WO 2014/165679 Al 9 October 2014 (09.10.2014) P O P C T
Total Page:16
File Type:pdf, Size:1020Kb
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2014/165679 Al 9 October 2014 (09.10.2014) P O P C T (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, A61K 39/00 (2006.01) A61K 39/38 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (21) International Application Number: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, PCT/US2014/032838 KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, (22) International Filing Date: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 3 April 2014 (03.04.2014) OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, (25) Filing Language: English TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (26) Publication Language: English ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 61/808,1 18 3 April 2013 (03.04.2013) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, (71) Applicant: ALLERTEIN THERAPEUTICS, LLC UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, [US/US]; 640 Sasco Hill Road, Fairfield, Connecticut TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, 06824 (US). EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, (72) Inventors: SOSIN, Howard; c/o Allertein Therapeutics, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, LLC, 640 Sasco Hill Road, Fairfield, Connecticut 06824 KM, ML, MR, NE, SN, TD, TG). (US). CAPLAN, Michael; c/o Allertein Therapeutics, LLC, 640 Sasco Hill Road, Fairfield, Connecticut 06824 Published: (US). FAHMY, Tarek; c/o Allertein Therapeutics, LLC, — with international search report (Art. 21(3)) 640 Sasco Hill Road, Fairfield, Connecticut 06824 (US). — before the expiration of the time limit for amending the (74) Agents: REESE, Brian E. et al; Choate, Hall & Stewart claims and to be republished in the event of receipt of LLP, Two International Place, Boston, Massachusetts amendments (Rule 48.2(h)) 021 10 (US). (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, (54) Title: NOVEL NANOPARTICLE COMPOSITIONS (57) Abstract: The present invention provides, among other things, nanoparticle compositions including a plurality of nanoparticles, o each of which is comprised of a biodegradable or biocompatible polymer arranged in a nanoparticle structure defining an internal lu - men and an external surface and one or more of a preparation of hydrophilic cellular components and a preparation of hydrophobic cellular components. In some embodiments, the preparation of hydrophilic cellular components is encapsulated within the internal o lumen and the preparation of hydrophobic cellular components is associated with the external surface. Various methods of making and using disclosed nanoparticle compositions are also provided. NOVEL NANOPARTICLE COMPOSITIONS BACKGROUND [0001] Many medical benefits could be realized if the immune system could be trained to respond to antigens in a desired manner, such as by developing tolerance to (e.g., for an allergic antigen or auto-antigen), or by learning to reject (e.g., for a disease-associated antigen) the antigen. The body can react to a wide variety of antigens, whether exogenous antigens (e.g., allergens, infectious agent antigens, etc) or endogenous antigens (e.g., auto-antigens, certain disease-associate antigens, etc). Diverse approaches have been applied in order to meet this challenge, including systemic drug treatments, injection of antigens, antibody therapies, etc. However, there remains a need for improved approaches. SUMMARY [0002] The present invention provides a novel system for modulating (including inducing, promoting or suppressing) immune responses to antigens. In particular, in some embodiments, the invention provides technologies that combine features of certain nanoparticle systems together with microbial components and/or antigen materials, either or both of which may be utilized in relatively crude form (e.g., as relatively crude extracts). Alternatively or additionally, one or more microbial component and/or antigen material may be recombinant in nature. [0003] Among other things, the present invention provides the insight that hydrophilic and hydrophobic components of microbial systems play different roles in and/or have different effects on immune responses. In some embodiments of the present invention, such components are separated from one another and utilized together with nanoparticle entities in compositions that modulate immune responses. [0004] The present invention also provides the insight that relatively crude microbial cellular preparations, optionally comprising primarily hydrophobic or primarily hydrophilic cellular components, are useful for combination with nanoparticle entities to modulate immune responses. The present invention specifically encompasses the recognition that combining such relatively crude microbial cellular preparations with certain nanoparticle technologies permits the development of surprisingly useful immunomodulatory nanoparticle compositions. In some embodiments, such compositions benefit from attributes of microbial cellular material that have developed through evolution. The present invention encompasses the appreciation that such evolution may have generated combinations of individual components that together impart upon the microbial cells certain desirable attributes that might be difficult to define or recreate by attempting to combine individual isolated components. Furthermore, the present invention appreciates that use of relatively crude preparations simplifies and reduces expense associated with manufacturing technologies while potentially also providing unexpected desirable attributes to inventive compositions. [0005] In some embodiments, the present invention encompasses use of recombinant microbial components (e.g. CpG) and/or recombinant antigen materials. In some embodiments, use of recombinant nucleic acids and/or proteins may be desirable due to a lower risk of toxicity or other adverse event. In some embodiments, use of recombinant nucleic acids and/or proteins may be beneficial in that recombinant production may make it easier to produce and use large quantities of a particular nucleic acid and/or protein. [0006] Alternatively or additionally, in some embodiments, the present invention provides nanoparticle compositions comprising polymer nanoparticles and relatively crude antigen preparations. [0007] Still further, in some embodiments, the present invention provides nanoparticle compositions formulated for mucosal delivery. [0008] In some embodiments, provided compositions show additional beneficial attributes such as, for example, regulated and/or tunable release of encapsulated materials from nanoparticles, optional encapsulation of antigens within nanoparticles so that they are hidden from relevant immune system components unless and until they are released, etc. Furthermore, the present invention provides facile combinations of different elements, thus facilitating, for example, targeted localization of nanoparticles and/or simultaneous modulation of responses to multiple antigens (e.g., of allergic responses to allergens, therapeutic responses to disease- associated and/or infectious antigens, and/or inappropriate responses to autoallergens. [0009] The present invention provides, among other things, nanoparticle compositions, methods for administering provided nanoparticle compositions, and methods of forming provided nanoparticle compositions. In some embodiments, provided nanoparticle compositions include a plurality of nanoparticles, each of which is comprised of a biodegradable or biocompatible polymer arranged in a nanoparticle structure defining an internal lumen and an external surface, and a preparation of hydrophilic cellular components encapsulated within the internal lumen. In some embodiments, provided nanoparticle compositions include a plurality of nanoparticles, each of which is comprised of a biodegradable or biocompatible polymer arranged in a nanoparticle structure defining an internal lumen and an external surface and a preparation of hydrophobic cellular components associated with the external surface. In some embodiments, provided nanoparticle compositions include a plurality of nanoparticles, each of which is comprised of a biodegradable or biocompatible polymer arranged in a nanoparticle structure defining an internal lumen and an external surface, and a preparation of hydrophilic cellular components encapsulated within the internal lumen and a preparation of hydrophobic cellular components associated with the external surface. In some embodiments, the biodegradable or biocompatible polymer is poly(lactic-co-gly colic acid). [0010] In some embodiments, the preparation of hydrophilic cellular components is or comprises a hydrophilic extract of a cellular preparation. In some embodiments, the hydrophilic extract comprises or consists of an aqueous extract of the cellular preparation. In some embodiments, the preparation of hydrophobic cellular components comprises or consists of a hydrophobic extract of a cellular preparation. [0011] In some embodiments, provided compositions include one or