Bulletin 240: Contributions from the Museum of History and Technology

Total Page:16

File Type:pdf, Size:1020Kb

Bulletin 240: Contributions from the Museum of History and Technology Contributions from The Museum of History and Technology: Paper 44 Development of Gravity Pendulums in the 19th Century Victor F. Lenten and Robert P. Multbauj GALILEO, HUYCENS, AM) NEWTON ^>1 1 K.I RE OF THE EARTH 306 EARLY TYPES OF PENDULUMS ?09 kater's CONVERTIBLE AND INVARIABLE PENDULI Ms JI4 REPSOLD-BESSEL REVERSIBLE PENDULUM 320 PEIRCE AND DEFFORGES INVARIABLE REVERSIBL] PENDULI Ms J27 VON STERNECK AND MENDENHALL PENDULI Ms J3I ABSOLUTE VALUE OF GRAVITY AT POTSDAM Ms APPLICATION OF GRAVITY SURVEYS J42 SUMMARY 346 Victor F. Lenzen and Robert P. Multhauf DEVELOPMENT OF Paris, France Latitude 49° N Cayenne, South America Latitude 5° N Figure i. —A study of the figure of the earth was one of the earliest projects of the French Academy of Sciences. In order to test the effect of the earth's rotation on its gravitational force, the Academy in 1672 sent Jean Richer to the equatorial island of Cayenne to compare the rale of a clock which was known to have kept accurate time in Paris. Richer found that the clock lost 2 minutes and 28 seconds at Cayenne, indicating a substantial decrease in the force of gravity on the pendulum. Subsequent pendulum experiments revealed that the period of a pendulum varied not only with the latitude but also regionally, under the inlluence ol topographical features such as mountains. It became clear that the measurement of gravity should be made a part of the work of the geodetic surveyor. GRAVITY PENDULUMS IN THE 19th CENTURY The history of gravity pendulums dates back to the time of Galileo. After the discovery of the variation of the force of gravity over the surface of the earth, gravity measurement became a major concern of physics and geodesy. This article traces the history of the develop- ment of instruments for this purpose. the authors: Victor F. Lenten is Professor of Physics, Emeritus, at the University of California at Berke- ley and Robert P. Mjilthauf is Chairman of the Depart- ment of Science and Technology in the Smithsonian Institution s Museum of History and Technology. Tin intensity of gravity, or the acceleration of a law of gravitation and the laws of motion. Predic- (reel) falling body, is an important physical quan- tion of the motion of an artificial satellite requires an tn\ for the several physical sciences. The intensity of accurate knowledge of gravity for this astronomical gravity determines the weight of a standard pound problem. or kilogram as a standard or unit of force. In physical The gravity held of the earth also provides data for experiments, the force on a body may be measured a determination of the figure of the earth, or geoid, b) determining the weight of a known mass which but for this problem of geodesy relative values of serves to establish equilibrium against it. Thus, in gravity are sufficient. \i g is the intensity of gravity the absolute determination of the ampere with a cur- at some reference station, and A,? is the difference rent balance, the force between two coils carrying between intensities at two stations, the values of current is balanced by the earth's gravitational force gravity in geodetic calculations enter as ratios upon a body of determinable mass. The intensity of g gravity enters into determinations of the size of the over the surface of the earth. Gravimetric investiga- earth from the angular velocity of the moon, its tions in conjunction with other forms of geophysical distance from the earth, and Newton's inverse square investigation, such as seismology, furnish data to test PAPER 44: DEVELOPMENT OF GRAVITY PENDULUMS IN THE 19TH CENTURY 303 hypotheses concerning the internal structure of the during the years 1817-1818 was the first to design, earth. construct, and use a compound pendulum for the Whether the intensity of gravity is sought in absolute absolute determination of gravity. He constructed or relative measure, the most widely used instrument a convertible pendulum with two knife edges and for its determination since the creation of classical with it determined the absolute value of gravity at mechanics has been the pendulum. In recent dec- the house of Henry Browne, F.R.S., in Portland ades, there have been invented gravity meters based Place, London. He then constructed a similar upon the principle of the spring, and these instru- compound pendulum with only one knife edge, and ments have made possible the rapid determination of swung it to determine relative values of gravity at a relative values of gravity to a high degree of accuracy. number of stations in the British Isles. The 1 9th The gravity meter, however, must be calibrated at century witnessed the development of the theory and stations where the absolute value of gravity has been practice of observations with pendulums for the determined by other means if absolute values are determination of absolute and relative values of sought. For absolute determinations of gravity,' the gravity. pendulum historically has been the principal instru- ment employed. Although alternative methods of Galileo, Huygens, and Newton determining absolute values of gravity are now in use, the pendulum retains its value for absolute determina- The pendulum has been both an objective and an tions, and even retains it for relative determinations, instrument of physical investigation since the founda- as is exemplified by the Cambridge Pendulum Ap- tions of classical mechanics were fashioned in the paratus and that of the Dominion Observatory at 17th century. 1 It is tradition that the youthful Ottawa, Ontario. Galileo discovered that the period of oscillation of a The pendulums employed for absolute or relative pendulum is constant by observations of the swings determinations of gravity have been of two basic of the great lamp suspended from the ceiling in the types. The first form of pendulum used as a physical cathedral of Pisa. 2 The lamp was only a rough instrument consisted of a weight suspended by a fiber, approximation to a simple pendulum, but Galileo cord, or fine wire, the upper end of which was attached later performed more accurate experiments with a to a fixed support. Such a pendulum may be called "simple" pendulum which consisted of a heavy ball a "simple" pendulum; the enclosure of the word suspended by a cord. In an experiment designed to simple by quotation marks is to indicate that such a confirm his laws of falling bodies, Galileo lifted the pendulum is an approximation to a simple, or mathe- ball to the level of a given altitude and released it. matical pendulum, a conceptual object which con- The ball ascended to the same level on the other side sists of a mass-point suspended by a weightless of the vertical equilibrium position and thereby inextensible cord. If / is the length of the simple confirmed a prediction from the laws. Galileo also pendulum, the time of swing (half-period in the sense discovered that the period of vibration of a "simple" of physics) for vibrations of infinitely small amplitude, pendulum varies as the square root of its length, a as derived from Newton's laws of motion and the hypothesis that weight is proportional to mass, is 1 The basic historical documents have been collected, with a bibliography of works and memoirs published from 1629 to the end of 1885, in Collection de mimoires relalifs a la physique, The second form of pendulum is the compound, or publiis par la Societe Francaise de Physique [hereinafter referred physical, pendulum. It consists of an extended to as Collection de mimoires]: vol. 4. Mi-moires sur le ptndule, precedes solid body which vibrates about a fixed axis under and vol. 5, d'une bibliographie I Paris: Gauthier-Villars, 1889); the action of the weight of the body. A compound Mimoires sur le pendule, part 2 (Paris: Gauthier-Villars, 1891). sources are: Wolf, "Introduction pendulum may be constituted to oscillate about one Important secondary C. historique," pp. 1-42 in vol. 4, above; and George Biddell axis only, in which case it is nonreversible and Airy, "Figure of the Earth," pp. 165-240 in vol. 5 of Encyclo- applicable only for relative measurements. Or a paedia metropolitana (London, 1845). pen- compound pendulum may be constituted to oscillate llileo Galilei's principal statements concerning the dulum occur in his Discourses Concerning Two Ketv Sciences, about two axes, in which case it is reversible (or transl. from Italian and Latin into English by Henry Crew and "convertible") and may be used to determine absolute Alfonso de Salvio (Evanston: Northwestern University Press, values of gravity. Capt. Henry Kater, F.R.S., 1939), pp. 95-97, 170-172. 304 BULLETIN 240: CONTRIBUTIONS FROM THE MUSEUM OF HISTORY AND TECHNOLOGY . result which is expressed by the formula for the time of swing of the ideal simple pendulum. He also Glossary oi Gravity Iermino used a pendulum to measure lapse of time, and he absoliii (.R.wii'i : the value of the designed a pendulum clock. Galileo's experimental acceleration of gravity, alsi expressed 1>\ the length of die sei onds pendulum. results are important historically, but have required correction in the light of subsequent measurements RELATTVi gravity: the value of the acceleration of gravity of greater precision. relative t" the valui i idard point. Mersenne in 1644 made the first determination of siMii i pendulum: see theoretical pendulum. 3 the length of the seconds pendulum, that is. the length \i a h'\i\ [-HEORETII pendulum: j bob (point-mass) at the of simple that seconds a pendulum beats (half- end of a weightless rod. period in the sense of physics). Subsequently, lie 1 : .1 1 in, ,il seconds pendi 1 m 1 on.
Recommended publications
  • Mister Mary Somerville: Husband and Secretary
    Open Research Online The Open University’s repository of research publications and other research outputs Mister Mary Somerville: Husband and Secretary Journal Item How to cite: Stenhouse, Brigitte (2020). Mister Mary Somerville: Husband and Secretary. The Mathematical Intelligencer (Early Access). For guidance on citations see FAQs. c 2020 The Author https://creativecommons.org/licenses/by/4.0/ Version: Version of Record Link(s) to article on publisher’s website: http://dx.doi.org/doi:10.1007/s00283-020-09998-6 Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page. oro.open.ac.uk Mister Mary Somerville: Husband and Secretary BRIGITTE STENHOUSE ary Somerville’s life as a mathematician and mathematician). Although no scientific learned society had a savant in nineteenth-century Great Britain was formal statute barring women during Somerville’s lifetime, MM heavily influenced by her gender; as a woman, there was nonetheless a great reluctance even toallow women her access to the ideas and resources developed and into the buildings, never mind to endow them with the rights circulated in universities and scientific societies was highly of members. Except for the visit of the prolific author Margaret restricted. However, her engagement with learned institu- Cavendish in 1667, the Royal Society of London did not invite tions was by no means nonexistent, and although she was women into their hallowed halls until 1876, with the com- 90 before being elected a full member of any society mencement of their second conversazione [15, 163], which (Societa` Geografica Italiana, 1870), Somerville (Figure 1) women were permitted to attend.1 As late as 1886, on the nevertheless benefited from the resources and social nomination of Isis Pogson as a fellow, the Council of the Royal networks cultivated by such institutions from as early as Astronomical Society chose to interpret their constitution as 1812.
    [Show full text]
  • Vicious Circle”: Unscrambling A.-C
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector HISTORIA MATHEMATICA 15 t 19881, 228-239 Breaking a “Vicious Circle”: Unscrambling A.-C. Clairaut’s Iterative Method of 1743 JOHN L. GREENBERG Centre de Recherches Alexar~dre KoyrC, 12. rue Colherf. 75.002 Puris. FI.N~C.C In this paper 1 show how in 1743 A.-C. Clairaut applied an iterative method to calculate the ellipticity of an infinitesimally flattened, homogeneous ellipsoid of revolution in equilib- rium, taken to represent the earth. Clairaut did not make very clear what he was doing and, as a result, left certain readers in the dark. They could not understand the point of the calculation and erroneously thought that Clairaut was going around in circles. The paper ends with a discussion of Clairaut’s clarification of the calculation, published in 1760 in response to the criticisms of John Muller, and a brief comparison of Clairaut’s iterative method with the “Newton-Raphson Method.” 1 1988.4cademlc Pres\. Inc. Dans cet article je montre la methode d’approximation d’A.-C. Clairaut pour trouver I’ellipticite d’un ellipsoi’de homogene de revolution en equilibre dont l’ellipticitt est infinite- simale et qui reprtsente la terre. Certains lecteurs ont mal compris Clairaut. Ceux-ci ont cru Clairaut pris au piege dans un “cercle vicieux en logique.” Clairaut a repondu a son critique John Muller en 1760, et j’explique cette reponse. Mon article se termine par une breve comparaison de la methode de Clairaut et de celle dite “Newton-Raphson.” Cette com- paraison peut eclairer la cause du malentendu.
    [Show full text]
  • Disciplinary Culture
    Disciplinary Culture: Artillery, Sound, and Science in Woolwich, 1800–1850 Simon Werrett This article explores connections between science, music, and the military in London in the first decades of the nineteenth century.1 Rather than look for applications of music or sound in war, it considers some techniques common to these fields, exemplified in practices involving the pendulum as an instrument of regulation. The article begins by exploring the rise of military music in the late eighteenth and early nineteenth centuries, and then compares elements of this musical culture to scientific transformations during 1 For broad relations between music and science in this period, see: Myles Jackson, Harmonious Triads: Physicians, Musicians, and Instrument Makers in Nineteenth-Century Germany (Cambridge, MA: MIT Press, 2006); Alexandra Hui, The Psychophysical Ear: Musical Experiments, Experimental Sounds, 1840–1910 (Cambridge, MA: MIT Press, 2012); Emily I. Dolan and John Tresch, “‘A Sublime Invasion’: Meyerbeer, Balzac, and the Opera Machine,” Opera Quarterly 27 (2011), 4–31; Emily Thompson, The Soundscape of Modernity: Architectural Acoustics and the Culture of Listening in America, 1900–1933 (Cambridge, MA: MIT Press, 2004). On science and war in the Napoleonic period, see for example: Simon Werrett, “William Congreve’s Rational Rockets,” Notes & Records of the Royal Society 63 (2009), 35–56; on sound as a weapon, Roland Wittje, “The Electrical Imagination: Sound Analogies, Equivalent Circuits, and the Rise of Electroacoustics, 1863–1939,” Osiris 28 (2013), 40–63, here 55; Cyrus C. M. Mody, “Conversions: Sound and Sight, Military and Civilian,” in The Oxford Handbook of Sound Studies, eds. Trevor Pinch and Karin Bijsterveld (Oxford: Oxford University Press, 2012), pp.
    [Show full text]
  • Redalyc.The International Pendulum Project
    Revista Electrónica de Investigación en Educación en Ciencias E-ISSN: 1850-6666 [email protected] Universidad Nacional del Centro de la Provincia de Buenos Aires Argentina Matthews, Michael R. The International Pendulum Project Revista Electrónica de Investigación en Educación en Ciencias, vol. 1, núm. 1, octubre, 2006, pp. 1-5 Universidad Nacional del Centro de la Provincia de Buenos Aires Buenos Aires, Argentina Available in: http://www.redalyc.org/articulo.oa?id=273320433002 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Año 1 – Número 1 – Octubre de 2006 ISSN: en trámite The International Pendulum Project Michael R. Matthews [email protected] School of Education, University of New South Wales, Sydney 2052, Australia The Pendulum in Modern Science Galileo in his final great work, The Two New Sciences , written during the period of house arrest after the trial that, for many, marked the beginning of the Modern Age, wrote: We come now to the other questions, relating to pendulums, a subject which may appear to many exceedingly arid, especially to those philosophers who are continually occupied with the more profound questions of nature. Nevertheless, the problem is one which I do not scorn. I am encouraged by the example of Aristotle whom I admire especially because he did not fail to discuss every subject which he thought in any degree worthy of consideration. (Galileo 1638/1954, pp.94-95) This was the pendulum’s low-key introduction to the stage of modern science and modern society.
    [Show full text]
  • The Meridian Arc Measurement in Peru 1735 – 1745
    The Meridian Arc Measurement in Peru 1735 – 1745 Jim R. SMITH, United Kingdom Key words: Peru. Meridian. Arc. Triangulation. ABSTRACT: In the early 18th century the earth was recognised as having some ellipsoidal shape rather than a true sphere. Experts differed as to whether the ellipsoid was flattened at the Poles or the Equator. The French Academy of Sciences decided to settle the argument once and for all by sending one expedition to Lapland- as near to the Pole as possible; and another to Peru- as near to the Equator as possible. The result supported the view held by Newton in England rather than that of the Cassinis in Paris. CONTACT Jim R. Smith, Secretary to International Institution for History of Surveying & Measurement 24 Woodbury Ave, Petersfield Hants GU32 2EE UNITED KINGDOM Tel. & fax + 44 1730 262 619 E-mail: [email protected] Website: http://www.ddl.org/figtree/hsm/index.htm HS4 Surveying and Mapping the Americas – In the Andes of South America 1/12 Jim R. Smith The Meridian Arc Measurement in Peru 1735-1745 FIG XXII International Congress Washington, D.C. USA, April 19-26 2002 THE MERIDIAN ARC MEASUREMENT IN PERU 1735 – 1745 Jim R SMITH, United Kingdom 1. BACKGROUND The story might be said to begin just after the mid 17th century when Jean Richer was sent to Cayenne, S. America, to carry out a range of scientific experiments that included the determination of the length of a seconds pendulum. He returned to Paris convinced that in Cayenne the pendulum needed to be 11 lines (2.8 mm) shorter there than in Paris to keep the same time.
    [Show full text]
  • Telling Time By: Sophia James Education, LLC the World Is Fascinated by How “Time” Goes by Fast Or How We Never Have Enough
    Telling Time By: Sophia James Education, LLC The world is fascinated by how “time” goes by fast or how we never have enough “time” in a day. For ages the concept of time have fascinated people. For thousand of years time was measured by observing the movement of the sun, moon, or stars. We have used sundials and also clocks for many years to measure time. In order to record or indicate time devices were created. The devices are clocks, watches, and sundials. The oldest of these three devices are the sundials or shadow clocks. Many years ago people used sundials to in- dicate time of the day by the position of the shadows of objects on which the rays of the sun falls on. Through- out the day the sun moves across the sky, causing the shadows of the objects to move. Clocks, are machines that performs regular movements in equal intervals of time and is linked to a counting mechanisms that records the number of movements. The word clock comes from the Greek hora (“time”) and logos (“telling”). All clocks, of whatever form, are made with the principle of regular movements and equal intervals. Sometimes it is important to measure time exactly, such as when conducting an experiment or baking or when setting an appointment. Sometimes accuracy is not so important example when we are on vacation and have no timed plans. It is believed that shadow clocks or sundials known as gnomon, were the first device for indicating time.This sundial consisted of one vertical stick or pillar; the shadow that it cast gave an indication of the time of the day.
    [Show full text]
  • the Papers Philosophical Transactions
    ABSTRACTS / OF THE PAPERS PRINTED IN THE PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON, From 1800 to1830 inclusive. VOL. I. 1800 to 1814. PRINTED, BY ORDER OF THE PRESIDENT AND COUNCIL, From the Journal Book of the Society. LONDON: PRINTED BY RICHARD TAYLOR, RED LION COURT, FLEET STREET. CONTENTS. VOL. I 1800. The Croonian Lecture. On the Structure and Uses of the Meinbrana Tympani of the Ear. By Everard Home, Esq. F.R.S. ................page 1 On the Method of determining, from the real Probabilities of Life, the Values of Contingent Reversions in which three Lives are involved in the Survivorship. By William Morgan, Esq. F.R.S.................... 4 Abstract of a Register of the Barometer, Thermometer, and Rain, at Lyndon, in Rutland, for the year 1798. By Thomas Barker, Esq.... 5 n the Power of penetrating into Space by Telescopes; with a com­ parative Determination of the Extent of that Power in natural Vision, and in Telescopes of various Sizes and Constructions ; illustrated by select Observations. By William Herschel, LL.D. F.R.S......... 5 A second Appendix to the improved Solution of a Problem in physical Astronomy, inserted in the Philosophical Transactions for the Year 1798, containing some further Remarks, and improved Formulae for computing the Coefficients A and B ; by which the arithmetical Work is considerably shortened and facilitated. By the Rev. John Hellins, B.D. F.R.S. .......................................... .................................. 7 Account of a Peculiarity in the Distribution of the Arteries sent to the ‘ Limbs of slow-moving Animals; together with some other similar Facts. In a Letter from Mr.
    [Show full text]
  • Newton on the Beach: the Information Order of Principia Mathematica
    Hist. Sci., xlvii (2009) NEWTON ON THE BEACH: THE INFORMATION ORDER OF PRINCIPIA MATHEMATICA Simon Schaffer Cambridge University WHAT I MAY SEEM TO THE WORLD I know not what I may seem to the world, but as to myself, I seem to have been only like a boy playing on the sea-shore and diverting myself in now and then finding a smoother pebble or a prettier shell than ordinary, whilst the great ocean of truth lay all undiscovered before me.1 It is one of the most celebrated of Isaac Newton’s obiter dicta. Like many such, its provenance is hazy. The literary reference may well be to a passage from John Milton’s great redemptive poem Paradise regained (1671) where, in dialogue with Satan, Christ praises divine illumination above pagan learning: “who reads / Inces- santly, and to his reading brings not / A spirit and judgment equal or superior, / … Uncertain and unsettled still remains, / Deep verst in books, and shallow in himself, / Crude or intoxicate, collecting toys / And trifles for choice matters, worth a spunge, / As children gath’ring pebbles on the shore”.2 But the remark’s immediate relation with Newton is more ambiguous. The earliest version is found in a conversation of April 1730, three years after Newton’s death, between the gossipy man of letters Joseph Spence and the Jacobite, freemason and court tutor Andrew Ramsay. While chatting about Newton’s debt to ancient theology and his strange attitudes towards the doctrine of the Trinity, Ramsay quoted Newton’s phrase, adding it was “as great as all” of Principia mathematica.3 Never one to let a nice epigram slip, Ramsay then incorporated the expression in his 1732 Plan of education for a young prince, composed to help tutor the heirs of a noble French clan.
    [Show full text]
  • Chapter 1 - Measurements and Experimentation
    QUESTION BANK (2019-20) PHYSICS IX Chapter 1 - Measurements and Experimentation Q1: What is meant by measurement? Solution 1- Measurement is the process of comparing a given physical quantity with a known standard quantity of the same nature. Q2: What do you understand by the term Unit? Solution 2 Unit is a quantity of constant magnitude which is used to measure the magnitudes of other quantities of the same manner. Q3: What are the three requirements for selecting a unit of a Physical quantity? Solution 3 The three requirements for selecting a unit of a physical quantity are (i) It should be possible to define the unit without ambiguity. (ii) The unit should be reproducible. (iii) The value of units should not change with space and time. Q4: Name & Define three fundamental quantities? Solution 4 Definitions of three fundamental quantities: S.I. unit of length (m): A metre was originally defined in 1889 as the distance between two marks drawn on a platinum-iridium (an alloy made of 90% platinum and 10% iridium) rod kept at 0°C in the International Bureau of Weights and Measures at serves near Paris. S.I. unit of mass (kg): In 1889, one kilogramme was defined as the mass of a cylindrical piece of a platinum-iridium alloy kept at International Bureau of Weights and Measures at serves near Paris. S.I. unit of time (s): A second is defined as 1/86400th part of a mean solar day, i.e. Q5: Name the three systems of Unit & State the various fundamental Units in them? Solution 5 Three systems of unit and their fundamental units: (i) C.G.S.
    [Show full text]
  • Pendulum Clock (Edited from Wikipedia)
    Pendulum Clock (Edited from Wikipedia) SUMMARY A pendulum clock is a clock that uses a pendulum, a swinging weight, as its timekeeping element. The advantage of a pendulum for timekeeping is that it is a harmonic oscillator; it swings back and forth in a precise time interval dependent on its length, and resists swinging at other rates. From its invention in 1656 by Christiaan Huygens until the 1930s, the pendulum clock was the world's most precise timekeeper, accounting for its widespread use. Throughout the 18th and 19th centuries pendulum clocks in homes, factories, offices and railroad stations served as primary time standards for scheduling daily life, work shifts, and public transportation, and their greater accuracy allowed the faster pace of life which was necessary for the Industrial Revolution. HISTORY The pendulum clock was invented in 1656 by Dutch scientist Christiaan Huygens, and patented the following year. Huygens contracted the construction of his clock designs to clockmaker Salomon Coster, who actually built the clock. Huygens was inspired by investigations of pendulums by Galileo Galilei beginning around 1602. Galileo discovered the key property that makes pendulums useful timekeepers: isochronism, which means that the period of swing of a pendulum is approximately the same for different sized swings. Galileo had the idea for a pendulum clock in 1637, which was partly constructed by his son in 1649, but neither lived to finish it. The introduction of the pendulum, the first harmonic oscillator used in timekeeping, increased the accuracy of clocks enormously, from about 15 minutes per day to 15 seconds per day leading to their rapid spread as existing 'verge and foliot' clocks were retrofitted with pendulums.
    [Show full text]
  • Back Matter (PDF)
    INDEX TO THE PHILOSOPHICAL TRANSACTIONS (10 FOR THE YEAR 1895. A. Abbott (E. C.) (see Gadow and A bbott). B. B lackman (F. F.). Experimental Researches on Vegetable Assimilation and Respiration.—No. I. On a New Method for Investigating the Carbonic Acid Exchanges of Plants, 485. -No. II. On the Paths of Gaseous Exchange between Aerial Leaves and the Atmosphere, 503. B ourne (G. G.). On the Structure and Affinities of P allas. With some Observa­ tions on the Structure of Xenia and Heteroxenia,455. Boice (K.). A Contribution to the Study of Descending Degenerations in the Brain and Spinal Cord, and on the Seat of Origin and Paths of Conduction of the Fits in Absinthe Epilepsy, 321. C. Catamites, the roots of, 683 (see W illiamson and Scott). CoebeHum, degenerations consequent on experimental lesions of the, 633 (sec R ussell). Coal-measures, further observations on the fossil plants of the, 683, 703 (see Williamson and Scott). C celomic fluid of Lumbricus terrestrisin relation to a protective mechanism, on the, 383 (see Kenu). Cynodontia from the Karroo llocks, on the skeleton in new, 59 (see S eeley). D. D ixon (H. H.) and J oey (J .). On the Ascent of Sap, 563. MDCCCXCV.—B. 5 X 878 INDEX. E. Echinoderm larva}, the effect of environment on the development of, 577 (see V ernon). Evolution of the vertebral column of fishes, on the, 163 (see Gadow and A bbott). F. Fishes, on the evolution of the vertebral column of, 163 (see Gadow and A bbott). Foraminifera,contributions to the life-history of the, 401 (see L ister).
    [Show full text]
  • William Dawes' Gravity Measurement in Sydney Cove, 1788
    William Dawes’ Gravity Measurement in Sydney Cove, 1788 Case BOSLOPER, Australia Key words : History of gravimetry, gravity, pendulum, Dawes. History of Surveying, physical geodesy, Australia. SUMMARY William Dawes arrived in Australia in January 1788 as an astronomer with the Australian First Fleet and as the Board of Longitude’s official observer. During his time in Australia he carried out many astronomical observations, of which the record has gone lost. The fieldbooks were possibly still with the widow of William Wales, of the Board of Longitude, after Wales died. What has not been lost are his gravity observations in Sydney Cove in Australia, of 1788, made with a temperature compensated grid iron pendulum, of which a record can be found in his correspondence with Nevil Maskelyne, the English Astronomer Royal. As far as I know, William Dawes’ pendulum gravity observations have not been published previously as such, until the recent paper by Morrison and Barko (2009). I helped investigate this series of observations which led to the first gravity acceleration determination on Australian soil, of which the record has survived. This paper reports on my analysis of his precision pendulum gravity determination. In this story, William Wales speaks from his grave, in support of Dawes. RESUMEN Guillermo Dawes llegaba a Australia en el Enero de 1788, como astrónomo con la Flota Primera Australiana y como el observador oficial del Consejo de la Longitud de la Inglaterra. Durante su tiempo en Australia el fue cargado con hacer muchos observaciones astronómicas, pero los libros de anotaciones fueran perdidos porque ellos todavía estaban posiblemente con la viuda de Guillermo Wales, del Consejo de la Longitud, después del muerte de Wales.
    [Show full text]