Galileo Galilei, the Determination of Longitude, and the Pendulum Clock

Total Page:16

File Type:pdf, Size:1020Kb

Galileo Galilei, the Determination of Longitude, and the Pendulum Clock University of Groningen The Pulse of Time: Galileo Galilei, the Determination of Longitude, and the Pendulum Clock. Silvio A. Bedini North, J. D. Published in: Isis DOI: 10.1086/356235 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 1992 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): North, J. D. (1992). The Pulse of Time: Galileo Galilei, the Determination of Longitude, and the Pendulum Clock. Silvio A. Bedini. Isis, 83(3), 491-492. https://doi.org/10.1086/356235 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 26-09-2021 Review Reviewed Work(s): The Pulse of Time: Galileo Galilei, the Determination of Longitude, and the Pendulum Clock by Silvio A. Bedini Review by: J. D. North Source: Isis, Vol. 83, No. 3 (Sep., 1992), pp. 491-492 Published by: The University of Chicago Press on behalf of The History of Science Society Stable URL: https://www.jstor.org/stable/233936 Accessed: 10-12-2018 15:29 UTC JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at https://about.jstor.org/terms The History of Science Society, The University of Chicago Press are collaborating with JSTOR to digitize, preserve and extend access to Isis This content downloaded from 129.125.148.19 on Mon, 10 Dec 2018 15:29:51 UTC All use subject to https://about.jstor.org/terms BOOK REVIEWS-ISIS, 83: 3 (1992) 491 opinion adequately justified the central the- tude at sea, but that was one of the most sis of his book. powerful incentives to Galileo. His first In this first generation of scientists imme- conception of a workable scheme dates diately after Galileo, astronomy obviously from 1641-1642; it was the basis of a work- was to receive little attention. Their inter- ing device within a decade or so, in Flor- ests turned rather to geometry and physics, ence. In 1656 or 1657, Christiaan Huygens and specifically to the problems of indivisi- devised and put into execution an alterna- bles and the composition of the continuum, tive solution. National pride over the prior- problems that were beyond the tools avail- ity question still keeps the flame of contro- able at the time. Segre argues, contrary to versy flickering faintly, but Silvio Bedini Pietro Redondi, that the evidence shows shows that he is capable of taking a reason- that religion was not the cause of the im- ably distanced view of events and of con- passe reached by these scientists; rather, centrating on the finer points of this very the difficulty was the intrinsic recalcitrance rich area of study. of the problems themselves. The idea of a portable timepiece to en- Segre's other main goal is to demytholo- able the measurement of longitude at sea gize the picture of Galileo in the secondary was clearly expressed by Gemma Frisius in literature. The hagiographic image is traced 1522. Various others had the same idea, back to Viviani's biography, which is and watches seem even to have been in use shown by close textual study to reveal at for this purpose-perhaps not effectively- least as much about biographical standards before the end of the sixteenth century. of that age as it does about Galileo's life The pendulum clock is not, as we can see, and work. Likewise, a lengthy discussion particularly well fitted to time measurement of the twentieth-century dispute over at sea, and although it owed its existence to whether Galileo was more of an empiricist the longitude problem, one can usefully dis- or an "a priorist" in his methodology (the tinguish between motivation and inspiration former attribution is traced to Viviani, here. Similarities between the pendulum while the latter seems to be closer to and its predecessors are fairly obvious, to Segre's reading of Galileo) concludes that those who have the advantage of hindsight. this dispute anachronistically tells us more Galileo does not-of course-reveal his about contemporary philosophies of sci- sources of inspiration. His biographer Vin- ence than it does about patterns of thought cenzio Viviani, as we all know, claimed appropriate to the age of Galileo. Support- that the idea came from Galileo's watching ing this is Segre's interesting finding that a lamp in the cathedral of Pisa. Bedini turns Galileo's followers are just as ambiguous as our attention rather toward Galileo's exper- he is on methodological issues. iments in music and his well-known use of a This book has some important new things pendulum (pulsilogium) to determine the to add, and thus is a welcome complement pulse rates of patients with fever. The orig- to the already huge literature on the Galileo inality of Galileo's device, even the discov- case. ery of the isochronism of the pendulum, RICHARD J. BLACKWELL was subject to dispute almost at once, and that he kept the tune in a very low key sug- gests that he could see the justice of some of the points being made by his detractors. Just as inevitably, the tempo quickened Silvio A. Bedini. The Pulse of Time: Galileo when rich research contracts with foreign Galilei, the Determination of Longitude, princes were in the wind. His negotiations and the Pendulum Clock. (Biblioteca di with the Spaniards and the States General, Nuncius, Studi e Testi, 3.) xiv + 132 pp., not to mention some of the details of his frontis., illus., apps., index. Florence: Leo inventions, make salutary reading. I like in S. Olschki, 1991. L 40,000 (paper). particular the headgear with telescope at- The pendulum as a regulator for timekeep- tached, leaving one eye free. ing represents by any standards an impor- Galileo's clockwork devices were the tant stage in the development of precision product of the end of his life, and blindness in the empirical sciences, pure and applied. meant that he had to collaborate with his One cannot say that it would never have son, and not only on practical problems. been conceived outside the context of the Here is one of the chief causes of the ob- search for reliable methods of finding longi- fuscation of history; another is the obvious This content downloaded from 129.125.148.19 on Mon, 10 Dec 2018 15:29:51 UTC All use subject to https://about.jstor.org/terms 492 BOOK REVIEWS-ISIS, 83: 3 (1992) chapters, however, concerns a little-known but important fact: the great public clock of the Palazzo Vecchio in Florence, embody- ing Galileo's two clockwork inventions (the escapement and the pendulum regulator), by means of which the grand duke planned to standardize time reckoning throughout L K Tuscany, continues to work without major modification to the present day. In all this, R we should not overlook the important part N H played by the much maligned Viviani, court mathematician and supervisor of the Tus- can project. It is ironic that much of what we know of the earliest history of the clock in the Palazzo Vecchio comes from a draw- ing that Prince Leopold sent to Ismael Boulliau in 1659 to be forwarded to Huy- gens. The drawing is still in the Huygens papers at Leiden. Bedini gives much useful information, not only about the pendulum clocks he dis- cusses, but about their medieval forebears. He includes some excellent illustrations, chapters on Viviani's tables for the stan- dardization of time, and a brief but invalu- able survey of the manuscripts relevant to the entire historical episode. Much has been written on this over the centuries, but Bedini's now becomes the most important self-contained account. J. D. NORTH A. Arnauld. On True and False Ideas. Translated, with an introductory essay by Stephen Gaukroger. (Classics of Philosophy and Science.) viii + 240 pp., illus., bibl., index. Manchester/New York: Manchester University Press, 1990. $59.95. Antoine Arnauld's Traite des vrais and fausses idees (1683) opened an angry dis- Schematic drawing of the pendulum-regulated pute with Nicole Malebranche on the na- clock designed by Christiaan Huygens ture of ideas and their function in percep- (reprinted in Bedini, Pulse of Time from tual cognition that, merged with the Huygens, Horologium). question of grace, lasted up to Arnauld's death in 1694. Stephen Gaukroger offers to need to keep secrecy on a matter with great the English-speaking world a first and accu- financial advantages. Bedini tells the story rate version of this important work. In the of the clock, and of subsequent contro- introductory essay, the editor proficiently versy, with verve and simple honesty.
Recommended publications
  • Pendulum Time" Lesson Explores How the Pendulum Has Been a Reliable Way to Keep Time for Centuries
    IEEE Lesson Plan: P endulum Time Explore other TryEngineering lessons at www.tryengineering.org L e s s o n F o c u s Lesson focuses on how pendulums have been used to measure time and how mechanical mechanism pendulum clocks operate. Students work in teams to develop a pendulum out of everyday objects that can reliably measure time and operate at two different speeds. They will determine the materials, the optimal length of swing or size of weight to adjust speed, and then develop their designs on paper. Next, they will build and test their mechanism, compare their results with other student teams, and share observations with their class. Lesson Synopsis The "Pendulum Time" lesson explores how the pendulum has been a reliable way to keep time for centuries. Students work in teams to build their own working clock using a pendulum out of every day materials. They will need to be able to speed up and slow down the motion of the pendulum clock. They sketch their plans, consider what materials they will need, build the clock, test it, reflect on the assignment, and present to their class. A g e L e v e l s 8-18. Objectives Learn about timekeeping and engineering. Learn about engineering design and redesign. Learn how engineering can help solve society's challenges. Learn about teamwork and problem solving. Anticipated Learner Outcomes As a result of this activity, students should develop an understanding of: timekeeping engineering design teamwork Pendulum Time Provided by IEEE as part of TryEngineering www.tryengineering.org © 2018 IEEE – All rights reserved.
    [Show full text]
  • SETTING up and MOVING a PENDULUM CLOCK by Brian Loomes, UK
    SETTING UP AND MOVING A PENDULUM CLOCK by Brian Loomes, UK oving a pendulum This problem may face clock with anchor the novice in two different Mescapement can ways. Firstly as a clock be difficult unless you have that runs well in its present a little guidance. Of all position but that you need these the longcase clock to move. Or as a clock is trickiest because the that is new to you and that long pendulum calls for you need to assemble greater care at setting it in and set going for the very balance, usually known as first time—such as one you have just inherited or bought at auction. If it is the first of these then you can attempt to ignore my notes about levelling. But floors in different rooms or different houses seldom agree Figure 1. When moving an on levels, and you may eight-day longcase clock you eventually have to follow need to hold the weight lines through the whole process in place by taping round the of setting the clock level accessible part of the barrel. In and in beat. a complicated musical clock, Sometimes you can such as this by Thomas Lister of persuade a clock to run by Halifax, it is vital. having it at a silly angle, or by pushing old pennies or wooden wedges under the seatboard. But this is hardly ideal and next time you move the clock you start with the same performance all over again. setting it ‘in beat’. These My suggestion is that you notes deal principally with bite the bullet right away longcase clocks.
    [Show full text]
  • Relativity and Clocks
    RELATIVITY AND CLOCKS Carroll 0. Alley Universityof Maryland CollegePark, Maryland Sumnary be mentioned. In this centennial year of the birth of Albert The internationaltimekeeping communityshould Einstein, it is fittingto review the revolutionary takegreat pride in the fact that the great stabil- andfundamental insights about time whichhe gave ity of cont-mporaryatomic clocks requires the us inthe Restricted Theory of Relativity (1905) first practical applications g Einstein's General and in the conseqences of the Principle of Equiv- Theory of Relativity.This circumstance can be ex- alence (l'. .The happiest thought of my life.. .") pected to produce a better understanding among whichhe developed (1907-1915) into histheory of physicists andengineers of the physical basis of gravityas curved space-time, the General Theory of gravity as curvedspace-time. For slow motions and Relativity. weak gravitational fields, such as we normally ex- perience on the earth, the primary curvature is It is of particularsignificance that the ex- thatof &, notspace. A body falls,according traordinary stability ofmodern atomicclocks has to Einstein's view, not because of the Newtonian recentlyallowed the experimental Study and accur- forcepulling it tothe earth, but because of the ate measurement of these basic effects of motion properties of time: clocksrun slower when moving and gravitationalpotential on time. Experiments andrun faster or slower, the higher or lower re- with aircraft flights and laser pulseremote time spectively they are in the earth's gravity field. comparison(Alley, Cutler, Reisse, Williams, et al, 1975)and an experiment with a rocketprobe (Vessot,Levine, et al, 1976) are brieflydes- Some Eventsin Einstein's cribed. Intellectual Development Properunderstanding and allowance for these Figure 1 shows Einstein in his study in Berlin remarkableeffects is now necessary for accurate several years after he hadbrought the General global time synchronization using ultrastable Theoryof Relativity to its complete form in 1915.
    [Show full text]
  • Oscillations[2] 2.0.Pdf
    Team ______________ ______________ Oscillations Oscillatory motion is motion that repeats itself. An object oscillates if it moves back and forth along a fixed path between two extreme positions. Oscillations are everywhere in the world around you. Examples include the vibration of a guitar string, a speaker cone or a tuning fork, the swinging of a pendulum, playground swing or grandfather clock, the oscillating air in an organ pipe, the alternating current in an electric circuit, the rotation of a neutron star (pulsars), neutrino oscillations (subatomic particle), the up and down motion of a piston in an engine, the up and down motion of an electron in an antenna, the vibration of atoms in a solid (heat), the vibration of molecules in air (sound), the vibration of electric and magnetic fields in space (light). The Force The dynamical trademark of all oscillatory motion is that the net force causing the motion is a restoring force. If the oscillator is displaced away from equilibrium in any direction, then the net force acts so as to restore the system back to equilibrium. Definition: A simple harmonic oscillator is an oscillating system whose restoring force is a linear force − a force F that is proportional to the displacement x : F = − kx . The force constant k measures the strength of the force and depends on the system parameters. If you know the force constant of the system, then you can figure out everything about the motion. Examples of force constants: k = K (mass on spring of spring constant K), k = mg/L (pendulum of length L), k = mg/D (wood on water, submerged a distance D).
    [Show full text]
  • Celestial, Flow, and Mechanical Clocks
    recalibration Michael A. Lombardi First in a Series on the Evolution of Time Measurement: Celestial, Flow, and Mechanical Clocks ime is elusive. We are comfortable with the concept of us are many centuries older than the first clocks. The first -in time, but in many ways it defies understanding. We struments that we now recognize as clocks could measure T cannot see, hear, or touch time; we can only observe intervals shorter than one day by dividing the day into smaller its effects. Although we are unable to grasp time with our tra- parts. ditional senses, we can clearly “feel” the passage of time as we Most historians credit the Egyptians with being the first civ- watch night turn to day, the seasons change, or a child grow up. ilization to use clocks. Their first clocks were probably nothing We are also aware that we can’t stop or reverse the continuous more than sticks placed in the ground that indicated time by flow of time, a fact that becomes more obvious as we get older. both the length and direction of their shadow. As early as 1500 Defining time seems impossible, and attempts to do so by phi- BC, the Egyptians had developed a more advanced shadow losophers and scientists fall far short of their goal. clock (Fig. 1). This T-shaped instrument was placed in a sun- In spite of its elusiveness, we can measure time exception- lit area on the ground. In the morning, the crosspiece (AA) was ally well. In fact, we can measure time with more resolution set to face east and then rotated in the afternoon to face west.
    [Show full text]
  • Time in the Theory of Relativity: on Natural Clocks, Proper Time, the Clock Hypothesis, and All That
    Time in the theory of relativity: on natural clocks, proper time, the clock hypothesis, and all that Mario Bacelar Valente Abstract When addressing the notion of proper time in the theory of relativity, it is usually taken for granted that the time read by an accelerated clock is given by the Minkowski proper time. However, there are authors like Harvey Brown that consider necessary an extra assumption to arrive at this result, the so-called clock hypothesis. In opposition to Brown, Richard TW Arthur takes the clock hypothesis to be already implicit in the theory. In this paper I will present a view different from these authors by taking into account Einstein’s notion of natural clock and showing its relevance to the debate. 1 Introduction: the notion of natural clock th Up until the mid 20 century the metrological definition of second was made in terms of astronomical motions. First in terms of the Earth’s rotation taken to be uniform (Barbour 2009, 2-3), i.e. the sidereal time; then in terms of the so-called ephemeris time, in which time was calculated, using Newton’s theory, from the motion of the Moon (Jespersen and Fitz-Randolph 1999, 104-6). The measurements of temporal durations relied on direct astronomical observation or on instruments (clocks) calibrated to the motions in the ‘heavens’. However soon after the adoption of a definition of second based on the ephemeris time, the improvements on atomic frequency standards led to a new definition of the second in terms of the resonance frequency of the cesium atom.
    [Show full text]
  • Some Multi-Pendulum Clocks
    Double Pendulum Resonance Clocks John Kirk 1 Topics • Introduction • Resonance • Early Makers • Janvier’s Clocks • Breguet’s Clocks • Modern Clocks • “Reproductions” 2 Topics • Introduction • Resonance • Early Makers • Janvier’s Clocks • Breguet’s Clocks • Modern Clocks • “Reproductions” 3 Introduction • While there are three and four pendulum clocks, most multi-pendulum clocks have two pendulums – Clocks with more than two pendulums will be the subject of another presentation • Resonance clocks have two or more pendulums locked to each other in rate, which aids rate stability and can compensate for disturbances 4 Topics • Introduction • Resonance • Early Makers • Janvier’s Clocks • Breguet’s Clocks • Modern Clocks • “Reproductions” 5 Resonance (1 of 4) • Two mechanical oscillators, such as balance wheels or pendulums, can influence each to become resonant • For this to happen, – The oscillation of one must be detected mechanically by the other, such as two pendulums on a common slightly soft mounting – The two oscillators must have close to the same period of oscillation 6 Resonance (2 of 4) • When two pendulums influence each other of almost the same frequency, the two will trade energy until they swing in anti-phase • This occurs because swinging in anti-phase has the lowest system energy level – All resonant systems “relax” total system energy to the lowest level – This lowest level also requires the least energy to keep both oscillators in the system oscillating 7 Resonance (3 of 4) • The “Thursday Mystery” is well-known among repairers
    [Show full text]
  • Pendulum Clock (Edited from Wikipedia)
    Pendulum Clock (Edited from Wikipedia) SUMMARY A pendulum clock is a clock that uses a pendulum, a swinging weight, as its timekeeping element. The advantage of a pendulum for timekeeping is that it is a harmonic oscillator; it swings back and forth in a precise time interval dependent on its length, and resists swinging at other rates. From its invention in 1656 by Christiaan Huygens until the 1930s, the pendulum clock was the world's most precise timekeeper, accounting for its widespread use. Throughout the 18th and 19th centuries pendulum clocks in homes, factories, offices and railroad stations served as primary time standards for scheduling daily life, work shifts, and public transportation, and their greater accuracy allowed the faster pace of life which was necessary for the Industrial Revolution. HISTORY The pendulum clock was invented in 1656 by Dutch scientist Christiaan Huygens, and patented the following year. Huygens contracted the construction of his clock designs to clockmaker Salomon Coster, who actually built the clock. Huygens was inspired by investigations of pendulums by Galileo Galilei beginning around 1602. Galileo discovered the key property that makes pendulums useful timekeepers: isochronism, which means that the period of swing of a pendulum is approximately the same for different sized swings. Galileo had the idea for a pendulum clock in 1637, which was partly constructed by his son in 1649, but neither lived to finish it. The introduction of the pendulum, the first harmonic oscillator used in timekeeping, increased the accuracy of clocks enormously, from about 15 minutes per day to 15 seconds per day leading to their rapid spread as existing 'verge and foliot' clocks were retrofitted with pendulums.
    [Show full text]
  • Time Keeping Experiments for a Mechanical Engineering Education Laboratory Sequence
    AC 2009-439: TIME-KEEPING EXPERIMENTS FOR A MECHANICAL ENGINEERING EDUCATION LABORATORY SEQUENCE John Wagner, Clemson University Katie Knaub, National Association of Watch and Clock Collectors Page 14.1271.1 Page © American Society for Engineering Education, 2009 Time Keeping Experiments for a Mechanical Engineering Education Laboratory Sequence Abstract The evolution of science and technology throughout history parallels the development of time keeping devices which assist mankind in measuring and coordinating their daily schedules. The earliest clocks used the natural behavior of the sun, sand, and water to approximate fixed time intervals. In the medieval period, mechanical clocks were introduced that were driven by weights and springs which offered greater time accuracy due to improved design and materials. In the last century, electric motor driven clocks and digital circuits have allowed for widespread distribution of clock devices to many homes and individuals. In this paper, a series of eight laboratory experiments have been created which use a time keeping theme to introduce basic mechanical and electrical engineering concepts, while offering the opportunity to weave societal implications into the discussions. These bench top and numerical studies include clock movements, pendulums, vibration and acoustic analysis, material properties, circuit breadboards, microprocessor programming, computer simulation, and artistic water clocks. For each experiment, the learning objectives, equipment and materials, and laboratory procedures are listed. To determine the learning effectiveness of each experiment, an assessment tool will be used to gather student feedback for laboratory improvement. Finally, these experiments can also be integrated into academic programs that emphasize science, technology, engineering and mathematical concepts within a societal context.
    [Show full text]
  • Chapter 24 Physical Pendulum
    Chapter 24 Physical Pendulum 24.1 Introduction ........................................................................................................... 1 24.1.1 Simple Pendulum: Torque Approach .......................................................... 1 24.2 Physical Pendulum ................................................................................................ 2 24.3 Worked Examples ................................................................................................. 4 Example 24.1 Oscillating Rod .................................................................................. 4 Example 24.3 Torsional Oscillator .......................................................................... 7 Example 24.4 Compound Physical Pendulum ........................................................ 9 Appendix 24A Higher-Order Corrections to the Period for Larger Amplitudes of a Simple Pendulum ..................................................................................................... 12 Chapter 24 Physical Pendulum …. I had along with me….the Descriptions, with some Drawings of the principal Parts of the Pendulum-Clock which I had made, and as also of them of my then intended Timekeeper for the Longitude at Sea.1 John Harrison 24.1 Introduction We have already used Newton’s Second Law or Conservation of Energy to analyze systems like the spring-object system that oscillate. We shall now use torque and the rotational equation of motion to study oscillating systems like pendulums and torsional springs. 24.1.1 Simple
    [Show full text]
  • Readingsample
    History of Mechanism and Machine Science 21 The Mechanics of Mechanical Watches and Clocks Bearbeitet von Ruxu Du, Longhan Xie 1. Auflage 2012. Buch. xi, 179 S. Hardcover ISBN 978 3 642 29307 8 Format (B x L): 15,5 x 23,5 cm Gewicht: 456 g Weitere Fachgebiete > Technik > Technologien diverser Werkstoffe > Fertigungsverfahren der Präzisionsgeräte, Uhren Zu Inhaltsverzeichnis schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. Chapter 2 A Brief Review of the Mechanics of Watch and Clock According to literature, the first mechanical clock appeared in the middle of the fourteenth century. For more than 600 years, it had been worked on by many people, including Galileo, Hooke and Huygens. Needless to say, there have been many ingenious inventions that transcend time. Even with the dominance of the quartz watch today, the mechanical watch and clock still fascinates millions of people around the, world and its production continues to grow. It is estimated that the world annual production of the mechanical watch and clock is at least 10 billion USD per year and growing. Therefore, studying the mechanical watch and clock is not only of scientific value but also has an economic incentive. Never- theless, this book is not about the design and manufacturing of the mechanical watch and clock. Instead, it concerns only the mechanics of the mechanical watch and clock.
    [Show full text]
  • The Search for Longitude: Preliminary Insights from a 17Th Century Dutch Perspective
    The search for longitude: Preliminary insights from a 17th Century Dutch perspective Richard de Grijs Kavli Institute for Astronomy & Astrophysics, Peking University, China Abstract. In the 17th Century, the Dutch Republic played an important role in the scientific revolution. Much of the correspondence among contemporary scientists and their associates is now digitally available through the ePistolarium webtool, allowing current scientists and historians unfettered access to transcriptions of some 20,000 letters from the Dutch Golden Age. This wealth of information offers unprece- dented insights in the involvement of 17th Century thinkers in the scientific issues of the day, including descriptions of their efforts in developing methods to accurately determine longitude at sea. Un- surprisingly, the body of correspondence referring to this latter aspect is largely dominated by letters involving Christiaan Huygens. However, in addition to the scientific achievements reported on, we also get an unparalleled and fascinating view of the personalities involved. 1. Scientific dissemination during the Dutch ‘Golden Age’ The 17th Century is regarded as the ‘Golden Age’ in the history of the Netherlands. The open, tolerant and transparent conditions in the 17th Century Dutch Republic – at the time known as the Republic of the Seven United Netherlands – allowed the nation to play a pivotal role in the international network of humanists and scholars before and during the ‘scientific revolution’. The country had just declared its independence from
    [Show full text]