Seconds Pendulum

Total Page:16

File Type:pdf, Size:1020Kb

Seconds Pendulum PHYSICS MEASUREMENT OF LENGTH, VOLUME, TIME AND MASS Measurement of Time and Mass Measurement of Time Measuring time is necessary for any experiment or any activity which one performs. The following instruments help to keep record of time: Stop Watch A stop watch consists of a circular dial graduated in 60 equal spaced divisions. Each division is equal to 1 second. In some watches, each division is divided in two parts enabling us to measure time correct up to 0.5 seconds. A seconds hand is pivoted at the centre of the dial. A small dial is also provided inside the big dial. This dial enables us to record time in minutes. This dial is divided into 60 divisions. When the seconds hand completes one rotation, the minute hand moves by one division. A knob is provided at the top of the frame of the watch for winding purposes. The knob is pressed in succession to bring both the hands to zero, and the stop watch can then be used. The knob is pressed at the start of the event and pressed again to stop time at the end of the event. The reading of time is calculated by adding the time of the minute hand and the time of the second’s hand. Stop Clock It is a table clock and is bigger than a stop watch. It has a circular dial graduated in 60 equally spaced divisions. Each division is equal to 1 second. A second’s hand is pivoted at the centre of the dial. This gives the reading in seconds. www.topperlearning.com 2 PHYSICS MEASUREMENT OF LENGTH, VOLUME, TIME AND MASS To read time in minutes, the minute hand is provided along with the second’s hand, or a separate dial is provided similar to a stop watch. When the seconds hand completes one rotation, the minute hand moves by one division. The minute hand is set to zero by a knob provided at the back of the clock. The clock is also provided with an index hand. It can be set from the outside over the seconds hand at the start of the event to indicate the starting time. It is usually painted red. A horizontal rod is provided at the back of the frame to start or stop the clock. When the rod is pushed to the right, it starts the clock. When it is pushed to the left, it stops the clock. Simple Pendulum A simple pendulum is a heavy point mass called the bob suspended from a rigid support by a massless and inextensible string. NOTE: This is only an ideal definition as a point mass which is heavy and a massless string are practically impossible to produce. www.topperlearning.com 3 PHYSICS MEASUREMENT OF LENGTH, VOLUME, TIME AND MASS When the bob at the rest position is moved to one side and released, the pendulum is set in motion. The rest position is called the mean position of the pendulum. Terms related to Simple Pendulum Oscillation: One complete to-and-fro motion of the bob of the pendulum is called one oscillation. Period of oscillation or time period: It is the time taken to complete one oscillation. It is denoted by T. Its unit is second (s). Frequency of oscillation: It is the number of oscillations made in one second. It is denoted by f or n. Its unit is per second (s−1) or hertz (Hz). Amplitude: The maximum displacement of the bob from its mean position on either side is called the amplitude of oscillation. It is denoted by a or A. Its unit is metre (m). Effective length of the pendulum: It is the distance of the mean point of oscillation to the point of suspension. It is denoted as l. Relation between Time Period and Frequency In one time period T, the number of oscillations of the pendulum is one. In one second, the number of oscillations will be 1/T. 1 Thus, the frequency is f . T Measurement of time period of a simple pendulum To measure the time period, the bob of the pendulum is displaced slightly and released. The time period for a certain number of oscillations is noted. This is repeated for different lengths of the pendulum. It is then noted that the time period is directly proportional to the square root of the length. Tl Tl2 l constant T2 Graph of Variation of Time Period T with Length l The graph of T v/s l of a pendulum is a curve as shown below. www.topperlearning.com 4 PHYSICS MEASUREMENT OF LENGTH, VOLUME, TIME AND MASS Thus, a graph of T v/s l is plotted which is a straight line as shown below. Graph of T2 v/s l The graph of T2 v/s l is a straight line indicating that T2 is directly proportional to l for a pendulum. The slope from the graph is given as PR TT22 Slope 12 QR l l 12 The slope is constant at a place and is given as 42 Slope g www.topperlearning.com 5 PHYSICS MEASUREMENT OF LENGTH, VOLUME, TIME AND MASS here, g is the acceleration due to gravity. Factors Affecting Time Period The time period of oscillation of a pendulum is directly proportional to the square root of its effective length. Tl Due to seasonal changes, the temperature varies, and hence, the time period also varies. During winters, the length of the pendulum (which is generally made of brass or steel) shortens due to contraction. Thus, the time period also shortens. Similarly, during summers, the length and hence the time period increases. The time period of oscillation of a pendulum is inversely proportional to the square root of acceleration due to gravity. 1 T g Thus, at higher altitudes or at depths the pendulum slows down due to decrease in the value of g. The time period of oscillation of a pendulum does not depend on the mass or material of the body suspended. The time period of oscillation of a pendulum does not depend on the extent of swing, i.e. amplitude on either side. Thus, we get the expression of the time period of the pendulum as l T2 g here, T is the time period, l is the length and g is the acceleration due to gravity. Seconds pendulum The pendulum in clocks at our homes is a seconds pendulum. This pendulum has a time period of 2 s. That is, it takes 1 s to move from one extreme to the other. Thus, a seconds pendulum is a pendulum with a time period of oscillation equal to 2 s. Measurement of Mass: A Beam Balance for Comparison of Masses The amount of matter contained in a body is its mass. It is measured by a beam balance by comparing it with a known standard mass. A beam balance works on the principle of moments. According to this principle, “In equilibrium, the moment due to the weight of an object on one side of the beam is equal to the moment due to the standard weights on the other side of the beam”. One moment is clockwise and the other is anticlockwise. www.topperlearning.com 6 PHYSICS MEASUREMENT OF LENGTH, VOLUME, TIME AND MASS A beam balance is shown below. Precautions in Using a Beam Balance The lever should be turned gently in order to prevent the knife edges from chipping. The beam should be lowered before adding or removing weights from the pan. Wet and hot objects should not be placed on the pan. The weights should be placed in the weight box after weighing. The weights should be carried with forceps. When near the actual weight, the weights should always be tried in ascending order. Conditions for a True Balance To be true, a balance must satisfy the following two conditions: o Both the arms must be of equal lengths. o Both the arms must be of equal weights. www.topperlearning.com 7 .
Recommended publications
  • Vicious Circle”: Unscrambling A.-C
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector HISTORIA MATHEMATICA 15 t 19881, 228-239 Breaking a “Vicious Circle”: Unscrambling A.-C. Clairaut’s Iterative Method of 1743 JOHN L. GREENBERG Centre de Recherches Alexar~dre KoyrC, 12. rue Colherf. 75.002 Puris. FI.N~C.C In this paper 1 show how in 1743 A.-C. Clairaut applied an iterative method to calculate the ellipticity of an infinitesimally flattened, homogeneous ellipsoid of revolution in equilib- rium, taken to represent the earth. Clairaut did not make very clear what he was doing and, as a result, left certain readers in the dark. They could not understand the point of the calculation and erroneously thought that Clairaut was going around in circles. The paper ends with a discussion of Clairaut’s clarification of the calculation, published in 1760 in response to the criticisms of John Muller, and a brief comparison of Clairaut’s iterative method with the “Newton-Raphson Method.” 1 1988.4cademlc Pres\. Inc. Dans cet article je montre la methode d’approximation d’A.-C. Clairaut pour trouver I’ellipticite d’un ellipsoi’de homogene de revolution en equilibre dont l’ellipticitt est infinite- simale et qui reprtsente la terre. Certains lecteurs ont mal compris Clairaut. Ceux-ci ont cru Clairaut pris au piege dans un “cercle vicieux en logique.” Clairaut a repondu a son critique John Muller en 1760, et j’explique cette reponse. Mon article se termine par une breve comparaison de la methode de Clairaut et de celle dite “Newton-Raphson.” Cette com- paraison peut eclairer la cause du malentendu.
    [Show full text]
  • Redalyc.The International Pendulum Project
    Revista Electrónica de Investigación en Educación en Ciencias E-ISSN: 1850-6666 [email protected] Universidad Nacional del Centro de la Provincia de Buenos Aires Argentina Matthews, Michael R. The International Pendulum Project Revista Electrónica de Investigación en Educación en Ciencias, vol. 1, núm. 1, octubre, 2006, pp. 1-5 Universidad Nacional del Centro de la Provincia de Buenos Aires Buenos Aires, Argentina Available in: http://www.redalyc.org/articulo.oa?id=273320433002 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Año 1 – Número 1 – Octubre de 2006 ISSN: en trámite The International Pendulum Project Michael R. Matthews [email protected] School of Education, University of New South Wales, Sydney 2052, Australia The Pendulum in Modern Science Galileo in his final great work, The Two New Sciences , written during the period of house arrest after the trial that, for many, marked the beginning of the Modern Age, wrote: We come now to the other questions, relating to pendulums, a subject which may appear to many exceedingly arid, especially to those philosophers who are continually occupied with the more profound questions of nature. Nevertheless, the problem is one which I do not scorn. I am encouraged by the example of Aristotle whom I admire especially because he did not fail to discuss every subject which he thought in any degree worthy of consideration. (Galileo 1638/1954, pp.94-95) This was the pendulum’s low-key introduction to the stage of modern science and modern society.
    [Show full text]
  • The Meridian Arc Measurement in Peru 1735 – 1745
    The Meridian Arc Measurement in Peru 1735 – 1745 Jim R. SMITH, United Kingdom Key words: Peru. Meridian. Arc. Triangulation. ABSTRACT: In the early 18th century the earth was recognised as having some ellipsoidal shape rather than a true sphere. Experts differed as to whether the ellipsoid was flattened at the Poles or the Equator. The French Academy of Sciences decided to settle the argument once and for all by sending one expedition to Lapland- as near to the Pole as possible; and another to Peru- as near to the Equator as possible. The result supported the view held by Newton in England rather than that of the Cassinis in Paris. CONTACT Jim R. Smith, Secretary to International Institution for History of Surveying & Measurement 24 Woodbury Ave, Petersfield Hants GU32 2EE UNITED KINGDOM Tel. & fax + 44 1730 262 619 E-mail: [email protected] Website: http://www.ddl.org/figtree/hsm/index.htm HS4 Surveying and Mapping the Americas – In the Andes of South America 1/12 Jim R. Smith The Meridian Arc Measurement in Peru 1735-1745 FIG XXII International Congress Washington, D.C. USA, April 19-26 2002 THE MERIDIAN ARC MEASUREMENT IN PERU 1735 – 1745 Jim R SMITH, United Kingdom 1. BACKGROUND The story might be said to begin just after the mid 17th century when Jean Richer was sent to Cayenne, S. America, to carry out a range of scientific experiments that included the determination of the length of a seconds pendulum. He returned to Paris convinced that in Cayenne the pendulum needed to be 11 lines (2.8 mm) shorter there than in Paris to keep the same time.
    [Show full text]
  • Telling Time By: Sophia James Education, LLC the World Is Fascinated by How “Time” Goes by Fast Or How We Never Have Enough
    Telling Time By: Sophia James Education, LLC The world is fascinated by how “time” goes by fast or how we never have enough “time” in a day. For ages the concept of time have fascinated people. For thousand of years time was measured by observing the movement of the sun, moon, or stars. We have used sundials and also clocks for many years to measure time. In order to record or indicate time devices were created. The devices are clocks, watches, and sundials. The oldest of these three devices are the sundials or shadow clocks. Many years ago people used sundials to in- dicate time of the day by the position of the shadows of objects on which the rays of the sun falls on. Through- out the day the sun moves across the sky, causing the shadows of the objects to move. Clocks, are machines that performs regular movements in equal intervals of time and is linked to a counting mechanisms that records the number of movements. The word clock comes from the Greek hora (“time”) and logos (“telling”). All clocks, of whatever form, are made with the principle of regular movements and equal intervals. Sometimes it is important to measure time exactly, such as when conducting an experiment or baking or when setting an appointment. Sometimes accuracy is not so important example when we are on vacation and have no timed plans. It is believed that shadow clocks or sundials known as gnomon, were the first device for indicating time.This sundial consisted of one vertical stick or pillar; the shadow that it cast gave an indication of the time of the day.
    [Show full text]
  • Chapter 1 - Measurements and Experimentation
    QUESTION BANK (2019-20) PHYSICS IX Chapter 1 - Measurements and Experimentation Q1: What is meant by measurement? Solution 1- Measurement is the process of comparing a given physical quantity with a known standard quantity of the same nature. Q2: What do you understand by the term Unit? Solution 2 Unit is a quantity of constant magnitude which is used to measure the magnitudes of other quantities of the same manner. Q3: What are the three requirements for selecting a unit of a Physical quantity? Solution 3 The three requirements for selecting a unit of a physical quantity are (i) It should be possible to define the unit without ambiguity. (ii) The unit should be reproducible. (iii) The value of units should not change with space and time. Q4: Name & Define three fundamental quantities? Solution 4 Definitions of three fundamental quantities: S.I. unit of length (m): A metre was originally defined in 1889 as the distance between two marks drawn on a platinum-iridium (an alloy made of 90% platinum and 10% iridium) rod kept at 0°C in the International Bureau of Weights and Measures at serves near Paris. S.I. unit of mass (kg): In 1889, one kilogramme was defined as the mass of a cylindrical piece of a platinum-iridium alloy kept at International Bureau of Weights and Measures at serves near Paris. S.I. unit of time (s): A second is defined as 1/86400th part of a mean solar day, i.e. Q5: Name the three systems of Unit & State the various fundamental Units in them? Solution 5 Three systems of unit and their fundamental units: (i) C.G.S.
    [Show full text]
  • Pendulum Clock (Edited from Wikipedia)
    Pendulum Clock (Edited from Wikipedia) SUMMARY A pendulum clock is a clock that uses a pendulum, a swinging weight, as its timekeeping element. The advantage of a pendulum for timekeeping is that it is a harmonic oscillator; it swings back and forth in a precise time interval dependent on its length, and resists swinging at other rates. From its invention in 1656 by Christiaan Huygens until the 1930s, the pendulum clock was the world's most precise timekeeper, accounting for its widespread use. Throughout the 18th and 19th centuries pendulum clocks in homes, factories, offices and railroad stations served as primary time standards for scheduling daily life, work shifts, and public transportation, and their greater accuracy allowed the faster pace of life which was necessary for the Industrial Revolution. HISTORY The pendulum clock was invented in 1656 by Dutch scientist Christiaan Huygens, and patented the following year. Huygens contracted the construction of his clock designs to clockmaker Salomon Coster, who actually built the clock. Huygens was inspired by investigations of pendulums by Galileo Galilei beginning around 1602. Galileo discovered the key property that makes pendulums useful timekeepers: isochronism, which means that the period of swing of a pendulum is approximately the same for different sized swings. Galileo had the idea for a pendulum clock in 1637, which was partly constructed by his son in 1649, but neither lived to finish it. The introduction of the pendulum, the first harmonic oscillator used in timekeeping, increased the accuracy of clocks enormously, from about 15 minutes per day to 15 seconds per day leading to their rapid spread as existing 'verge and foliot' clocks were retrofitted with pendulums.
    [Show full text]
  • William Dawes' Gravity Measurement in Sydney Cove, 1788
    William Dawes’ Gravity Measurement in Sydney Cove, 1788 Case BOSLOPER, Australia Key words : History of gravimetry, gravity, pendulum, Dawes. History of Surveying, physical geodesy, Australia. SUMMARY William Dawes arrived in Australia in January 1788 as an astronomer with the Australian First Fleet and as the Board of Longitude’s official observer. During his time in Australia he carried out many astronomical observations, of which the record has gone lost. The fieldbooks were possibly still with the widow of William Wales, of the Board of Longitude, after Wales died. What has not been lost are his gravity observations in Sydney Cove in Australia, of 1788, made with a temperature compensated grid iron pendulum, of which a record can be found in his correspondence with Nevil Maskelyne, the English Astronomer Royal. As far as I know, William Dawes’ pendulum gravity observations have not been published previously as such, until the recent paper by Morrison and Barko (2009). I helped investigate this series of observations which led to the first gravity acceleration determination on Australian soil, of which the record has survived. This paper reports on my analysis of his precision pendulum gravity determination. In this story, William Wales speaks from his grave, in support of Dawes. RESUMEN Guillermo Dawes llegaba a Australia en el Enero de 1788, como astrónomo con la Flota Primera Australiana y como el observador oficial del Consejo de la Longitud de la Inglaterra. Durante su tiempo en Australia el fue cargado con hacer muchos observaciones astronómicas, pero los libros de anotaciones fueran perdidos porque ellos todavía estaban posiblemente con la viuda de Guillermo Wales, del Consejo de la Longitud, después del muerte de Wales.
    [Show full text]
  • Critical Pointmeasuring the Earth
    physicsworld.com Comment: Robert P Crease Critical Point Measuring the Earth The precise shape of the Earth is disturbed their simple motion. Much of the pendulum’s subsequent his- now remarkably well known, but it tory consists of discoveries and corrections was first measured by perhaps for these factors, or of its use to measure these factors. In 1672, for instance, the the oldest and most humble of French astronomer Jean Richer (1630– instruments – the pendulum. iStockphoto.com/raw206 1696) discovered that the length of a seconds pendulum changes with latitude: if g is Robert P Crease explains smaller, as it is at the equator, a pendulum has to be shortened to keep T/2 to 1 s. In his travel book The Innocents Abroad Richer’s work revealed that the Earth is not (1869), Mark Twain describes his visit to the spherical but flattened slightly at the poles, Baptistery of the Duomo of Pisa, where, like a pumpkin. Pendulums therefore proved according to legend, in 1581 the young to be multipurpose instruments that could Galileo noticed the regularity of the build- help determine not only laws of motion, but ing’s swinging chandelier. Using his pulse as also the Earth’s shape. “[W]ithout the pen- a stopwatch, the then 17-year-old medical dulum,” wrote Newton’s biographer Rich- student observed that the chandelier took ard Westfall, “there would be no Principia.” the same time to swing back and forth In the 18th century pendulums were in- whether traversing a short or a long arc. Simply useful Pendulums proved that the Earth is creasingly used to measure time and speed.
    [Show full text]
  • Bulletin 240: Contributions from the Museum of History and Technology
    Contributions from The Museum of History and Technology: Paper 44 Development of Gravity Pendulums in the 19th Century Victor F. Lenten and Robert P. Multbauj GALILEO, HUYCENS, AM) NEWTON ^>1 1 K.I RE OF THE EARTH 306 EARLY TYPES OF PENDULUMS ?09 kater's CONVERTIBLE AND INVARIABLE PENDULI Ms JI4 REPSOLD-BESSEL REVERSIBLE PENDULUM 320 PEIRCE AND DEFFORGES INVARIABLE REVERSIBL] PENDULI Ms J27 VON STERNECK AND MENDENHALL PENDULI Ms J3I ABSOLUTE VALUE OF GRAVITY AT POTSDAM Ms APPLICATION OF GRAVITY SURVEYS J42 SUMMARY 346 Victor F. Lenzen and Robert P. Multhauf DEVELOPMENT OF Paris, France Latitude 49° N Cayenne, South America Latitude 5° N Figure i. —A study of the figure of the earth was one of the earliest projects of the French Academy of Sciences. In order to test the effect of the earth's rotation on its gravitational force, the Academy in 1672 sent Jean Richer to the equatorial island of Cayenne to compare the rale of a clock which was known to have kept accurate time in Paris. Richer found that the clock lost 2 minutes and 28 seconds at Cayenne, indicating a substantial decrease in the force of gravity on the pendulum. Subsequent pendulum experiments revealed that the period of a pendulum varied not only with the latitude but also regionally, under the inlluence ol topographical features such as mountains. It became clear that the measurement of gravity should be made a part of the work of the geodetic surveyor. GRAVITY PENDULUMS IN THE 19th CENTURY The history of gravity pendulums dates back to the time of Galileo.
    [Show full text]
  • The Role of Theory O
    hind e t b h y e r s s The Role of Theory o c c t t i i s s e e Pendulum Motion, Time Measurement, n n e e c c h h e e T T and the Shape of the Earth Christian Huygens Galileo's pendulum laws, developed in the early measurement and the solution of the longitude problem. seventeenth century, were one of the foundations of Huygens possessed both manual and intellectual skills of modern science. Through their utilization in time the highest order. He was the son of a well-connected and measurement and hence in solving the longitude problem wealthy Dutch diplomat, who, with good reason, called his (how many degrees east or west of a given point a place son mon Archimède. Upon Huygens death, the great is), they became a foundation of modern society. The laws Leibniz wrote: were important for their insight into the behavior of swinging pendula. They were even more important The loss of the illustrious Monsieur Huygens is inestimable; because the methods of idealization and experimentation few people knew him as well as I; in my opinion he equalled the reputation of Galileo and Descartes and aided theirs that were employed in their development became the because he surpassed the discoveries that they made; in a characteristic methods of modern science. This is what word, he was one of the premier ornaments of our time. differentiated the 'New Science' of the Scientific Revolution from the former observational and empiricist Given that the 'times' contained Galileo, Descartes, science of Aristotle that had for two centuries dominated Pascal, Boyle, Newton as well as Leibniz himself, this was Western efforts to understand nature.
    [Show full text]
  • Why Does the Meter Beat the Second?
    ROMA 1 - 1394/04 December 2004 Why does the meter beat the second? P. Agnoli1 and G. D’Agostini2 1 ELECOM s.c.r.l, R&D Department, Rome, Italy ([email protected]) 2 Universit`a“La Sapienza” and INFN, Rome, Italy ([email protected], www.roma1.infn.it/˜dagos) Abstract The French Academy units of time and length — the second and the meter — are traditionally considered independent from each other. However, it is a matter of fact that a meter simple pendulum beats virtually the second in each oscillation, a ‘surprising’ coincidence that has no physical reason. We shortly review the steps that led to the choice of the meter as the ten millionth part of the quadrant of the meridian, and rise the suspicion that, indeed, the length of the seconds pendulum was in fact the starting point in establishing the actual length of the meter. 1 Introduction Presently, the unit of length in the International System (SI) [1] is a derived unit, related to the unit of time via the speed of light, assumed to be constant and of exact value c = 299 792 458 m/s.1 The unit of time is related to the period of a well defined electromagnetic wave.2 The proportionality factors that relate conventional meter and second to more fundamental and reproducible quantities were chosen to make these units back compatible to the original units of the Metric System. In that system the second was defined as 1/86400 of the average solar day and the meter was related to the Earth meridian (namely 1/10 000 000 of the distance between the pole and the equator on the Earth’s surface).
    [Show full text]
  • Exercise 1 (B) Potential Energy of the Oscillating Mass
    Physics | 8.23 7. Springs in series and parallel k k 1 1 k2 k1 k m1 m2 k2 k1 Figure 8.31 111 Series combination = + kk12 k Parallel combination kk=12 + k 8. For two blocks of masses m1 and m2 connected by a spring of constant k: µ Time period T2= π k mm12 where µ= is reduced mass of the two-block system. mm12+ Solved Examples 2 JEE Main/Boards 22 2 + 12d + 12( 0.25) T=π=π= 2 2 153 s. 12gd 12x9.8x0.25 Example 1: What is the period of pendulum formed by pivoting a meter stick so that it is O free to rotate about a horizontal axis passing d C Example 2: A particle executes SHM. through 75 cm mark? (a) What fraction of total energy is kinetic and what Sol: This is an example of a physical pendulum. fraction is potential when displacement is one half of Find moment of inertia about point of suspension and the amplitude? the distance of the point of suspension from the center (b) At what value of displacement are the kinetic and of gravity. potential energies equal? Let m be the mass and be the length of the stick. = 100cm The distance of the point of suspension Sol: The sum of kinetic energy and potential energy from center of gravity is d= 25cm is the total mechanical energy which is constant throughout the SHM. Moment of inertia about a horizontal axis through O is 2 1 22 2 m 2 We know that E= mA ω I= I + md = + md total 2 c 12 1 22 2 1 22 m 2 KE=ω− m A X and U= mx ω +md2 2 ( ) 2 I T2= π T2= π 12 2 ; A 12 3A KE 3 mgd mgd (a) When x = , KE=ω m ⇒= 2 2 4E4total 8.24 | Simple Harmonic Motion and Elasticity return back.
    [Show full text]