The Metric System
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Stranger Than Fiction the Tale of the Epic Voyage Made to Establish the Metric System Is an Intriguing and Exciting One
words Stranger than fiction The tale of the epic voyage made to establish the metric system is an intriguing and exciting one. Arago alone to complete the final readings Julyan Cartwright from Majorca. On Majorca, Arago chose ho thinks about science during a S’Eslop, a peak on the northwest coast, as vacation on the Balearic Islands? his viewpoint of Ibiza and Formentera. He WMajorca, Minorca, Ibiza and had a hut built on the summit and settled Formentera are holiday destinations par in with his instruments for the final series excellence, not places where famous scientists of measurements. But events didn’t go of the past lived and worked, or where great according to plan. experiments were carried out. But there was War broke out between France and Spain a moment in history when the Balearic in June 1808, while Arago was on the Islands were crucial for a major scientific summit of S’Eslop. Soon undertaking. Majorcans were com- It was 1806, and the French Bureau des menting that the nightly Longitudes had the task of determining the bonfires were signals Paris meridian — the line of longitude pass- and that Arago must be ing through Paris. At the time there was no a French spy, and a universally agreed prime meridian; it wasn’t detachment of soldiers until 1884 that an international congress was sent up the moun- decided it should be the one that passes tain to capture him. through Greenwich. The reason for deter- Arago got wind of this; Troubled trip: during François mining the meridian with precision wasn’t in his memoirs, he Arago’s year-long journey home map-making but the metric system. -
Vicious Circle”: Unscrambling A.-C
CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector HISTORIA MATHEMATICA 15 t 19881, 228-239 Breaking a “Vicious Circle”: Unscrambling A.-C. Clairaut’s Iterative Method of 1743 JOHN L. GREENBERG Centre de Recherches Alexar~dre KoyrC, 12. rue Colherf. 75.002 Puris. FI.N~C.C In this paper 1 show how in 1743 A.-C. Clairaut applied an iterative method to calculate the ellipticity of an infinitesimally flattened, homogeneous ellipsoid of revolution in equilib- rium, taken to represent the earth. Clairaut did not make very clear what he was doing and, as a result, left certain readers in the dark. They could not understand the point of the calculation and erroneously thought that Clairaut was going around in circles. The paper ends with a discussion of Clairaut’s clarification of the calculation, published in 1760 in response to the criticisms of John Muller, and a brief comparison of Clairaut’s iterative method with the “Newton-Raphson Method.” 1 1988.4cademlc Pres\. Inc. Dans cet article je montre la methode d’approximation d’A.-C. Clairaut pour trouver I’ellipticite d’un ellipsoi’de homogene de revolution en equilibre dont l’ellipticitt est infinite- simale et qui reprtsente la terre. Certains lecteurs ont mal compris Clairaut. Ceux-ci ont cru Clairaut pris au piege dans un “cercle vicieux en logique.” Clairaut a repondu a son critique John Muller en 1760, et j’explique cette reponse. Mon article se termine par une breve comparaison de la methode de Clairaut et de celle dite “Newton-Raphson.” Cette com- paraison peut eclairer la cause du malentendu. -
Redalyc.The International Pendulum Project
Revista Electrónica de Investigación en Educación en Ciencias E-ISSN: 1850-6666 [email protected] Universidad Nacional del Centro de la Provincia de Buenos Aires Argentina Matthews, Michael R. The International Pendulum Project Revista Electrónica de Investigación en Educación en Ciencias, vol. 1, núm. 1, octubre, 2006, pp. 1-5 Universidad Nacional del Centro de la Provincia de Buenos Aires Buenos Aires, Argentina Available in: http://www.redalyc.org/articulo.oa?id=273320433002 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Año 1 – Número 1 – Octubre de 2006 ISSN: en trámite The International Pendulum Project Michael R. Matthews [email protected] School of Education, University of New South Wales, Sydney 2052, Australia The Pendulum in Modern Science Galileo in his final great work, The Two New Sciences , written during the period of house arrest after the trial that, for many, marked the beginning of the Modern Age, wrote: We come now to the other questions, relating to pendulums, a subject which may appear to many exceedingly arid, especially to those philosophers who are continually occupied with the more profound questions of nature. Nevertheless, the problem is one which I do not scorn. I am encouraged by the example of Aristotle whom I admire especially because he did not fail to discuss every subject which he thought in any degree worthy of consideration. (Galileo 1638/1954, pp.94-95) This was the pendulum’s low-key introduction to the stage of modern science and modern society. -
The Meridian Arc Measurement in Peru 1735 – 1745
The Meridian Arc Measurement in Peru 1735 – 1745 Jim R. SMITH, United Kingdom Key words: Peru. Meridian. Arc. Triangulation. ABSTRACT: In the early 18th century the earth was recognised as having some ellipsoidal shape rather than a true sphere. Experts differed as to whether the ellipsoid was flattened at the Poles or the Equator. The French Academy of Sciences decided to settle the argument once and for all by sending one expedition to Lapland- as near to the Pole as possible; and another to Peru- as near to the Equator as possible. The result supported the view held by Newton in England rather than that of the Cassinis in Paris. CONTACT Jim R. Smith, Secretary to International Institution for History of Surveying & Measurement 24 Woodbury Ave, Petersfield Hants GU32 2EE UNITED KINGDOM Tel. & fax + 44 1730 262 619 E-mail: [email protected] Website: http://www.ddl.org/figtree/hsm/index.htm HS4 Surveying and Mapping the Americas – In the Andes of South America 1/12 Jim R. Smith The Meridian Arc Measurement in Peru 1735-1745 FIG XXII International Congress Washington, D.C. USA, April 19-26 2002 THE MERIDIAN ARC MEASUREMENT IN PERU 1735 – 1745 Jim R SMITH, United Kingdom 1. BACKGROUND The story might be said to begin just after the mid 17th century when Jean Richer was sent to Cayenne, S. America, to carry out a range of scientific experiments that included the determination of the length of a seconds pendulum. He returned to Paris convinced that in Cayenne the pendulum needed to be 11 lines (2.8 mm) shorter there than in Paris to keep the same time. -
Telling Time By: Sophia James Education, LLC the World Is Fascinated by How “Time” Goes by Fast Or How We Never Have Enough
Telling Time By: Sophia James Education, LLC The world is fascinated by how “time” goes by fast or how we never have enough “time” in a day. For ages the concept of time have fascinated people. For thousand of years time was measured by observing the movement of the sun, moon, or stars. We have used sundials and also clocks for many years to measure time. In order to record or indicate time devices were created. The devices are clocks, watches, and sundials. The oldest of these three devices are the sundials or shadow clocks. Many years ago people used sundials to in- dicate time of the day by the position of the shadows of objects on which the rays of the sun falls on. Through- out the day the sun moves across the sky, causing the shadows of the objects to move. Clocks, are machines that performs regular movements in equal intervals of time and is linked to a counting mechanisms that records the number of movements. The word clock comes from the Greek hora (“time”) and logos (“telling”). All clocks, of whatever form, are made with the principle of regular movements and equal intervals. Sometimes it is important to measure time exactly, such as when conducting an experiment or baking or when setting an appointment. Sometimes accuracy is not so important example when we are on vacation and have no timed plans. It is believed that shadow clocks or sundials known as gnomon, were the first device for indicating time.This sundial consisted of one vertical stick or pillar; the shadow that it cast gave an indication of the time of the day. -
Chapter 1 - Measurements and Experimentation
QUESTION BANK (2019-20) PHYSICS IX Chapter 1 - Measurements and Experimentation Q1: What is meant by measurement? Solution 1- Measurement is the process of comparing a given physical quantity with a known standard quantity of the same nature. Q2: What do you understand by the term Unit? Solution 2 Unit is a quantity of constant magnitude which is used to measure the magnitudes of other quantities of the same manner. Q3: What are the three requirements for selecting a unit of a Physical quantity? Solution 3 The three requirements for selecting a unit of a physical quantity are (i) It should be possible to define the unit without ambiguity. (ii) The unit should be reproducible. (iii) The value of units should not change with space and time. Q4: Name & Define three fundamental quantities? Solution 4 Definitions of three fundamental quantities: S.I. unit of length (m): A metre was originally defined in 1889 as the distance between two marks drawn on a platinum-iridium (an alloy made of 90% platinum and 10% iridium) rod kept at 0°C in the International Bureau of Weights and Measures at serves near Paris. S.I. unit of mass (kg): In 1889, one kilogramme was defined as the mass of a cylindrical piece of a platinum-iridium alloy kept at International Bureau of Weights and Measures at serves near Paris. S.I. unit of time (s): A second is defined as 1/86400th part of a mean solar day, i.e. Q5: Name the three systems of Unit & State the various fundamental Units in them? Solution 5 Three systems of unit and their fundamental units: (i) C.G.S. -
Pendulum Clock (Edited from Wikipedia)
Pendulum Clock (Edited from Wikipedia) SUMMARY A pendulum clock is a clock that uses a pendulum, a swinging weight, as its timekeeping element. The advantage of a pendulum for timekeeping is that it is a harmonic oscillator; it swings back and forth in a precise time interval dependent on its length, and resists swinging at other rates. From its invention in 1656 by Christiaan Huygens until the 1930s, the pendulum clock was the world's most precise timekeeper, accounting for its widespread use. Throughout the 18th and 19th centuries pendulum clocks in homes, factories, offices and railroad stations served as primary time standards for scheduling daily life, work shifts, and public transportation, and their greater accuracy allowed the faster pace of life which was necessary for the Industrial Revolution. HISTORY The pendulum clock was invented in 1656 by Dutch scientist Christiaan Huygens, and patented the following year. Huygens contracted the construction of his clock designs to clockmaker Salomon Coster, who actually built the clock. Huygens was inspired by investigations of pendulums by Galileo Galilei beginning around 1602. Galileo discovered the key property that makes pendulums useful timekeepers: isochronism, which means that the period of swing of a pendulum is approximately the same for different sized swings. Galileo had the idea for a pendulum clock in 1637, which was partly constructed by his son in 1649, but neither lived to finish it. The introduction of the pendulum, the first harmonic oscillator used in timekeeping, increased the accuracy of clocks enormously, from about 15 minutes per day to 15 seconds per day leading to their rapid spread as existing 'verge and foliot' clocks were retrofitted with pendulums. -
William Dawes' Gravity Measurement in Sydney Cove, 1788
William Dawes’ Gravity Measurement in Sydney Cove, 1788 Case BOSLOPER, Australia Key words : History of gravimetry, gravity, pendulum, Dawes. History of Surveying, physical geodesy, Australia. SUMMARY William Dawes arrived in Australia in January 1788 as an astronomer with the Australian First Fleet and as the Board of Longitude’s official observer. During his time in Australia he carried out many astronomical observations, of which the record has gone lost. The fieldbooks were possibly still with the widow of William Wales, of the Board of Longitude, after Wales died. What has not been lost are his gravity observations in Sydney Cove in Australia, of 1788, made with a temperature compensated grid iron pendulum, of which a record can be found in his correspondence with Nevil Maskelyne, the English Astronomer Royal. As far as I know, William Dawes’ pendulum gravity observations have not been published previously as such, until the recent paper by Morrison and Barko (2009). I helped investigate this series of observations which led to the first gravity acceleration determination on Australian soil, of which the record has survived. This paper reports on my analysis of his precision pendulum gravity determination. In this story, William Wales speaks from his grave, in support of Dawes. RESUMEN Guillermo Dawes llegaba a Australia en el Enero de 1788, como astrónomo con la Flota Primera Australiana y como el observador oficial del Consejo de la Longitud de la Inglaterra. Durante su tiempo en Australia el fue cargado con hacer muchos observaciones astronómicas, pero los libros de anotaciones fueran perdidos porque ellos todavía estaban posiblemente con la viuda de Guillermo Wales, del Consejo de la Longitud, después del muerte de Wales. -
Critical Pointmeasuring the Earth
physicsworld.com Comment: Robert P Crease Critical Point Measuring the Earth The precise shape of the Earth is disturbed their simple motion. Much of the pendulum’s subsequent his- now remarkably well known, but it tory consists of discoveries and corrections was first measured by perhaps for these factors, or of its use to measure these factors. In 1672, for instance, the the oldest and most humble of French astronomer Jean Richer (1630– instruments – the pendulum. iStockphoto.com/raw206 1696) discovered that the length of a seconds pendulum changes with latitude: if g is Robert P Crease explains smaller, as it is at the equator, a pendulum has to be shortened to keep T/2 to 1 s. In his travel book The Innocents Abroad Richer’s work revealed that the Earth is not (1869), Mark Twain describes his visit to the spherical but flattened slightly at the poles, Baptistery of the Duomo of Pisa, where, like a pumpkin. Pendulums therefore proved according to legend, in 1581 the young to be multipurpose instruments that could Galileo noticed the regularity of the build- help determine not only laws of motion, but ing’s swinging chandelier. Using his pulse as also the Earth’s shape. “[W]ithout the pen- a stopwatch, the then 17-year-old medical dulum,” wrote Newton’s biographer Rich- student observed that the chandelier took ard Westfall, “there would be no Principia.” the same time to swing back and forth In the 18th century pendulums were in- whether traversing a short or a long arc. Simply useful Pendulums proved that the Earth is creasingly used to measure time and speed. -
The International Association of Geodesy 1862 to 1922: from a Regional Project to an International Organization W
Journal of Geodesy (2005) 78: 558–568 DOI 10.1007/s00190-004-0423-0 The International Association of Geodesy 1862 to 1922: from a regional project to an international organization W. Torge Institut fu¨ r Erdmessung, Universita¨ t Hannover, Schneiderberg 50, 30167 Hannover, Germany; e-mail: [email protected]; Tel: +49-511-762-2794; Fax: +49-511-762-4006 Received: 1 December 2003 / Accepted: 6 October 2004 / Published Online: 25 March 2005 Abstract. Geodesy, by definition, requires international mitment of two scientists from neutral countries, the collaboration on a global scale. An organized coopera- International Latitude Service continued to observe tion started in 1862, and has become today’s Interna- polar motion and to deliver the data to the Berlin tional Association of Geodesy (IAG). The roots of Central Bureau for evaluation. After the First World modern geodesy in the 18th century, with arc measure- War, geodesy became one of the founding members of ments in several parts of the world, and national geodetic the International Union for Geodesy and Geophysics surveys in France and Great Britain, are explained. The (IUGG), and formed one of its Sections (respectively manifold local enterprises in central Europe, which Associations). It has been officially named the Interna- happened in the first half of the 19th century, are tional Association of Geodesy (IAG) since 1932. described in some detail as they prepare the foundation for the following regional project. Simultaneously, Gauss, Bessel and others developed a more sophisticated Key words: Arc measurements – Baeyer – Helmert – definition of the Earth’s figure, which includes the effect Figure of the Earth – History of geodesy – of the gravity field. -
Bulletin 240: Contributions from the Museum of History and Technology
Contributions from The Museum of History and Technology: Paper 44 Development of Gravity Pendulums in the 19th Century Victor F. Lenten and Robert P. Multbauj GALILEO, HUYCENS, AM) NEWTON ^>1 1 K.I RE OF THE EARTH 306 EARLY TYPES OF PENDULUMS ?09 kater's CONVERTIBLE AND INVARIABLE PENDULI Ms JI4 REPSOLD-BESSEL REVERSIBLE PENDULUM 320 PEIRCE AND DEFFORGES INVARIABLE REVERSIBL] PENDULI Ms J27 VON STERNECK AND MENDENHALL PENDULI Ms J3I ABSOLUTE VALUE OF GRAVITY AT POTSDAM Ms APPLICATION OF GRAVITY SURVEYS J42 SUMMARY 346 Victor F. Lenzen and Robert P. Multhauf DEVELOPMENT OF Paris, France Latitude 49° N Cayenne, South America Latitude 5° N Figure i. —A study of the figure of the earth was one of the earliest projects of the French Academy of Sciences. In order to test the effect of the earth's rotation on its gravitational force, the Academy in 1672 sent Jean Richer to the equatorial island of Cayenne to compare the rale of a clock which was known to have kept accurate time in Paris. Richer found that the clock lost 2 minutes and 28 seconds at Cayenne, indicating a substantial decrease in the force of gravity on the pendulum. Subsequent pendulum experiments revealed that the period of a pendulum varied not only with the latitude but also regionally, under the inlluence ol topographical features such as mountains. It became clear that the measurement of gravity should be made a part of the work of the geodetic surveyor. GRAVITY PENDULUMS IN THE 19th CENTURY The history of gravity pendulums dates back to the time of Galileo. -
Astronomy in the Brazilian Empire
Astronomia no Império brasileiro VERGARA, Moema. Astronomia no Império brasileiro: longitude, congresso internacional e a busca por uma ciência universal no final do século XIX.História, Ciências, Saúde – Manguinhos, Rio de Astronomia no Império Janeiro, v.26, n.1, jan.-mar. 2019, p.71- brasileiro: longitude, 84. Resumo congresso internacional e Não há uma visão clara na historiografia internacional sobre a participação do a busca por uma ciência Brasil na Conferência de Washington de 1884. No Brasil há uma interpretação universal no final do de que o voto brasileiro acompanhou a França, por razões de subordinação. Este século XIX* texto pretende estabelecer um diálogo com essas produções, ao trazer fontes inéditas sobre o tema, como as cartas Astronomy in the Brazilian trocadas por Luiz Cruls, tanto com o imperador como com sua esposa, bem Empire: longitude, an como notícias de periódicos, anais e relatórios. Neste artigo foi utilizada international congress and the uma abordagem da história da ciência, preocupada com os processos de institucionalização da astronomia no quest for a universal science in Brasil em meio a um debate mundial sobre padronização e universalização da the late nineteenth century ciência. Palavras-chave: história da astronomia; longitude; Luiz Cruls (1848-1908); congresso internacional. Abstract There is no clear picture in the international historiography of Brazil’s participation at the International Prime Meridian Conference in Washington of 1884. In Brazil there exists the prevailing interpretation that the Brazilian vote accompanied France for reasons of subordination. This work seeks to analyze this interpretation, by scrutinizing unpublished sources on the subject, such as the letters exchanged by Luiz Cruls both with the emperor and with his wife, as well as news articles in journals, annals and reports.