Time in the Theory of Relativity: on Natural Clocks, Proper Time, the Clock Hypothesis, and All That
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Mathematical Derivation of the General Relativistic Schwarzschild
A Mathematical Derivation of the General Relativistic Schwarzschild Metric An Honors thesis presented to the faculty of the Departments of Physics and Mathematics East Tennessee State University In partial fulfillment of the requirements for the Honors Scholar and Honors-in-Discipline Programs for a Bachelor of Science in Physics and Mathematics by David Simpson April 2007 Robert Gardner, Ph.D. Mark Giroux, Ph.D. Keywords: differential geometry, general relativity, Schwarzschild metric, black holes ABSTRACT The Mathematical Derivation of the General Relativistic Schwarzschild Metric by David Simpson We briefly discuss some underlying principles of special and general relativity with the focus on a more geometric interpretation. We outline Einstein’s Equations which describes the geometry of spacetime due to the influence of mass, and from there derive the Schwarzschild metric. The metric relies on the curvature of spacetime to provide a means of measuring invariant spacetime intervals around an isolated, static, and spherically symmetric mass M, which could represent a star or a black hole. In the derivation, we suggest a concise mathematical line of reasoning to evaluate the large number of cumbersome equations involved which was not found elsewhere in our survey of the literature. 2 CONTENTS ABSTRACT ................................. 2 1 Introduction to Relativity ...................... 4 1.1 Minkowski Space ....................... 6 1.2 What is a black hole? ..................... 11 1.3 Geodesics and Christoffel Symbols ............. 14 2 Einstein’s Field Equations and Requirements for a Solution .17 2.1 Einstein’s Field Equations .................. 20 3 Derivation of the Schwarzschild Metric .............. 21 3.1 Evaluation of the Christoffel Symbols .......... 25 3.2 Ricci Tensor Components ................. -
Existence in Physics
Existence in Physics Armin Nikkhah Shirazi ∗ University of Michigan, Department of Physics, Ann Arbor January 24, 2019 Abstract This is the second in a two-part series of papers which re-interprets relativistic length contraction and time dilation in terms of concepts argued to be more fundamental, broadly construed to mean: concepts which point to the next paradigm. After refining the concept of existence to duration of existence in spacetime, this paper introduces a criterion for physi- cal existence in spacetime and then re-interprets time dilation in terms of the concept of the abatement of an object’s duration of existence in a given time interval, denoted as ontochronic abatement. Ontochronic abatement (1) focuses attention on two fundamental spacetime prin- ciples the significance of which is unappreciated under the current paradigm, (2) clarifies the state of existence of speed-of-light objects, and (3) leads to the recognition that physical existence is an equivalence relation by absolute dimensionality. These results may be used to justify the incorporation of the physics-based study of existence into physics as physical ontology. Keywords: Existence criterion, spacetime ontic function, ontochronic abatement, invariance of ontic value, isodimensionality, ontic equivalence class, areatime, physical ontology 1 Introduction This is the second in a two-part series of papers which re-interprets relativistic length contraction and time dilation in terms of concepts argued to be more fundamental, broadly construed to mean: concepts which point to the next paradigm. The first paper re-conceptualized relativistic length contraction in terms of dimensional abatement [1], and this paper will re-conceptualize relativistic time dilation in terms of what I will call ontochronic abatement, to be defined as the abatement of an object’s duration of existence within a given time interval. -
Relativity: the Special and General Theory Albert Einstein Relativity the Special and General Theory
Relativity: The Special and General Theory Albert Einstein Relativity The Special and General Theory Written: 1916 (this revised edition: 1924) Source: Relativity: The Special and General Theory © 1920 Publisher: Methuen & Co Ltd First Published: December, 1916 Translated: Robert W. Lawson (Authorised translation) Transcription/Markup: Brian Basgen Offline Version: Einstein Reference Archive (marxists.org) 1999 file:///C|/Documents%20and%20Settings/sverrmoe/...he%20Special%20and%20General%20Theory/index.htm (1 of 5) [18.08.2001 19:55:23] Relativity: The Special and General Theory Preface Part I: The Special Theory of Relativity 01. Physical Meaning of Geometrical Propositions 02. The System of Co-ordinates 03. Space and Time in Classical Mechanics 04. The Galileian System of Co-ordinates 05. The Principle of Relativity (in the Restricted Sense) 06. The Theorem of the Addition of Velocities employed in Classical Mechanics 07. The Apparent Incompatability of the Law of Propagation of Light with the Principle of Relativity 08. On the Idea of Time in Physics 09. The Relativity of Simultaneity 10. On the Relativity of the Conception of Distance 11. The Lorentz Transformation 12. The Behaviour of Measuring-Rods and Clocks in file:///C|/Documents%20and%20Settings/sverrmoe/...he%20Special%20and%20General%20Theory/index.htm (2 of 5) [18.08.2001 19:55:23] Relativity: The Special and General Theory Motion 13. Theorem of the Addition of Velocities. The Experiment of Fizeau 14. The Hueristic Value of the Theory of Relativity 15. General Results of the Theory 16. Expereince and the Special Theory of Relativity 17. Minkowski's Four-dimensial Space Part II: The General Theory of Relativity 18. -
Short-Term Housing Resource List
University of Minnesota Relocation Assistance Program (RAP) Short-term Housing Resource List Welcome to the Twin Cities community. The following list provides a sampling of housing resources that are available for short-term rental (i.e., one week to three months). Many of these units are located within two miles of campus. University of Minnesota Housing Resources • Institute for Mathematics and Its Applications www.ima.umn.edu/visiting/housing/index This list contains many options, including apartment complexes that offer one year leases or less. • Relocation Assistance Program www.humanresources.umn.edu/relocation-assistance-program/housing • Sabbatical and University-affiliated homes for rent or sale www.relocation-today.com/propertyportal • Summer guest housing www.housing.umn.edu/guest-housing Guest housing is available to any person with University-related business. Accommodations are available June 1- August 15. University of Minnesota off-campus housing www.housing.umn.edu/offcampus • University Village www.housing.umn.edu/uv 2515 University Ave. SE Minneapolis, MN 55414 612-625-3909 Contact: Nkayo Drepaul ([email protected]) The University Village apartment complex is a five minute bus ride and 20-minute walk from the University. The complex offers below-market rental rates for international fellows and scholars and competitive rates for others. Apartments are furnished with basic furniture and kitchen utensils. Includes high speed internet, in-unit washers/dryers and access to the fitness center, tanning room, community room, indoor bike storage, and study room. Heated garage parking available for $75 per month. Prepared by the Office of Human Resources 12-5-17 1 Hotels Near Campus University of Minnesota contract hotels www.uwidecontracts.umn.edu Search for hotels under the “Lodging” category. -
From Relativistic Time Dilation to Psychological Time Perception
From relativistic time dilation to psychological time perception: an approach and model, driven by the theory of relativity, to combine the physical time with the time perceived while experiencing different situations. Andrea Conte1,∗ Abstract An approach, supported by a physical model driven by the theory of relativity, is presented. This approach and model tend to conciliate the relativistic view on time dilation with the current models and conclusions on time perception. The model uses energy ratios instead of geometrical transformations to express time dilation. Brain mechanisms like the arousal mechanism and the attention mechanism are interpreted and combined using the model. Matrices of order two are generated to contain the time dilation between two observers, from the point of view of a third observer. The matrices are used to transform an observer time to another observer time. Correlations with the official time dilation equations are given in the appendix. Keywords: Time dilation, Time perception, Definition of time, Lorentz factor, Relativity, Physical time, Psychological time, Psychology of time, Internal clock, Arousal, Attention, Subjective time, Internal flux, External flux, Energy system ∗Corresponding author Email address: [email protected] (Andrea Conte) 1Declarations of interest: none Preprint submitted to PsyArXiv - version 2, revision 1 June 6, 2021 Contents 1 Introduction 3 1.1 The unit of time . 4 1.2 The Lorentz factor . 6 2 Physical model 7 2.1 Energy system . 7 2.2 Internal flux . 7 2.3 Internal flux ratio . 9 2.4 Non-isolated system interaction . 10 2.5 External flux . 11 2.6 External flux ratio . 12 2.7 Total flux . -
Pendulum Time" Lesson Explores How the Pendulum Has Been a Reliable Way to Keep Time for Centuries
IEEE Lesson Plan: P endulum Time Explore other TryEngineering lessons at www.tryengineering.org L e s s o n F o c u s Lesson focuses on how pendulums have been used to measure time and how mechanical mechanism pendulum clocks operate. Students work in teams to develop a pendulum out of everyday objects that can reliably measure time and operate at two different speeds. They will determine the materials, the optimal length of swing or size of weight to adjust speed, and then develop their designs on paper. Next, they will build and test their mechanism, compare their results with other student teams, and share observations with their class. Lesson Synopsis The "Pendulum Time" lesson explores how the pendulum has been a reliable way to keep time for centuries. Students work in teams to build their own working clock using a pendulum out of every day materials. They will need to be able to speed up and slow down the motion of the pendulum clock. They sketch their plans, consider what materials they will need, build the clock, test it, reflect on the assignment, and present to their class. A g e L e v e l s 8-18. Objectives Learn about timekeeping and engineering. Learn about engineering design and redesign. Learn how engineering can help solve society's challenges. Learn about teamwork and problem solving. Anticipated Learner Outcomes As a result of this activity, students should develop an understanding of: timekeeping engineering design teamwork Pendulum Time Provided by IEEE as part of TryEngineering www.tryengineering.org © 2018 IEEE – All rights reserved. -
Coordinates and Proper Time
Coordinates and Proper Time Edmund Bertschinger, [email protected] January 31, 2003 Now it came to me: . the independence of the gravitational acceleration from the na- ture of the falling substance, may be expressed as follows: In a gravitational ¯eld (of small spatial extension) things behave as they do in a space free of gravitation. This happened in 1908. Why were another seven years required for the construction of the general theory of relativity? The main reason lies in the fact that it is not so easy to free oneself from the idea that coordinates must have an immediate metrical meaning. | A. Einstein (quoted in Albert Einstein: Philosopher-Scientist, ed. P.A. Schilpp, 1949). 1. Introduction These notes supplement Chapter 1 of EBH (Exploring Black Holes by Taylor and Wheeler). They elaborate on the discussion of bookkeeper coordinates and how coordinates are related to actual physical distances and times. Also, a brief discussion of the classic Twin Paradox of special relativity is presented in order to illustrate the principal of maximal (or extremal) aging. Before going to details, let us review some jargon whose precise meaning will be important in what follows. You should be familiar with these words and their meaning. Spacetime is the four- dimensional playing ¯eld for motion. An event is a point in spacetime that is uniquely speci¯ed by giving its four coordinates (e.g. t; x; y; z). Sometimes we will ignore two of the spatial dimensions, reducing spacetime to two dimensions that can be graphed on a sheet of paper, resulting in a Minkowski diagram. -
Time Dilation of Accelerated Clocks
Astrophysical Institute Neunhof Circular se07117, February 2016 1 Time Dilation of accelerated Clocks The definitions of proper time and proper length in General Rela- tivity Theory are presented. Time dilation and length contraction are explicitly computed for the example of clocks and rulers which are at rest in a rotating reference frame, and hence accelerated versus inertial reference frames. Experimental proofs of this time dilation, in particular the observation of the decay rates of acceler- ated muons, are discussed. As an illustration of the equivalence principle, we show that the general relativistic equation of motion of objects, which are at rest in a rotating reference frame, reduces to Newtons equation of motion of the same objects at rest in an inertial reference system and subject to a gravitational field. We close with some remarks on real versus ideal clocks, and the “clock hypothesis”. 1. Coordinate Diffeomorphisms In flat Minkowski space, we place a rectangular three-dimensional grid of fiducial marks in three-dimensional position space, and assign cartesian coordinate values x1, x2, x3 to each fiducial mark. The values of the xi are constants for each fiducial mark, i. e. the fiducial marks are at rest in the coordinate frame, which they define. Now we stretch and/or compress and/or skew and/or rotate the grid of fiducial marks locally and/or globally, and/or re-name the fiducial marks, e. g. change from cartesian coordinates to spherical coordinates or whatever other coordinates. All movements and renamings of the fiducial marks are subject to the constraint that the map from the initial grid to the deformed and/or renamed grid must be differentiable and invertible (i. -
The Book of Common Prayer
The Book of Common Prayer and Administration of the Sacraments and Other Rites and Ceremonies of the Church Together with The Psalter or Psalms of David According to the use of The Episcopal Church Church Publishing Incorporated, New York Certificate I certify that this edition of The Book of Common Prayer has been compared with a certified copy of the Standard Book, as the Canon directs, and that it conforms thereto. Gregory Michael Howe Custodian of the Standard Book of Common Prayer January, 2007 Table of Contents The Ratification of the Book of Common Prayer 8 The Preface 9 Concerning the Service of the Church 13 The Calendar of the Church Year 15 The Daily Office Daily Morning Prayer: Rite One 37 Daily Evening Prayer: Rite One 61 Daily Morning Prayer: Rite Two 75 Noonday Prayer 103 Order of Worship for the Evening 108 Daily Evening Prayer: Rite Two 115 Compline 127 Daily Devotions for Individuals and Families 137 Table of Suggested Canticles 144 The Great Litany 148 The Collects: Traditional Seasons of the Year 159 Holy Days 185 Common of Saints 195 Various Occasions 199 The Collects: Contemporary Seasons of the Year 211 Holy Days 237 Common of Saints 246 Various Occasions 251 Proper Liturgies for Special Days Ash Wednesday 264 Palm Sunday 270 Maundy Thursday 274 Good Friday 276 Holy Saturday 283 The Great Vigil of Easter 285 Holy Baptism 299 The Holy Eucharist An Exhortation 316 A Penitential Order: Rite One 319 The Holy Eucharist: Rite One 323 A Penitential Order: Rite Two 351 The Holy Eucharist: Rite Two 355 Prayers of the People -
Lecture Notes 17: Proper Time, Proper Velocity, the Energy-Momentum 4-Vector, Relativistic Kinematics, Elastic/Inelastic
UIUC Physics 436 EM Fields & Sources II Fall Semester, 2015 Lect. Notes 17 Prof. Steven Errede LECTURE NOTES 17 Proper Time and Proper Velocity As you progress along your world line {moving with “ordinary” velocity u in lab frame IRF(S)} on the ct vs. x Minkowski/space-time diagram, your watch runs slow {in your rest frame IRF(S')} in comparison to clocks on the wall in the lab frame IRF(S). The clocks on the wall in the lab frame IRF(S) tick off a time interval dt, whereas in your 2 rest frame IRF( S ) the time interval is: dt dtuu1 dt n.b. this is the exact same time dilation formula that we obtained earlier, with: 2 2 uu11uc 11 and: u uc We use uurelative speed of an object as observed in an inertial reference frame {here, u = speed of you, as observed in the lab IRF(S)}. We will henceforth use vvrelative speed between two inertial systems – e.g. IRF( S ) relative to IRF(S): Because the time interval dt occurs in your rest frame IRF( S ), we give it a special name: ddt = proper time interval (in your rest frame), and: t = proper time (in your rest frame). The name “proper” is due to a mis-translation of the French word “propre”, meaning “own”. Proper time is different than “ordinary” time, t. Proper time is a Lorentz-invariant quantity, whereas “ordinary” time t depends on the choice of IRF - i.e. “ordinary” time is not a Lorentz-invariant quantity. 222222 The Lorentz-invariant interval: dI dx dx dx dx ds c dt dx dy dz Proper time interval: d dI c2222222 ds c dt dx dy dz cdtdt22 = 0 in rest frame IRF(S) 22t Proper time: ddtttt 21 t 21 11 Because d and are Lorentz-invariant quantities: dd and: {i.e. -
COORDINATE TIME in the VICINITY of the EARTH D. W. Allan' and N
COORDINATE TIME IN THE VICINITY OF THE EARTH D. W. Allan’ and N. Ashby’ 1. Time and Frequency Division, National Bureau of Standards Boulder, Colorado 80303 2. Department of Physics, Campus Box 390 University of Colorado, Boulder, Colorado 80309 ABSTRACT. Atomic clock accuracies continue to improve rapidly, requir- ing the inclusion of general relativity for unambiguous time and fre- quency clock comparisons. Atomic clocks are now placed on space vehi- cles and there are many new applications of time and frequency metrology. This paper addresses theoretical and practical limitations in the accuracy of atomic clock comparisons arising from relativity, and demonstrates that accuracies of time and frequency comparison can approach a few picoseconds and a few parts in respectively. 1. INTRODUCTION Recent experience has shown that the accuracy of atomic clocks has improved by about an order of magnitude every seven years. It has therefore been necessary to include relativistic effects in the reali- zation of state-of-the-art time and frequency comparisons for at least the last decade. There is a growing need for agreement about proce- dures for incorporating relativistic effects in all disciplines which use modern time and frequency metrology techniques. The areas of need include sophisticated communication and navigation systems and funda- mental areas of research such as geodesy and radio astrometry. Significant progress has recently been made in arriving at defini- tions €or coordinate time that are practical, and in experimental veri- fication of the self-consistency of these procedures. International Atomic Time (TAI) and Universal Coordinated Time (UTC) have been defin- ed as coordinate time scales to assist in the unambiguous comparison of time and frequency in the vicinity of the Earth. -
Time Scales and Time Differences
SECTION 2 TIME SCALES AND TIME DIFFERENCES Contents 2.1 Introduction .....................................................................................2–3 2.2 Time Scales .......................................................................................2–3 2.2.1 Ephemeris Time (ET) .......................................................2–3 2.2.2 International Atomic Time (TAI) ...................................2–3 2.2.3 Universal Time (UT1 and UT1R)....................................2–4 2.2.4 Coordinated Universal Time (UTC)..............................2–5 2.2.5 GPS or TOPEX Master Time (GPS or TPX)...................2–5 2.2.6 Station Time (ST) ..............................................................2–5 2.3 Time Differences..............................................................................2–6 2.3.1 ET − TAI.............................................................................2–6 2.3.1.1 The Metric Tensor and the Metric...................2–6 2.3.1.2 Solar-System Barycentric Frame of Reference............................................................2–10 2.3.1.2.1 Tracking Station on Earth .................2–13 2.3.1.2.2 Earth Satellite ......................................2–16 2.3.1.2.3 Approximate Expression...................2–17 2.3.1.3 Geocentric Frame of Reference.......................2–18 2–1 SECTION 2 2.3.1.3.1 Tracking Station on Earth .................2–19 2.3.1.3.2 Earth Satellite ......................................2–20 2.3.2 TAI − UTC .........................................................................2–20