bear- lennummer Chem. stelle bungs- ser bei- Jahre tungs- Ind. PBSM gebiet Rhein 32.617 32.617 2511511600 Meßstation Mainz, Leitung x x 29.595 1989-2003 15 1 2511510500 Meßstation Mainz, insge- x x 2.459 1988-1997 10 samt 2599511100 Koblenz/Rhein (BFG) x x 563 2001 1 Bearbeitungsgebiet Oberrhein 9.112 Selz 5.948 2521522300 Selzquelle bei Orbis x 39 1991 1 2521521200 Weinheim vor Alzey x 40 1991 1 2525510200 Alzey x x 27 2000 1 2523523100 Gau-Odernheim x 40 1991 1 2523521000 Bei Framersheim nach KA x 40 1991 1 Alzey 2523522000 Nach KA Gau-Odernheim x 40 1991 1 2525522800 Vor Hahnheim x 40 1991 1 2525521700 Nach Hahnheim x 40 1991 1 2521512000 Wahlheimer Hof x x 27 2000 1 2521515000 Darmstadtsmühle x x 54 2000 1 2527522500 Vor Nieder-Olm x 40 1991 1 2527521400 Nach Nieder-Olm x 40 1991 1 2521530200 Stadecken x x 27 2000 1 2529523300 Oberhalb Ingelheim, La- x 40 1991 1 yenmühle 2529522200 Ingelheim x x 5.374 1991; 1997- 8 2003 2529528800 Selz, Mündung x 40 1991 1 Altrheingraben/Meerwasser 288 2395508000 0361 Mündung in „Meer- x 80 1992 1 wasser“ bei Eich 2395507000 Gimbsheim, Altrheingra- x 80 1992 1 ben bei Eich Landesamt für Umwelt, Wasserwirtschaft und Gewerbeaufsicht Rheinland-Pfalz 12/2006 3 Messstellen-Übersicht 2 Gewässer/ Messstellenbezeichnung Werte/ Messzeit- Anz.
    [Show full text]
  • Wupper, Sieg Und Lahn Mit Ihren Einzugsgebieten in Westfalen Und Angrenzenden Gebieten
    Stand: 2017 Horst Pohlmann Wupper, Sieg und Lahn mit ihren Einzugsgebieten in Westfalen und angrenzenden Gebieten Die Gewässer-Teileinzugsgebiete der Sauerland vom Bergischen Land bzw. 1987 (Wuppertalsperre; Abb. 2) in Flüsse Wupper, Sieg und Lahn gehö- Teile Westfalens vom Rheinland. Nur Betrieb genommen. Sie dienen der ren zur Flussgebietseinheit des Rheins. in Bereichen zwischen Schwelm und Trink- und Brauchwasserversorgung, Sie umfassen eine Gesamtfläche von Meinerzhagen entwässern einzelne der Elektrizitätsgewinnung, dem rd. 9.600 km2 in den Bundesländern westfälische Gebiete (in der Summe Hochwasserschutz sowie der Niedrig- Nordrhein-Westfalen, Rheinland-Pfalz rd. 80 km2) zur Wupper. wassererhöhung und nicht zuletzt der und Hessen (Abb. 1). In Westfalen be- Die Wupper entspringt in einem Freizeitgestaltung. finden sich davon nur ca. 860 km2 (ca. Hochmoor bei Marienheide (Bergi- Außer der Dhünn (40 km Länge, 4 % seiner Fläche), die den äu ßers ten sches Land) ca. 500 m westlich der 200 km2 Einzugsgebiet) weist die Süden und schmale Bereiche am Süd- Grenze nach Westfalen und trägt zu- Wupper insgesamt nur kleine Ne ben- westrand in den Kreisen Siegen-Witt- nächst den Namen „Wipper”. Bereits gewässer auf (Abb. 2), die je doch genstein, Olpe und Ennepe-Ruhr-Kreis nach 4 km ist ihr Wasserstand talsper- meist mit kleinen Stauanlagen, außer- umfassen (Abbn. 1 u. 2). renbeeinflusst (Zu fluss von der Bru- halb der vom Wupperverband bewirt- cher Talsperre). Den Namen Wupper schafteten Talsperren, versehen sind. Wupper bekommt die Wipper im Bereich der Nordöstlich von Leichlingen ver- Kerspeeinmündung nach einer Fließ- lässt die Wupper ihr in das Bergische Die Wupper (114 km Länge) mit länge von 10 km im Wipperfürther Land tief eingeschnittenes Tal, er- einem Einzugsgebiet von 830 km2 Ortsteil Ohl (Geobasis NRW).
    [Show full text]