Fungi As Food
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Deep Microbial Community Profiling Along the Fermentation Process of Pulque, a Major Biocultural Resource of Mexico
bioRxiv preprint doi: https://doi.org/10.1101/718999; this version posted July 31, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Deep microbial community profiling along the fermentation process of pulque, a major biocultural resource of Mexico. 1 1 2 Carolina Rocha-Arriaga , Annie Espinal-Centeno , Shamayim Martinez-Sanchez , Juan 1 2 1,3 Caballero-Pérez , Luis D. Alcaraz * & Alfredo Cruz-Ramirez *. 1 Molecular & Developmental Complexity Group, Unit of Advanced Genomics, LANGEBIO-CINVESTAV, Irapuato, México. 2 Laboratorio de Genómica Ambiental, Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México. Cd. Universitaria, 04510 Coyoacán, Mexico City, Mexico. 3 Escuela de Agronomía, Universidad de La Salle Bajío, León, Gto, Mexico. *Corresponding authors: [email protected], [email protected] ● Our approach allowed the identification of a broader microbial diversity in Pulque ● We increased 4.4 times bacteria genera and 40 times fungal species detected in mead. ● Newly reported bacteria genera and fungal species associated to Pulque fermentation Abstract Some of the biggest non-three plants endemic to Mexico were called metl in the Nahua culture. During colonial times they were renamed with the antillan word maguey. This was changed again by Carl von Linné who called them Agave (a greco-latin voice for admirable). For several Mexican prehispanic cultures, Agave species were not only considered as crops, but also part of their biocultural resources and cosmovision. Among the major products obtained from some Agave spp since pre-hispanic times is the alcoholic beverage called pulque or octli. -
Proceedings of the 56 Annual Western International Forest Disease Work
Proceedings of the 56th Annual Western International Forest Disease Work Conference October 27-31, 2008 Missoula, Montana St. Marys Lake, Glacier National Park Compiled by: Fred Baker Department of Wildland Resources College of Natural Resources Utah State University Proceedings of the 56th Annual Western International Forest Disease Work Conference October 27 -31, 2008 Missoula, Montana Holiday Inn Missoula Downtown At The Park Compiled by: Fred Baker Department of Wildland Resources College of Natural Resources Utah State University & Carrie Jamieson & Patsy Palacios S.J. and Jessie E. Quinney Natural Resources Research Library College of Natural Resources Utah State University, Logan 2009, WIFDWC These proceedings are not available for citation of publication without consent of the authors. Papers are formatted with minor editing for formatting, language, and style, but otherwise are printed as they were submitted. The authors are responsible for content. TABLE OF CONTENTS Program Opening Remarks: WIFDWC Chair Gregg DeNitto Panel: Climate Change and Forest Pathology – Focus on Carbon Impacts of Climate Change for Drought and Wildfire Faith Ann Heinsch 3 Carbon Credit Projects in the Forestry Sector: What is Being Done to Manage Carbon? What Can Be Done? Keegan Eisenstadt 3 Mountain Pine Beetle and Eastern Spruce Budworm Impacts on Forest Carbon Dynamics Caren Dymond 4 Climate Change’s Influence on Decay Rates Robert L. Edmonds 5 Panel: Invasive Species: Learning by Example (Ellen Goheen, Moderator) Is Firewood Moving Tree Pests? William -
Response of Ectomycorrhizal Fungi to Inorganic and Organic Forms of Nitrogen and Phosphorus
Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Dissertations, Master's Theses and Master's Reports - Open Reports 2012 RESPONSE OF ECTOMYCORRHIZAL FUNGI TO INORGANIC AND ORGANIC FORMS OF NITROGEN AND PHOSPHORUS Christa M. Luokkala Michigan Technological University Follow this and additional works at: https://digitalcommons.mtu.edu/etds Part of the Forest Sciences Commons Copyright 2012 Christa M. Luokkala Recommended Citation Luokkala, Christa M., "RESPONSE OF ECTOMYCORRHIZAL FUNGI TO INORGANIC AND ORGANIC FORMS OF NITROGEN AND PHOSPHORUS", Master's report, Michigan Technological University, 2012. https://doi.org/10.37099/mtu.dc.etds/611 Follow this and additional works at: https://digitalcommons.mtu.edu/etds Part of the Forest Sciences Commons RESPONSE OF ECTOMYCORRHIZAL FUNGI TO INORGANIC AND ORGANIC FORMS OF NITROGEN AND PHOSPHORUS By Christa M. Luokkala A REPORT Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE In Applied Ecology MICHIGAN TECHNOLOGICAL UNIVERSITY 2012 © 2012 Christa M. Luokkala This report has been approved in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE in Applied Ecology. School of Forest Resources and Environmental Science Report Advisor: Dr. Erik A. Lilleskov Committee Member: Dr. Susan A. Bagley Committee Member: Dr. Dana L. Richter Committee Member: Dr. Christopher W. Swanston School Dean: Dr. Terry L. Sharik Table of Contents Abstract ............................................................................................................................. -
Universidade Federal Da Paraíba Centro De Ciências Da Saúde
Universidade Federal da Paraíba Centro de Ciências da Saúde Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos Wylly Araújo de Oliveira Atividade do óleo essencial de Cymbopogon winterianus Jowitt ex Bor contra Candida albicans , Aspergillus flavus e Aspergillus fumigatus João Pessoa-PB 2011 Wylly Araújo de Oliveira Atividade do óleo essencial de Cymbopogon winterianus Jowitt ex Bor contra Candida albicans , Aspergillus flavus e Aspergillus fumigatus Tese de doutorado apresentada ao Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Centro de Ciências da Saúde, Universidade Federal da Paraíba, em cumprimento aos requisitos necessários para a obtenção do título de Doutor em Produtos Naturais e Sintéticos Bioativos, área de concentração: farmacologia Orientadora: Prof.ª Dr.ª Edeltrudes de Oliveira Lima João Pessoa-PB 2011 Wylly Araújo de Oliveira Atividade do óleo essencial de Cymbopogon winterianus Jowitt ex Bor contra Candida albicans, Aspergillus flavus e Aspergillus fumigatus Tese de Doutorado aprovada em 22/06/2011 Banca examinadora ________________________________________________ Prof.ª Dr.ª Edeltrudes de Oliveira Lima Orientadora/UFPB _________________________________________________ Prof.ª Dr.ª Hilzeth de Luna Freire Pessôa - UFPB _________________________________________________ Prof. Dr. José Pinto de Siqueira Júnior - UFPB __________________________________________________ Prof.ª Dr.ª Margareth de Fátima Formiga Melo Diniz - UFPB __________________________________________________ Prof. Dr. Thompson Lopes de Oliveira - UFPB Dedicatória Com amor, dedico este trabalho à minha família: a meu pai, Francisco Claro de Oliveira; a minha mãe, Maria Araújo Filha; e a meus irmãos Kylly Araújo de Oliveira e Welly Araújo de Oliveira. Sem o apoio deles, nada disso teria sido possível. Apesar da ausência, eles sempre estiveram no meu coração. -
Probiotic Lactic Yeast® New Generation Probiotic Kluyveromyces B0399
PROBIOTIC LACTIC YEAST® NEW GENERATION PROBIOTIC KLUYVEROMYCES B0399 PROBIOTIC LACTIC YEAST® NEW GENERATION PROBIOTIC KLUYVEROMYCES B0399®(Turval B0399®) Kluyveromyces marxianus fragilis B0399 “K. marxianus B0399® demonstrated a number of beneficial and strain specific properties desirable for application as a probiotic”, research done by University of Bologna, Italy and University of Reading, UK and published by the American Society for Microbiology in the scientific journal Applied Environmental Microbiology, 2012 Feb; 78 (4) APPROVALS AND RECOGNITIONS BY NATIONAL AND INTERNATIONAL AUTHORITIES: Turval is an official supplier of the Italian MInistry of Health Italian Army (Esercito Italiano) for animal use: Canadian Food Inspection Agency Scientific and Technologic Park (ZIU); University of Udine via J.Linussio, 51; 33100 Udine, Italy tel.+39 (0432)629731 fax.+39 (0432)603887 E-mail: [email protected] Web site: www.turval.com PROBIOTIC LACTIC YEAST® NEW GENERATION PROBIOTIC KLUYVEROMYCES B0399 HUMAN NUTRITION NUTRIRE IL PIANETA ENERGIA PER LA VITA FEEDING THE PLANET ENERGY FOR LIFE EUFYR [COOP, ITALY], THE FIRST COMMERCIALISED PROBIOTIC YOGURT CONTAINING KLUYVEROMYCES B0399®, WAS CHOSEN FOR THE UNIVERSAL EXHIBITION EXPO 2015 AS AN EXAMPLE OF LEADING INNOVATION IN FUNCTIONAL DAIRY PRODUCTS. NEW GENERATION PROBIOTYC YOGURT WITH PROBIOTIC LACTIC YEAST® COOP ITALY Web site: www.turval.com PROBIOTIC LACTIC YEAST® NEW GENERATION PROBIOTIC KLUYVEROMYCES B0399 PROBIOTIC LACTIC YEAST® BROUGHT MULTIPLE AWARDS TO YOGURTS PRODUCERS FOR THE MOST INNOVATIVE PRODUCT EUROPEAN AWARD IN 2014 "EUFYR POMEGRANATE", PRODUCED BY ONE OF THE BIGGEST ITALIAN RETAILERS, COOP – ITALY, WINS PRESTIGIOUS PLMA'S INTERNATIONAL "SALUTE TO EXCELLENCE" AWARD IN AMSTERDAM; EUFYR IS THE WINNER AMONG 16 EUROPEAN COUNTRIES FOR THE BEST INNOVATION IN PRIVATE LABEL Recognizing Innovation in Private Label Welcome to PLMA’s International Salute to Excellence Awards, honouring retailers for their commitment to their own brands and giving recognition to their innovative private label products. -
Competing Sexual and Asexual Generic Names in <I
doi:10.5598/imafungus.2018.09.01.06 IMA FUNGUS · 9(1): 75–89 (2018) Competing sexual and asexual generic names in Pucciniomycotina and ARTICLE Ustilaginomycotina (Basidiomycota) and recommendations for use M. Catherine Aime1, Lisa A. Castlebury2, Mehrdad Abbasi1, Dominik Begerow3, Reinhard Berndt4, Roland Kirschner5, Ludmila Marvanová6, Yoshitaka Ono7, Mahajabeen Padamsee8, Markus Scholler9, Marco Thines10, and Amy Y. Rossman11 1Purdue University, Department of Botany and Plant Pathology, West Lafayette, IN 47901, USA; corresponding author e-mail: maime@purdue. edu 2Mycology & Nematology Genetic Diversity and Biology Laboratory, USDA-ARS, Beltsville, MD 20705, USA 3Ruhr-Universität Bochum, Geobotanik, ND 03/174, D-44801 Bochum, Germany 4ETH Zürich, Plant Ecological Genetics, Universitätstrasse 16, 8092 Zürich, Switzerland 5Department of Biomedical Sciences and Engineering, National Central University, 320 Taoyuan City, Taiwan 6Czech Collection of Microoorganisms, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic 7Faculty of Education, Ibaraki University, Mito, Ibaraki 310-8512, Japan 8Systematics Team, Manaaki Whenua Landcare Research, Auckland 1072, New Zealand 9Staatliches Museum f. Naturkunde Karlsruhe, Erbprinzenstr. 13, D-76133 Karlsruhe, Germany 10Senckenberg Gesellschaft für Naturforschung, Frankfurt (Main), Germany 11Department of Botany & Plant Pathology, Oregon State University, Corvallis, OR 97333, USA Abstract: With the change to one scientific name for pleomorphic fungi, generic names typified by sexual and Key words: asexual morphs have been evaluated to recommend which name to use when two names represent the same genus Basidiomycetes and thus compete for use. In this paper, generic names in Pucciniomycotina and Ustilaginomycotina are evaluated pleomorphic fungi based on their type species to determine which names are synonyms. Twenty-one sets of sexually and asexually taxonomy typified names in Pucciniomycotina and eight sets in Ustilaginomycotina were determined to be congeneric and protected names compete for use. -
Two Inhibitors of Yeast Plasma Membrane Atpase 1 (Scpma1p): Toward the Development of Novel Antifungal Therapies Sabine Ottilie1†, Gregory M
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by D-Scholarship@Pitt Ottilie et al. J Cheminform (2018) 10:6 https://doi.org/10.1186/s13321-018-0261-3 RESEARCH ARTICLE Open Access Two inhibitors of yeast plasma membrane ATPase 1 (ScPma1p): toward the development of novel antifungal therapies Sabine Ottilie1†, Gregory M. Goldgof1,4†, Andrea L. Cheung1, Jennifer L. Walker2, Edgar Vigil1, Kenneth E. Allen3, Yevgeniya Antonova‑Koch1, Carolyn W. Slayman3^, Yo Suzuki4 and Jacob D. Durrant2* Abstract Given that many antifungal medications are susceptible to evolved resistance, there is a need for novel drugs with unique mechanisms of action. Inhibiting the essential proton pump Pma1p, a P-type ATPase, is a potentially efective therapeutic approach that is orthogonal to existing treatments. We identify NSC11668 and hitachimycin as structur‑ ally distinct antifungals that inhibit yeast ScPma1p. These compounds provide new opportunities for drug discovery aimed at this important target. Keywords: Antifungal, PMA1, P-type ATPase, Computer modeling, Saccharomyces cerevisiae, In vitro evolution, Drug resistance Background sterol-C-24-methyltransferase and the fungal cell mem- Antifungal medications are in high demand, but low brane directly [8]. efcacy, host toxicity, and emerging resistance among Only a few approved antimycotics have mecha- clinical strains [1, 2] complicate their use. Tere is an nisms that are unrelated to ergosterol biosynthesis. urgent need for novel antimycotic therapeutics with For example, the highly efective echinocandins inhibit unique mechanisms of action. Te purpose of the cur- 1,3-β-glucan synthase, hindering production of the criti- rent work is to describe two novel antifungals: 4-N,6- cal cell-wall component β-glucan [9, 10]; and the terato- N-bis(3-chlorophenyl)-1-methylpyrazolo[3,4-d] genic compound fucytosine interferes with eukaryotic pyrimidine-4,6-diamine (NSC11668), and hitachimycin RNA/DNA synthesis [11, 12]. -
Topical and Systemic Antifungal Therapy for Chronic Rhinosinusitis (Protocol)
CORE Metadata, citation and similar papers at core.ac.uk Provided by University of East Anglia digital repository Cochrane Database of Systematic Reviews Topical and systemic antifungal therapy for chronic rhinosinusitis (Protocol) Head K, Sacks PL, Chong LY, Hopkins C, Philpott C Head K, Sacks PL, Chong LY, Hopkins C, Philpott C. Topical and systemic antifungal therapy for chronic rhinosinusitis. Cochrane Database of Systematic Reviews 2016, Issue 11. Art. No.: CD012453. DOI: 10.1002/14651858.CD012453. www.cochranelibrary.com Topical and systemic antifungal therapy for chronic rhinosinusitis (Protocol) Copyright © 2016 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd. TABLE OF CONTENTS HEADER....................................... 1 ABSTRACT ...................................... 1 BACKGROUND .................................... 1 OBJECTIVES ..................................... 3 METHODS ...................................... 3 ACKNOWLEDGEMENTS . 8 REFERENCES ..................................... 9 APPENDICES ..................................... 10 CONTRIBUTIONSOFAUTHORS . 25 DECLARATIONSOFINTEREST . 26 SOURCESOFSUPPORT . 26 NOTES........................................ 26 Topical and systemic antifungal therapy for chronic rhinosinusitis (Protocol) i Copyright © 2016 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd. [Intervention Protocol] Topical and systemic antifungal therapy for chronic rhinosinusitis Karen Head1, Peta-Lee Sacks2, Lee Yee Chong1, Claire Hopkins3, Carl Philpott4 1UK Cochrane Centre, -
Phylogenetic Circumscription of Saccharomyces, Kluyveromyces
FEMS Yeast Research 4 (2003) 233^245 www.fems-microbiology.org Phylogenetic circumscription of Saccharomyces, Kluyveromyces and other members of the Saccharomycetaceae, and the proposal of the new genera Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and Zygotorulaspora Cletus P. Kurtzman à Microbial Genomics and Bioprocessing Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, 1815 N. University Street, Peoria, IL 61604, USA Received 22 April 2003; received in revised form 23 June 2003; accepted 25 June 2003 First published online Abstract Genera currently assigned to the Saccharomycetaceae have been defined from phenotype, but this classification does not fully correspond with species groupings determined from phylogenetic analysis of gene sequences. The multigene sequence analysis of Kurtzman and Robnett [FEMS Yeast Res. 3 (2003) 417^432] resolved the family Saccharomycetaceae into 11 well-supported clades. In the present study, the taxonomy of the Saccharomyctaceae is evaluated from the perspective of the multigene sequence analysis, which has resulted in reassignment of some species among currently accepted genera, and the proposal of the following five new genera: Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and Zygotorulaspora. ß 2003 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved. Keywords: Saccharomyces; Kluyveromyces; New ascosporic yeast genera; Molecular systematics; Multigene phylogeny 1. Introduction support the maintenance of three distinct genera. Yarrow [8^10] revived the concept of three genera and separated The name Saccharomyces was proposed for bread and Torulaspora and Zygosaccharomyces from Saccharomyces, beer yeasts by Meyen in 1838 [1], but it was Reess in 1870 although species assignments were often di⁄cult. -
<I>Mucorales</I>
Persoonia 30, 2013: 57–76 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE http://dx.doi.org/10.3767/003158513X666259 The family structure of the Mucorales: a synoptic revision based on comprehensive multigene-genealogies K. Hoffmann1,2, J. Pawłowska3, G. Walther1,2,4, M. Wrzosek3, G.S. de Hoog4, G.L. Benny5*, P.M. Kirk6*, K. Voigt1,2* Key words Abstract The Mucorales (Mucoromycotina) are one of the most ancient groups of fungi comprising ubiquitous, mostly saprotrophic organisms. The first comprehensive molecular studies 11 yr ago revealed the traditional Mucorales classification scheme, mainly based on morphology, as highly artificial. Since then only single clades have been families investigated in detail but a robust classification of the higher levels based on DNA data has not been published phylogeny yet. Therefore we provide a classification based on a phylogenetic analysis of four molecular markers including the large and the small subunit of the ribosomal DNA, the partial actin gene and the partial gene for the translation elongation factor 1-alpha. The dataset comprises 201 isolates in 103 species and represents about one half of the currently accepted species in this order. Previous family concepts are reviewed and the family structure inferred from the multilocus phylogeny is introduced and discussed. Main differences between the current classification and preceding concepts affects the existing families Lichtheimiaceae and Cunninghamellaceae, as well as the genera Backusella and Lentamyces which recently obtained the status of families along with the Rhizopodaceae comprising Rhizopus, Sporodiniella and Syzygites. Compensatory base change analyses in the Lichtheimiaceae confirmed the lower level classification of Lichtheimia and Rhizomucor while genera such as Circinella or Syncephalastrum completely lacked compensatory base changes. -
Phylogenetic Assignment of the Fungicolous Hypoxylon Invadens (Ascomycota, Xylariales) and Investigation of Its Secondary Metabolites
microorganisms Article Phylogenetic Assignment of the Fungicolous Hypoxylon invadens (Ascomycota, Xylariales) and Investigation of its Secondary Metabolites Kevin Becker 1,2 , Christopher Lambert 1,2,3 , Jörg Wieschhaus 1 and Marc Stadler 1,2,* 1 Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany; [email protected] (K.B.); [email protected] (C.L.); [email protected] (J.W.) 2 German Centre for Infection Research Association (DZIF), Partner site Hannover-Braunschweig, Inhoffenstraße 7, 38124 Braunschweig, Germany 3 Department for Molecular Cell Biology, Helmholtz Centre for Infection Research GmbH (HZI) Inhoffenstraße 7, 38124 Braunschweig, Germany * Correspondence: [email protected]; Tel.: +49-531-6181-4240; Fax: +49-531-6181-9499 Received: 23 July 2020; Accepted: 8 September 2020; Published: 11 September 2020 Abstract: The ascomycete Hypoxylon invadens was described in 2014 as a fungicolous species growing on a member of its own genus, H. fragiforme, which is considered a rare lifestyle in the Hypoxylaceae. This renders H. invadens an interesting target in our efforts to find new bioactive secondary metabolites from members of the Xylariales. So far, only volatile organic compounds have been reported from H. invadens, but no investigation of non-volatile compounds had been conducted. Furthermore, a phylogenetic assignment following recent trends in fungal taxonomy via a multiple sequence alignment seemed practical. A culture of H. invadens was thus subjected to submerged cultivation to investigate the produced secondary metabolites, followed by isolation via preparative chromatography and subsequent structure elucidation by means of nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry (HR-MS). -
9B Taxonomy to Genus
Fungus and Lichen Genera in the NEMF Database Taxonomic hierarchy: phyllum > class (-etes) > order (-ales) > family (-ceae) > genus. Total number of genera in the database: 526 Anamorphic fungi (see p. 4), which are disseminated by propagules not formed from cells where meiosis has occurred, are presently not grouped by class, order, etc. Most propagules can be referred to as "conidia," but some are derived from unspecialized vegetative mycelium. A significant number are correlated with fungal states that produce spores derived from cells where meiosis has, or is assumed to have, occurred. These are, where known, members of the ascomycetes or basidiomycetes. However, in many cases, they are still undescribed, unrecognized or poorly known. (Explanation paraphrased from "Dictionary of the Fungi, 9th Edition.") Principal authority for this taxonomy is the Dictionary of the Fungi and its online database, www.indexfungorum.org. For lichens, see Lecanoromycetes on p. 3. Basidiomycota Aegerita Poria Macrolepiota Grandinia Poronidulus Melanophyllum Agaricomycetes Hyphoderma Postia Amanitaceae Cantharellales Meripilaceae Pycnoporellus Amanita Cantharellaceae Abortiporus Skeletocutis Bolbitiaceae Cantharellus Antrodia Trichaptum Agrocybe Craterellus Grifola Tyromyces Bolbitius Clavulinaceae Meripilus Sistotremataceae Conocybe Clavulina Physisporinus Trechispora Hebeloma Hydnaceae Meruliaceae Sparassidaceae Panaeolina Hydnum Climacodon Sparassis Clavariaceae Polyporales Gloeoporus Steccherinaceae Clavaria Albatrellaceae Hyphodermopsis Antrodiella