Pendulum Periodic Motion
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Vicious Circle”: Unscrambling A.-C
CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector HISTORIA MATHEMATICA 15 t 19881, 228-239 Breaking a “Vicious Circle”: Unscrambling A.-C. Clairaut’s Iterative Method of 1743 JOHN L. GREENBERG Centre de Recherches Alexar~dre KoyrC, 12. rue Colherf. 75.002 Puris. FI.N~C.C In this paper 1 show how in 1743 A.-C. Clairaut applied an iterative method to calculate the ellipticity of an infinitesimally flattened, homogeneous ellipsoid of revolution in equilib- rium, taken to represent the earth. Clairaut did not make very clear what he was doing and, as a result, left certain readers in the dark. They could not understand the point of the calculation and erroneously thought that Clairaut was going around in circles. The paper ends with a discussion of Clairaut’s clarification of the calculation, published in 1760 in response to the criticisms of John Muller, and a brief comparison of Clairaut’s iterative method with the “Newton-Raphson Method.” 1 1988.4cademlc Pres\. Inc. Dans cet article je montre la methode d’approximation d’A.-C. Clairaut pour trouver I’ellipticite d’un ellipsoi’de homogene de revolution en equilibre dont l’ellipticitt est infinite- simale et qui reprtsente la terre. Certains lecteurs ont mal compris Clairaut. Ceux-ci ont cru Clairaut pris au piege dans un “cercle vicieux en logique.” Clairaut a repondu a son critique John Muller en 1760, et j’explique cette reponse. Mon article se termine par une breve comparaison de la methode de Clairaut et de celle dite “Newton-Raphson.” Cette com- paraison peut eclairer la cause du malentendu. -
Pendulum Time" Lesson Explores How the Pendulum Has Been a Reliable Way to Keep Time for Centuries
IEEE Lesson Plan: P endulum Time Explore other TryEngineering lessons at www.tryengineering.org L e s s o n F o c u s Lesson focuses on how pendulums have been used to measure time and how mechanical mechanism pendulum clocks operate. Students work in teams to develop a pendulum out of everyday objects that can reliably measure time and operate at two different speeds. They will determine the materials, the optimal length of swing or size of weight to adjust speed, and then develop their designs on paper. Next, they will build and test their mechanism, compare their results with other student teams, and share observations with their class. Lesson Synopsis The "Pendulum Time" lesson explores how the pendulum has been a reliable way to keep time for centuries. Students work in teams to build their own working clock using a pendulum out of every day materials. They will need to be able to speed up and slow down the motion of the pendulum clock. They sketch their plans, consider what materials they will need, build the clock, test it, reflect on the assignment, and present to their class. A g e L e v e l s 8-18. Objectives Learn about timekeeping and engineering. Learn about engineering design and redesign. Learn how engineering can help solve society's challenges. Learn about teamwork and problem solving. Anticipated Learner Outcomes As a result of this activity, students should develop an understanding of: timekeeping engineering design teamwork Pendulum Time Provided by IEEE as part of TryEngineering www.tryengineering.org © 2018 IEEE – All rights reserved. -
Redalyc.The International Pendulum Project
Revista Electrónica de Investigación en Educación en Ciencias E-ISSN: 1850-6666 [email protected] Universidad Nacional del Centro de la Provincia de Buenos Aires Argentina Matthews, Michael R. The International Pendulum Project Revista Electrónica de Investigación en Educación en Ciencias, vol. 1, núm. 1, octubre, 2006, pp. 1-5 Universidad Nacional del Centro de la Provincia de Buenos Aires Buenos Aires, Argentina Available in: http://www.redalyc.org/articulo.oa?id=273320433002 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Año 1 – Número 1 – Octubre de 2006 ISSN: en trámite The International Pendulum Project Michael R. Matthews [email protected] School of Education, University of New South Wales, Sydney 2052, Australia The Pendulum in Modern Science Galileo in his final great work, The Two New Sciences , written during the period of house arrest after the trial that, for many, marked the beginning of the Modern Age, wrote: We come now to the other questions, relating to pendulums, a subject which may appear to many exceedingly arid, especially to those philosophers who are continually occupied with the more profound questions of nature. Nevertheless, the problem is one which I do not scorn. I am encouraged by the example of Aristotle whom I admire especially because he did not fail to discuss every subject which he thought in any degree worthy of consideration. (Galileo 1638/1954, pp.94-95) This was the pendulum’s low-key introduction to the stage of modern science and modern society. -
Advisory Circular
AC 4302B DATE 10/16/80 ADVISORY CIRCULAR DEPAl<TI\IEST OF TiL4SSPOlCTATiON Federal Aviation Administration Washington, D.C. .Srr bjecrt : MINIMUMMOmY FDR CLIEMTIONAND TEST OFAIMOS~RIC PRESSUPEINSTRUMENTS 1. PURPOSE. This advisory circular (AC) provides guidance material &ich may be used to determine the adequacy of barometers used in the calibration of aircraft static instruments. It explains barometric accuracy requirements and provides general information pertaining to altitude and atmospheric pressure rneasursnent Additional information concerning the general operation, calibration, and Wntenance of barmeters is presented. 20 CANCEIILATION. AC 43.2A, Minimum Barametry for Calibration and Test of Atmospheric Pressure Instruments, dated August 22, 1974, is cancelled. 3 BACKGROUND.'Ihe Federal Aviation Administration (FAA) has long recognized the direct relation that exists between altimeter accuracy and the efficiency with which the available airspace can be utilized. Accurate altimetry contributes to collision avoidance and terrain clearance. To improve safety in this area, the agency adopted rules prescribing periodic tests of aircraft altimeter systems. Following is a general discussion of each of the major areas of barometry &ich concern persons using barameters in aviation. 4 RASIC PEFERENCE. The National Bureau of Standards of the Department of Cknerce published Monograph 8 entitled "kkrcury Barometers and Emcxneters." This excellent publication ms prepared to fill the need of manufacturers and use& of barometers for information &ich was scattered through the literature and, in some cases, ws unpublished. 'Ihe definitions and terminology used in the mnograph will be used in this AC. kbnograph 8 describes the variety of design elements &ich are critical in obtaining precision and accuracy from these instruments. -
Mercury Barometers and Manometers
NBS MONOGRAPH 8 Mercuiy Barometers and Manometers U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS THE NATIONAL BUREAU OF STANDARDS Functions and Activities The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to government agencies on scientific and technical problems; in- vention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. Research projects are also performed for other government agencies when the work relates to and supplements the basic program of the Bureau or when the Bureau's unique competence is required. The scope of activities is suggested by the listing of divisions and sections on the inside of the back cover. Publications The results of the Bureau's work take the form of either actual equipment and devices or pub- lished papers. These papers appear either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three periodicals available from the Government Printing Office: The Journal of Research, published in four separate sections, presents complete scientific and technical papers; the Technical News Bulletin presents summary and pre- liminary reports on work in progress; and Basic Radio Propagation Predictions provides data for determining the best frequencies to use for radio communications throughout the world. -
MODULE 11: GLOSSARY and CONVERSIONS Cell Engines
Hydrogen Fuel MODULE 11: GLOSSARY AND CONVERSIONS Cell Engines CONTENTS 11.1 GLOSSARY.......................................................................................................... 11-1 11.2 MEASUREMENT SYSTEMS .................................................................................. 11-31 11.3 CONVERSION TABLE .......................................................................................... 11-33 Hydrogen Fuel Cell Engines and Related Technologies: Rev 0, December 2001 Hydrogen Fuel MODULE 11: GLOSSARY AND CONVERSIONS Cell Engines OBJECTIVES This module is for reference only. Hydrogen Fuel Cell Engines and Related Technologies: Rev 0, December 2001 PAGE 11-1 Hydrogen Fuel Cell Engines MODULE 11: GLOSSARY AND CONVERSIONS 11.1 Glossary This glossary covers words, phrases, and acronyms that are used with fuel cell engines and hydrogen fueled vehicles. Some words may have different meanings when used in other contexts. There are variations in the use of periods and capitalization for abbrevia- tions, acronyms and standard measures. The terms in this glossary are pre- sented without periods. ABNORMAL COMBUSTION – Combustion in which knock, pre-ignition, run- on or surface ignition occurs; combustion that does not proceed in the nor- mal way (where the flame front is initiated by the spark and proceeds throughout the combustion chamber smoothly and without detonation). ABSOLUTE PRESSURE – Pressure shown on the pressure gauge plus at- mospheric pressure (psia). At sea level atmospheric pressure is 14.7 psia. Use absolute pressure in compressor calculations and when using the ideal gas law. See also psi and psig. ABSOLUTE TEMPERATURE – Temperature scale with absolute zero as the zero of the scale. In standard, the absolute temperature is the temperature in ºF plus 460, or in metric it is the temperature in ºC plus 273. Absolute zero is referred to as Rankine or r, and in metric as Kelvin or K. -
SETTING up and MOVING a PENDULUM CLOCK by Brian Loomes, UK
SETTING UP AND MOVING A PENDULUM CLOCK by Brian Loomes, UK oving a pendulum This problem may face clock with anchor the novice in two different Mescapement can ways. Firstly as a clock be difficult unless you have that runs well in its present a little guidance. Of all position but that you need these the longcase clock to move. Or as a clock is trickiest because the that is new to you and that long pendulum calls for you need to assemble greater care at setting it in and set going for the very balance, usually known as first time—such as one you have just inherited or bought at auction. If it is the first of these then you can attempt to ignore my notes about levelling. But floors in different rooms or different houses seldom agree Figure 1. When moving an on levels, and you may eight-day longcase clock you eventually have to follow need to hold the weight lines through the whole process in place by taping round the of setting the clock level accessible part of the barrel. In and in beat. a complicated musical clock, Sometimes you can such as this by Thomas Lister of persuade a clock to run by Halifax, it is vital. having it at a silly angle, or by pushing old pennies or wooden wedges under the seatboard. But this is hardly ideal and next time you move the clock you start with the same performance all over again. setting it ‘in beat’. These My suggestion is that you notes deal principally with bite the bullet right away longcase clocks. -
Relativity and Clocks
RELATIVITY AND CLOCKS Carroll 0. Alley Universityof Maryland CollegePark, Maryland Sumnary be mentioned. In this centennial year of the birth of Albert The internationaltimekeeping communityshould Einstein, it is fittingto review the revolutionary takegreat pride in the fact that the great stabil- andfundamental insights about time whichhe gave ity of cont-mporaryatomic clocks requires the us inthe Restricted Theory of Relativity (1905) first practical applications g Einstein's General and in the conseqences of the Principle of Equiv- Theory of Relativity.This circumstance can be ex- alence (l'. .The happiest thought of my life.. .") pected to produce a better understanding among whichhe developed (1907-1915) into histheory of physicists andengineers of the physical basis of gravityas curved space-time, the General Theory of gravity as curvedspace-time. For slow motions and Relativity. weak gravitational fields, such as we normally ex- perience on the earth, the primary curvature is It is of particularsignificance that the ex- thatof &, notspace. A body falls,according traordinary stability ofmodern atomicclocks has to Einstein's view, not because of the Newtonian recentlyallowed the experimental Study and accur- forcepulling it tothe earth, but because of the ate measurement of these basic effects of motion properties of time: clocksrun slower when moving and gravitationalpotential on time. Experiments andrun faster or slower, the higher or lower re- with aircraft flights and laser pulseremote time spectively they are in the earth's gravity field. comparison(Alley, Cutler, Reisse, Williams, et al, 1975)and an experiment with a rocketprobe (Vessot,Levine, et al, 1976) are brieflydes- Some Eventsin Einstein's cribed. Intellectual Development Properunderstanding and allowance for these Figure 1 shows Einstein in his study in Berlin remarkableeffects is now necessary for accurate several years after he hadbrought the General global time synchronization using ultrastable Theoryof Relativity to its complete form in 1915. -
The Meridian Arc Measurement in Peru 1735 – 1745
The Meridian Arc Measurement in Peru 1735 – 1745 Jim R. SMITH, United Kingdom Key words: Peru. Meridian. Arc. Triangulation. ABSTRACT: In the early 18th century the earth was recognised as having some ellipsoidal shape rather than a true sphere. Experts differed as to whether the ellipsoid was flattened at the Poles or the Equator. The French Academy of Sciences decided to settle the argument once and for all by sending one expedition to Lapland- as near to the Pole as possible; and another to Peru- as near to the Equator as possible. The result supported the view held by Newton in England rather than that of the Cassinis in Paris. CONTACT Jim R. Smith, Secretary to International Institution for History of Surveying & Measurement 24 Woodbury Ave, Petersfield Hants GU32 2EE UNITED KINGDOM Tel. & fax + 44 1730 262 619 E-mail: [email protected] Website: http://www.ddl.org/figtree/hsm/index.htm HS4 Surveying and Mapping the Americas – In the Andes of South America 1/12 Jim R. Smith The Meridian Arc Measurement in Peru 1735-1745 FIG XXII International Congress Washington, D.C. USA, April 19-26 2002 THE MERIDIAN ARC MEASUREMENT IN PERU 1735 – 1745 Jim R SMITH, United Kingdom 1. BACKGROUND The story might be said to begin just after the mid 17th century when Jean Richer was sent to Cayenne, S. America, to carry out a range of scientific experiments that included the determination of the length of a seconds pendulum. He returned to Paris convinced that in Cayenne the pendulum needed to be 11 lines (2.8 mm) shorter there than in Paris to keep the same time. -
Telling Time By: Sophia James Education, LLC the World Is Fascinated by How “Time” Goes by Fast Or How We Never Have Enough
Telling Time By: Sophia James Education, LLC The world is fascinated by how “time” goes by fast or how we never have enough “time” in a day. For ages the concept of time have fascinated people. For thousand of years time was measured by observing the movement of the sun, moon, or stars. We have used sundials and also clocks for many years to measure time. In order to record or indicate time devices were created. The devices are clocks, watches, and sundials. The oldest of these three devices are the sundials or shadow clocks. Many years ago people used sundials to in- dicate time of the day by the position of the shadows of objects on which the rays of the sun falls on. Through- out the day the sun moves across the sky, causing the shadows of the objects to move. Clocks, are machines that performs regular movements in equal intervals of time and is linked to a counting mechanisms that records the number of movements. The word clock comes from the Greek hora (“time”) and logos (“telling”). All clocks, of whatever form, are made with the principle of regular movements and equal intervals. Sometimes it is important to measure time exactly, such as when conducting an experiment or baking or when setting an appointment. Sometimes accuracy is not so important example when we are on vacation and have no timed plans. It is believed that shadow clocks or sundials known as gnomon, were the first device for indicating time.This sundial consisted of one vertical stick or pillar; the shadow that it cast gave an indication of the time of the day. -
Oscillations[2] 2.0.Pdf
Team ______________ ______________ Oscillations Oscillatory motion is motion that repeats itself. An object oscillates if it moves back and forth along a fixed path between two extreme positions. Oscillations are everywhere in the world around you. Examples include the vibration of a guitar string, a speaker cone or a tuning fork, the swinging of a pendulum, playground swing or grandfather clock, the oscillating air in an organ pipe, the alternating current in an electric circuit, the rotation of a neutron star (pulsars), neutrino oscillations (subatomic particle), the up and down motion of a piston in an engine, the up and down motion of an electron in an antenna, the vibration of atoms in a solid (heat), the vibration of molecules in air (sound), the vibration of electric and magnetic fields in space (light). The Force The dynamical trademark of all oscillatory motion is that the net force causing the motion is a restoring force. If the oscillator is displaced away from equilibrium in any direction, then the net force acts so as to restore the system back to equilibrium. Definition: A simple harmonic oscillator is an oscillating system whose restoring force is a linear force − a force F that is proportional to the displacement x : F = − kx . The force constant k measures the strength of the force and depends on the system parameters. If you know the force constant of the system, then you can figure out everything about the motion. Examples of force constants: k = K (mass on spring of spring constant K), k = mg/L (pendulum of length L), k = mg/D (wood on water, submerged a distance D). -
Mercury Barometers and Manometers
NBS MONOGRAPH 8 Mercuiy Barometers and Manometers U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS THE NATIONAL BUREAU OF STANDARDS Functions and Activities The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to government agencies on scientific and technical problems; in- vention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. Research projects are also performed for other government agencies when the work relates to and supplements the basic program of the Bureau or when the Bureau's unique competence is required. The scope of activities is suggested by the listing of divisions and sections on the inside of the back cover. Publications The results of the Bureau's work take the form of either actual equipment and devices or pub- lished papers. These papers appear either in the Bureau's own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three periodicals available from the Government Printing Office: The Journal of Research, published in four separate sections, presents complete scientific and technical papers; the Technical News Bulletin presents summary and pre- liminary reports on work in progress; and Basic Radio Propagation Predictions provides data for determining the best frequencies to use for radio communications throughout the world.