The Theory of Relativity and a Priori Knowledge

Total Page:16

File Type:pdf, Size:1020Kb

The Theory of Relativity and a Priori Knowledge // The Theory ofRelativity -:::=-- and A Priori I(nowledg~ By llA S REICHE BACH./ / Translated and edited, wi.th an introduction, by Maria Reichenbach UNIVERSITY OF CALIFOR IA PRESS Berkeley and Los Angeles 1965 (~C Dedicated to ALBERT EINSTEIN <0 , R3\~~! UNIVERSITY OF CALIFOR IA PRESS BERKELEY AND Los ANGELES, CAu.FORNlA CAMBRIDGE UNIVERSITY PREss, LoNDON, E 'GLAND First published in German under the title Relativitiitsthem-je und Erkenntnis Apriori THIS TRANSLATION © 1965 BY THE RECENTS OF THE UNIVERSITY OF CALIFORNIA Library of Congress Catalog Card Number: 65-28456 DESIGNED BY DAVID PAULY PRINTED IN THE UNITED STATES OF AMERICA Contents Introduction to the English Edition Xl I. Introduction 1 II. The Contradictions Asserted by the Spe- cial Theory of Relativity 6 III. The Contradictions Asserted by the Gen- eral Theory of Relativity 22 IV. Knowledge as Coordination 34 V. Two Meanings of "A priori" and Kant's Implicit Presupposition 48 VI. The Refutation of Kant's Presupposition by the Theory of Relativity 61 VII. The Answer to the Critical Question by the Method of Logical Analysis 74 VIII. The Concept of Knowledge of the The- ory of Relativity as an Example of the Development of the Concept of Object 93 Reference Notes 109 I ., Introduction* Einstein's theory of relativity has greatly affected the fundamental principles of epistemology. It will not serve any purpose to deny this fact or to pretend that the physical theory changed only the concepts of physics while the philosophical truths remained in­ violate. Even though the theory of relativity concerns only relations of physical measurability and physical magnitudes, it must be admitted that these physical assertions contradict general philosophical principle. The philosophical axioms, even in their critical form, were always formulated in such a way that they re­ mained invariant with respect to specific interpreta­ tions but definitely excluded certain kinds of physical statements. Yet the theory of relativity selected exactly ., In regard to notes: the author's explanatory notes, which -f{ are not numbered, are printed as footnotes; so are the editor's notes, but the latter are numbered, the numbers being set in brackets. Finally, the author's reference notes, which are numbered consecutively, not chapter by chapter, will be found at the end of the book. .r 2 THE THEORY OF RELATIVITY § I TRODUCTION 3 those statements that had been regarded as inadmissible The general theory of relativity has greatly in­ and made them the guiding principles of its physical creased these difficulties. It has asserted nothing less as umptions. than that Euclidean geometry is not applicable to The special theory of relativity already made diffi­ physics. One should clearly understand the far-reach­ cult demands upon the tolerance of a critical philoso­ ing implications of this statement. Actually, for the last pher. It deprived time of its character of an irreversi­ hundred years tlle a priori. character of Euclidean ble proce s and asserted that eve.nts exist wh.ose ~em­ geometry had no longer been taken for granted. The poral succession may be assumed m the opposIte dIrec­ construction of non-Euclidean geometries had shown tion. This interpretation contradicts previous concepts, the possibility of conceptual systems contradicting the including the concept of time held by Kant. Occa­ well-known, intuitively evident axioms of Euclid. Rie­ sionally, philosophers have attempted to eliminate mann had developed a general theory of manifold in these difficulties through a distinction between "physi­ analytic form which contained "plane" space as a spe­ cal time" and "phenomenal time," by pointing out cial case. After Euclidean geometry had been deprived that time as subjective eXjJerience always remains an of its necessary character, its privileged character could irreversible sequence. But this distinction is not in be justified only if its intuitive evidence distinguished the Kantian tradition. For Kant, an essential trait of it from the other manifolds. This distinction became the a priori type of knowledge is that it constitutes a the only basis-in conformity with Kant-for the re­ presupposition of scientific knowledge and not merely quirement that specifically this geometry ought to be a subjective property of our sensations. Even though applied to the description of reality, that is, in physics. he speaks occasionally of the manner in which the Thus the refutation of Euclidean geometry was re­ objects "affect" our perceptions, he always believes duced to an objection to its purely conceptual justifi­ that this subjective form is simultaneously an objec­ cation. At the same time the empiricists expressed tive form of knowledge because the subjective com­ their doubt anew; from the possibility of constructing ponent is necessarily contained in the concept of other geometries they wanted to derive that the the­ object. He would not have conceded that one could orems of Euclidean geometry had received their intui­ apply a time order to physical events which was di~er­ tively evident character merely through experience ent from that inherent in the nature of the knowmg and familiarity. In the third place, mathematicians subject. It was, therefore, consistent when certain asserted that a geometrical system was established ac­ 0­ .';. philosophical circles were already attacking the special cording to conventions and represented an empty theory of relativity by objections that had their roots schema that did not contain any statements about the in the logical constructions of Kant's philosophy. physical world. It was chosen on purely formal grounds 4 THE THEORY OF RELATIVITY § INTRODUCTION 5 and might equally well be replaced by a non-Euclidean still so much under discussion. We shall, therefore, schema.! In the face of these criticisms the objection choose the following procedure. First, we shall estab­ of the general theory of relativity embodies a com­ lish the contradictions existing between the theory pletely new idea. This theory asserts simply and of relativity and critical philosophy and indicate the clearly that the theorems of Euclidean geometry do assumptions and empirical data that the theory of not apply to our physical space. This statement differs relativity adduces for its assertions.s Subsequently, essentially from the other three points of view, which starting with an analysis of the concept of knowledge, have in common that they do not question the validity we shall investigate what assumptions are inherent of the Euclidean axioms and differ only with respect in Kant's theory of knowledge. By confronting these to the justification of this validity and its epistemologi­ assumptions with the results of our analysis of the cal interpretation. It is obvious that thereby critical theory of relativity, we shall decide in what sense philosophy, too, is faced with a brand-new question. Kant's theory has been refuted by experience. Finally, There is no doubt that Kant's transcendental aesthetics we shall modify the concept of a priori in such a way starts from the self-evident validity of the Euclidean that it will no longer contradict the theory of relativ­ axioms. Even though one might dispute whether Kant ity, but will, on the contrary, be confirmed by it on sees in their intuitive evidence the proof of his theory the basis of the theory's own concept of knowledge. of a priori space, or, conversely, in the a priori charac­ The method of this investigation is called the method ter of space the proof of their evidence, it remains of logical analysis. quite certain that his theory is incompatible with the invalidity of these axioms. Therefore, there are only two possibilities: either the theory of relativity is false, or Kant's philosophy needs to be modified in those parts which contradict Einstein.2 The present study is devoted to the investi­ gation of this question. The first possibility appears to be very doubtful because of the tremendous suc­ cess of the theory of relativity, its repeated empirical confirmation and its fertility for the formation of theoretical concepts. Yet we do not want to accept this physical theory unconditionally, especially since the epistemological interpretation of its statements is § SPECIAL THEORY OF RELATIVITY 7 unless, in addition to the transformation of the spatial II coordinates, a time transformation is performed which in turn leads to the relativization of simultaneity and the partial Teversibility of time. This contradiction 1he Contradictions Asserted certainly exists. We ask: What assumptions support Einstein's principles? by the Special Theory Galileo's principle of inertia is an empirical state­ ment. It is not intuitively obvious why a body that ofRelativity is not affected by a force should move uniformly. If we had not become so accustomed to this idea, we would at first probably assert the opposite. Accord­ ing to Galileo, the stationary state is also free of forces; but this implies the far-reaching assertion that uni­ form motion is mechanically equivalent to the state of rest. A force is defined in terms of physical relations. In the present as well as in the following chapter we It is not a priori evident, however, that a force occurs shall use the term "a priori" in Kant's sense; that is, only if it is accompanied by a change of velocity, that we shall call a priori what the forms of intuition or '; is, that the phenomena which we call the effects of a the concept of knowledge require as self-evident. We force are dependent upon the occurrence of accelera­ are doinO' this in order to arrive at exactly those con- o ..•. tion. 'tVith this interpretation Galileo's principle of tradictions that occur with respect to a pnon pnnCI- inertia is undoubtedly an empirical statement. pIes; for, of course, the theory of relativity contradicts But this principle can be formulated in another many other principles of traditional physics.
Recommended publications
  • Existence in Physics
    Existence in Physics Armin Nikkhah Shirazi ∗ University of Michigan, Department of Physics, Ann Arbor January 24, 2019 Abstract This is the second in a two-part series of papers which re-interprets relativistic length contraction and time dilation in terms of concepts argued to be more fundamental, broadly construed to mean: concepts which point to the next paradigm. After refining the concept of existence to duration of existence in spacetime, this paper introduces a criterion for physi- cal existence in spacetime and then re-interprets time dilation in terms of the concept of the abatement of an object’s duration of existence in a given time interval, denoted as ontochronic abatement. Ontochronic abatement (1) focuses attention on two fundamental spacetime prin- ciples the significance of which is unappreciated under the current paradigm, (2) clarifies the state of existence of speed-of-light objects, and (3) leads to the recognition that physical existence is an equivalence relation by absolute dimensionality. These results may be used to justify the incorporation of the physics-based study of existence into physics as physical ontology. Keywords: Existence criterion, spacetime ontic function, ontochronic abatement, invariance of ontic value, isodimensionality, ontic equivalence class, areatime, physical ontology 1 Introduction This is the second in a two-part series of papers which re-interprets relativistic length contraction and time dilation in terms of concepts argued to be more fundamental, broadly construed to mean: concepts which point to the next paradigm. The first paper re-conceptualized relativistic length contraction in terms of dimensional abatement [1], and this paper will re-conceptualize relativistic time dilation in terms of what I will call ontochronic abatement, to be defined as the abatement of an object’s duration of existence within a given time interval.
    [Show full text]
  • Relativity: the Special and General Theory Albert Einstein Relativity the Special and General Theory
    Relativity: The Special and General Theory Albert Einstein Relativity The Special and General Theory Written: 1916 (this revised edition: 1924) Source: Relativity: The Special and General Theory © 1920 Publisher: Methuen & Co Ltd First Published: December, 1916 Translated: Robert W. Lawson (Authorised translation) Transcription/Markup: Brian Basgen Offline Version: Einstein Reference Archive (marxists.org) 1999 file:///C|/Documents%20and%20Settings/sverrmoe/...he%20Special%20and%20General%20Theory/index.htm (1 of 5) [18.08.2001 19:55:23] Relativity: The Special and General Theory Preface Part I: The Special Theory of Relativity 01. Physical Meaning of Geometrical Propositions 02. The System of Co-ordinates 03. Space and Time in Classical Mechanics 04. The Galileian System of Co-ordinates 05. The Principle of Relativity (in the Restricted Sense) 06. The Theorem of the Addition of Velocities employed in Classical Mechanics 07. The Apparent Incompatability of the Law of Propagation of Light with the Principle of Relativity 08. On the Idea of Time in Physics 09. The Relativity of Simultaneity 10. On the Relativity of the Conception of Distance 11. The Lorentz Transformation 12. The Behaviour of Measuring-Rods and Clocks in file:///C|/Documents%20and%20Settings/sverrmoe/...he%20Special%20and%20General%20Theory/index.htm (2 of 5) [18.08.2001 19:55:23] Relativity: The Special and General Theory Motion 13. Theorem of the Addition of Velocities. The Experiment of Fizeau 14. The Hueristic Value of the Theory of Relativity 15. General Results of the Theory 16. Expereince and the Special Theory of Relativity 17. Minkowski's Four-dimensial Space Part II: The General Theory of Relativity 18.
    [Show full text]
  • Short-Term Housing Resource List
    University of Minnesota Relocation Assistance Program (RAP) Short-term Housing Resource List Welcome to the Twin Cities community. The following list provides a sampling of housing resources that are available for short-term rental (i.e., one week to three months). Many of these units are located within two miles of campus. University of Minnesota Housing Resources • Institute for Mathematics and Its Applications www.ima.umn.edu/visiting/housing/index This list contains many options, including apartment complexes that offer one year leases or less. • Relocation Assistance Program www.humanresources.umn.edu/relocation-assistance-program/housing • Sabbatical and University-affiliated homes for rent or sale www.relocation-today.com/propertyportal • Summer guest housing www.housing.umn.edu/guest-housing Guest housing is available to any person with University-related business. Accommodations are available June 1- August 15. University of Minnesota off-campus housing www.housing.umn.edu/offcampus • University Village www.housing.umn.edu/uv 2515 University Ave. SE Minneapolis, MN 55414 612-625-3909 Contact: Nkayo Drepaul ([email protected]) The University Village apartment complex is a five minute bus ride and 20-minute walk from the University. The complex offers below-market rental rates for international fellows and scholars and competitive rates for others. Apartments are furnished with basic furniture and kitchen utensils. Includes high speed internet, in-unit washers/dryers and access to the fitness center, tanning room, community room, indoor bike storage, and study room. Heated garage parking available for $75 per month. Prepared by the Office of Human Resources 12-5-17 1 Hotels Near Campus University of Minnesota contract hotels www.uwidecontracts.umn.edu Search for hotels under the “Lodging” category.
    [Show full text]
  • Rules of the Appellate Term Second Department
    RULES OF THE APPELLATE TERM SECOND DEPARTMENT Courtesy of: DICK BAILEY SERVICE, INC. APPELLATE PRINTING SPECIALISTS 25 Chapel Street• 6th Floor•Brooklyn•New York 11201 (718) 522-4363 (516) 222-2470 (212) 608-7666 (914) 682-0848 1-800-531-2028 22 NYCRR Part 730, 731 and 732* *Rules include latest revisions made effective, September 17, 2008. TABLE OF CONTENTS Page(s) Part 730. - Establishment and Jurisdiction of Appellate Terms § 730.1 - Establishment and Jurisdiction of Appellate Terms .................1 § 730.3 - General Provisions and Definitions............................................4 Part 731. - Rules of Practice for the Second and Eleventh Judicial Districts § 731.1 - Record on Appeal .........................................................................6 § 731.2 - Briefs ............................................................................................7 § 731.3 - Court Sessions .............................................................................8 § 731.4 - Calendar of Appeals ....................................................................9 § 731.5 - Preferences; Consolidation........................................................10 § 731.6 - Oral Argument or Submission ..................................................11 § 731.7 - Motions.......................................................................................12 § 731.8 - Dismissals on The Court’s Own Motion; Enlargements of Time ...............................................................13 § 731.9 - Appeals in Criminal Cases; Adjournments;
    [Show full text]
  • XT511 Manual (Reve)
    www.midlandradio.com Model XT511 Series ® TABLE OF CONTENTS 3 Introduction 4 Important Notice, FCC Licensing 5 LCD Display 6 Controls 7 Battery Installation 8 Installing the Shoulder Strap 8 Charging the Battery Pack 9 Low Battery Level Indicator 9 Selecting the Power Source 9 Operating Your Radio 10 - 17 External Speaker/Microphone Jack 17 USB Jack 17 Troubleshooting Guide 18 Use and Care 18 Specifications and Frequency Charts 19 - 20 Warranty Information 21 MIDLAND Family Products 22 Accessories 22 - 24 Accessories Order Form 25 Page 3 www.midlandradio.com Model XT511 Series ® Welcome to the world of Midland electronics Congratulations on your purchase of a high quality MIDLAND product. Your 2-way radio represents the state-of-the-art in high-tech engineering. Designed for GMRS (General Mobile Radio Service) operation, this compact package is big in performance. It is a quality piece of electronic equipment, skillfully constructed with the finest components. The circuitry is all solid-state and mounted on a rugged printed circuit board. Your two-way radio is designed for reliable and trouble-free performance for years to come. Features - 22 GMRS/FRS Channel - 121 Privacy Codes (38 CTCSS / 83 DCS) - AM/FM Receiver - VOX - Selectable Call Alert - NOAA Weather Radio - NOAA Weather Alert - Scan Function - MONITOR Function - Dual Watch Function - Roger Beep Tone - Silent Operation - Keypad Lock - Power HI/LO Settings - Flashlight - Clock/Alarm Clock Function - Dynamo Crank Battery Charge Capability - USB Jack (For Mobile Phone Charging) - Speaker / Microphone Jacks - Battery Meter / Battery Low Indicator This device complies with Part 15 of the FCC Rules.
    [Show full text]
  • Using the 24 Hour Clock Lesson by Gene Williamson Whitford Intermdiate School, Beaverton, Oregon\
    TEACHER BACKGROUND Unit 3 - Tides and the Rocky Shore Using the 24 Hour Clock Lesson by Gene Williamson Whitford Intermdiate School, Beaverton, Oregon\ Key Concepts 1. There are several time systems in use worldwide. 2. The 24 hour, or military clock, is widely used among scientists to avoid the confusion of the standard AM-PM system. 3. Mathematical manipulations are easier when using the 24 hour system. Background We tend to take time and our A.M.-P.M. system of marking time for granted. A look at any dictionary quickly dispels the notion that time is a simple concept. While our commonly used system of time is based on the 24 hour solar day, astronomers use a sidereal time system based on the rotation of the earth in relation to any star; a sidereal day is about 4 minutes shorter than a solar day. The division of the 24 hour day into A.M. (ante meridiem - before noon) and P.M. (post meridiem - after noon) is sometimes confusing (just when is 12 P.M.?); did you mean 8:00 at night or 8:00 in the morning?). To avoid this confusion, scientists often record time using a 24 hour clock. This system has obvious advantages under the surface of the ocean or in space away from the surface of the earth where the concept of morning has little meaning. Materials For the class: • a large clock with 24 hour designations is helpful, but not required For each student: • “Using the 24 Hour Clock” student pages Teaching Hints It is especially important that students be thoroughly trained and practiced in the use of military time or the 24-hour time system before instruction in the use of the Tide Tables is given.
    [Show full text]
  • Terminology of Geological Time: Establishment of a Community Standard
    Terminology of geological time: Establishment of a community standard Marie-Pierre Aubry1, John A. Van Couvering2, Nicholas Christie-Blick3, Ed Landing4, Brian R. Pratt5, Donald E. Owen6 and Ismael Ferrusquía-Villafranca7 1Department of Earth and Planetary Sciences, Rutgers University, Piscataway NJ 08854, USA; email: [email protected] 2Micropaleontology Press, New York, NY 10001, USA email: [email protected] 3Department of Earth and Environmental Sciences and Lamont-Doherty Earth Observatory of Columbia University, Palisades NY 10964, USA email: [email protected] 4New York State Museum, Madison Avenue, Albany NY 12230, USA email: [email protected] 5Department of Geological Sciences, University of Saskatchewan, Saskatoon SK7N 5E2, Canada; email: [email protected] 6Department of Earth and Space Sciences, Lamar University, Beaumont TX 77710 USA email: [email protected] 7Universidad Nacional Autónomo de México, Instituto de Geologia, México DF email: [email protected] ABSTRACT: It has been recommended that geological time be described in a single set of terms and according to metric or SI (“Système International d’Unités”) standards, to ensure “worldwide unification of measurement”. While any effort to improve communication in sci- entific research and writing is to be encouraged, we are also concerned that fundamental differences between date and duration, in the way that our profession expresses geological time, would be lost in such an oversimplified terminology. In addition, no precise value for ‘year’ in the SI base unit of second has been accepted by the international bodies. Under any circumstances, however, it remains the fact that geologi- cal dates – as points in time – are not relevant to the SI.
    [Show full text]
  • School Terms and Holidays 2020/2021
    SCHOOL TERMS AND HOLIDAYS 2020/2021 SEPTEMBER OCTOBER NOVEMBER Mon 7 14 21 28 Mon 5 12 19 26 Mon 2 9 16 23 30 Tues 1 8 15 22 29 Tues 6 13 20 27 Tues 3 10 17 24 Wed 2 9 16 23 30 Wed 7 14 21 28 Wed 4 11 18 25 Thur 3 10 17 24 Thur 1 8 15 22 29 Thur 5 12 19 26 Fri 4 11 18 25 Fri 2 9 16 23 30 Fri 6 13 20 27 Sat 5 12 19 26 Sat 3 10 17 24 31 Sat 7 14 21 28 Sun 6 13 20 27 Sun 4 11 18 25 Sun 1 8 15 22 29 DECEMBER JANUARY FEBRUARY Mon 7 14 21 28 Mon 4 11 18 25 Mon 1 8 15 22 Tues 1 8 15 22 29 Tues 5 12 19 26 Tues 2 9 16 23 Wed 2 9 16 23 30 Wed 6 13 20 27 Wed 3 10 17 24 Thur 3 10 17 24 31 Thur 7 14 21 28 Thur 4 11 18 25 Fri 4 11 18 25 Fri 1 8 15 22 29 Fri 5 12 19 26 Sat 5 12 19 26 Sat 2 9 16 23 30 Sat 6 13 20 27 Sun 6 13 20 27 Sun 3 10 17 24 31 Sun 7 14 21 28 MARCH APRIL MAY Mon 1 8 15 22 29 Mon 5 12 19 26 Mon 3 10 17 24 31 Tues 2 9 16 23 30 Tues 6 13 20 27 Tues 4 11 18 25 Wed 3 10 17 24 31 Wed 7 14 21 28 Wed 5 12 19 26 Thur 4 11 18 25 Thur 1 8 15 22 29 Thur 6 13 20 27 Fri 5 12 19 26 Fri 2 9 16 23 30 Fri 7 14 21 28 Sat 6 13 20 27 Sat 3 10 17 24 Sat 1 8 15 22 29 Sun 7 14 21 28 Sun 4 11 18 25 Sun 2 9 16 23 30 JUNE JULY AUGUST Mon 7 14 21 28 Mon 5 12 19 26 Mon 2 9 16 23 30 Tues 1 8 15 22 29 Tues 6 13 20 27 Tues 3 10 17 24 31 Wed 2 9 16 23 30 Wed 7 14 21 28 Wed 4 11 18 25 Thur 3 10 17 24 Thur 1 8 15 22 29 Thur 5 12 19 26 Fri 4 11 18 25 Fri 2 9 16 23 30 Fri 6 13 20 27 Sat 5 12 19 26 Sat 3 10 17 24 31 Sat 7 14 21 28 Sun 6 13 20 27 Sun 4 11 18 25 Sun 1 8 15 22 29 th Term Time Holidays Christmas Bank Holidays 25 December 2020 th Bank Holiday Inset Day 28
    [Show full text]
  • Premiums – 9 Month Full-Time Employee Health Dental Vision
    Premiums – 9 Month Full-Time Employee September 1, 2020 For 9-month, full-time, monthly paid positions, premiums are prorated so that you pay 12 months of premiums over 9 months. This means that you pay a full year of premiums by May 31. You do not have to pay premiums during the summer and you will have coverage, unless you are ending employment. Health premiums for the A&M Care plan below include a $40 wellness premium for you and for your spouse, if enrolled, in the appropriate column. If you have completed your two-step wellness activities or are waived because you are newly enrolled, you will see a credit in Workday that will reduce your premium. Premiums increase by a prorated $40 tobacco premium if you or your spouse is a tobacco user. Health Employee Only Employee & Spouse Employee & Child(ren) Employee & Family Total Cost Your Cost Total Cost Your Cost Total Cost Your Cost Total Cost Your Cost A&M Care 9-Months $871.68 $40.00 $1,661.09 $454.72 $1,399.39 $300.35 $1,966.35 $607.33 J Plan 9-Months $831.68 $0.00 $1,581.09 $374.72 $1,352.39 $260.35 $1,886.35 $527.33 Dental Employee Only Employee & Spouse Employee & Child(ren) Employee & Family A&M Dental PPO 9-Months $39.23 $78.43 $82.35 $125.49 DeltaCare USA 9-Months $28.11 $49.97 $50.35 $78.21 Dental HMO Vision Employee Only Employee & Spouse Employee & Child(ren) Employee & Family 9-Months $10.13 $21.49 $16.61 $29.63 AD&D Employee Only Employee and Family Rate per $10,000: Monthly* $.10 $.24 Long-Term Disability Non-Tobacco Rate Tobacco Rate Rate per $100 of monthly salary: Monthly* $.178 $.230 Flexible Spending Account Maximum you can deduct from your pay: Health Care Spending Account - $2,750 Dependent Daycare Spending Account Basic Life The premium for this plan is usually paid by the employer contribution.
    [Show full text]
  • In Asymptomatic Term Newborns at Risk for Sepsis, Is a Six-Hour CBC a Better Predictor of Sepsis Than a One-Hour CBC?
    In asymptomatic term newborns at risk for sepsis, is a six-hour CBC a better predictor of sepsis than a one-hour CBC? Tori Treloar, R.N., B.S.N; Betsy Finley, R.N., B.S.N., M.P.H.; Audrey Nugent, R.N., B.S.N.; Lucy Schoemer, R.N., M.S.N.; Minshan Coudert, R.N., B.S.N. Background Neonatal sepsis is an invasive infection and remains one of the leading causes of Implications for Practice morbidity and mortality among both term and preterm infants (Shah, Padbury, 2014). The evidence is consistent in that well appearing The current practice at Inova Fairfax Medical Campus is to obtain a complete blood neonates at risk for sepsis should not receive a count (CBC) at one hour and again at 12 hours of life on all newborns at risk for sepsis. complete blood count (CBC) until at least six hours At one hour of life, there is normal decreased perfusion to limbs making it difficult to of life. Values obtained at or after six hours are obtain viable blood sample from a newborn. Multiple venous punctures are often more clinically useful as compared to those utilized to obtain the sample which can be distressing to parents and their newborns. obtained immediately after birth. New practice guidelines from CDC and the American Academy of Pediatrics (AAP) The evidence reviewed is consistent across all of support a CBC to be performed at 6-12 hours of life for low-risk, well-appearing the research and provides a compelling indication infants (Merck Manual, 2019).
    [Show full text]
  • Time in the Theory of Relativity: on Natural Clocks, Proper Time, the Clock Hypothesis, and All That
    Time in the theory of relativity: on natural clocks, proper time, the clock hypothesis, and all that Mario Bacelar Valente Abstract When addressing the notion of proper time in the theory of relativity, it is usually taken for granted that the time read by an accelerated clock is given by the Minkowski proper time. However, there are authors like Harvey Brown that consider necessary an extra assumption to arrive at this result, the so-called clock hypothesis. In opposition to Brown, Richard TW Arthur takes the clock hypothesis to be already implicit in the theory. In this paper I will present a view different from these authors by taking into account Einstein’s notion of natural clock and showing its relevance to the debate. 1 Introduction: the notion of natural clock th Up until the mid 20 century the metrological definition of second was made in terms of astronomical motions. First in terms of the Earth’s rotation taken to be uniform (Barbour 2009, 2-3), i.e. the sidereal time; then in terms of the so-called ephemeris time, in which time was calculated, using Newton’s theory, from the motion of the Moon (Jespersen and Fitz-Randolph 1999, 104-6). The measurements of temporal durations relied on direct astronomical observation or on instruments (clocks) calibrated to the motions in the ‘heavens’. However soon after the adoption of a definition of second based on the ephemeris time, the improvements on atomic frequency standards led to a new definition of the second in terms of the resonance frequency of the cesium atom.
    [Show full text]
  • CURRICULUM on MILITARY SUBJECTS Strand M5: CACC Basics
    State of California – Military Department California Cadet Corps CURRICULUM ON MILITARY SUBJECTS Strand M5: CACC Basics Level 11 This Strand is composed of the following components: A. Background B. Cadet Responsibilities C. Principles ESSAYONS Updated: 20 October 2018 California Cadet Corps M5: CACC Basics Table of Contents B. Cadet Responsibilities .............................................................................................................................. 3 Objectives ................................................................................................................................................. 3 B1. Guard Duty ...................................................................................................................................... 4 B2. Definition of Leadership .................................................................................................................. 5 B3. Military Time ................................................................................................................................... 9 B4. Phonetic Alphabet ........................................................................................................................ 11 B5. Phonetic Numbers ........................................................................................................................ 12 2 California Cadet Corps M5: CACC Basics B. Cadet Responsibilities OBJECTIVES DESIRED OUTCOME (Followership) 90% of Unit Cadets will be able to: 1. Discuss the responsibilities of
    [Show full text]