Dr. Brid Quilty

Total Page:16

File Type:pdf, Size:1020Kb

Dr. Brid Quilty Identification and characterisation o f Y arrow ia lip o lytica R P2 grow ing o n t a l l o w A thesis submitted to Dublin City University in fulfilment of the requirements for the award of the degree of Doctor of Philosophy by Sharon Davin, B.Sc. School of Biotechnology, Dublin City University, Dublin 9, Ireland Research Supervisor: Dr. Brid Quilty J u l y 2 0 0 3 I hereby certify that this material, which I now submit for assessment on the programme of study leading to the award of Ph.D., is entirely my own work and has not been taken from the work of others save and to the extent that such work has been cited and acknowledged within the text of my work. Signed: I.D. No.: ^ < Q o c\Ol Date: 'No one will ever know or understand the fun there was; for there was fun and there was laughing- foolish, silly fun and foolish, silly laughing; but what it was all about you can 7 remember, can you? Just the memory o f it- that's all you have now- just the memory; and even now, even so soon, it is being distilled o f all its coarseness; and what's left is going to be p re c io u s g o ld ... ’ [Philadelphia Here 1 Come, Brian Fricl] ACKNOWLEDEMENTS I would like to express my deepest thanks to my supervisor, Dr. Brid Quilty, for her interest, understanding, help and encouragement throughout the duration of this project. Thanks to all the staff in the department for your help and advice throughout the years. Thanks to all the members of the faculty staff and to the technical department, especially for all the juicy gossip! and for looking the other way when I had to ‘relocate’ a piece of equipment. Big thanks to Daithi for all the CAD drawings and last, but not least, to Ben for all his help with the fermenters and the lend of a screwdriver (without asking too many questions!). I would like to thank Dublin Products Ltd., Dunlavin, Co. Wicklow for their kind donation of tallow. My sincerest gratitude to Michael, Irene, Therese, Bernie and all the staff of the EPA Regional Water Lab. Kilkenny for their kind use of the TN analyser and support. Many thanks to Kilkenny County Council and Enterprise Ireland for their support during my studies. To all my fellow colleagues in the lab, the oldies and the new gang, Al, John, Henry, Niamh, Mary and Fakhruddin, thanks for all the memories (anyone for cricket?) and pretending to be concerned when I got in a strop about cleaning the place! I wish all the new gang every success (even if you do make me feel like I’m 102!). To the original spicy girls, Auds, Viv, Deirdre and Mir, so many nights, too many funny stories! Big thanks to all the coffee room girlies, especially Jane F., for the million and one reasons to eat chocolate bikkies! Not forgetting the new kids(ish) Connor and Isobelle- hope the legacy of the coffee room laughter lives on in you. To all the girls at No. 32- Susan, P, Jane and Gillian, not forgetting Brian- thanks for all the little things, all the hugs, all the laughter and the important things in life like a good bottle of vino and SITC nights! A special word of thanks to Jane- thank for all the million things that you’ve helped me with and for all the laughter and memories, especially for Friday pints where the problems of the world were solved over a pint of plain! Big thanks to the rest of the dwindling original friday night gang- Al, Therese, Henry and Kieran. To my Mam and Dad, what can I say? Your unwavering support and belief in me throughout my time in DCU has been my shelter in the storms. To Ned, Irene, Catherine and Dave, thanks heaps for the freebies and SOS packs and your constant help, advice and love. Not forgetting my three monsters, to Philip, Rachel and Claire, thanks for not letting me take myself too seriously and remembering my inner child! Table of Contents Abstract List of Tables List of Figures 1.0 Introduction 1.1 Yeast 1.1.1 Yeast classification 1.1.2 Yeast identification 1.1.3 Medical, industrial and environmental importance 1.2 Yarrowia lipolytica 1.2.1 Nomenclature 1.2.2 Dimorphism 1.2.3 Biotechnological importance 1.3 Lipids 1.4 Waste lipids 1.5 Lipid removal from waste streams 1.5.1 Physical and chemical methods of lipid removal 1.5.2 Biological removal of lipids 1.5.2.1 Anaerobic biological removal 1.5.2.2 Aerobic biological removal 1.6 Biodégradation of lipid 1.6.1 Lipase catalysed hydrolysis 1.6.2 Lipid émulsification 1.6.3 Fatty acid uptake 1.6.4 p- oxidation 1.6.5 Lipid accumulation 38 1.7 The role of environmental conditions 40 1.7.1 Temperature, pH and dissolved oxygen 40 1.7.2 The role of nutrients 41 1.8 Design of lipid biodégradation systems 44 1.9 By-products of lipid biodégradation 47 1.9.1 Bioconversion of fats 47 1.9.2 Single cell oil 47 1.9.3 Single cell protein 48 1.9.4 Biosurfactant production 50 1.10 Aims of the project 51 2.0 Materials and Methods 2.1 Materials 52 2.1.1 Yeast isolates 52 2.1.2 Source of chcmicals and materials 52 2.1.3 Media 53 - Minimal medium 53 - Nutrient broth 53 - Olive oil agar 53 - Olive oil broth 54 2.1.4 Buffers 54 - Citrate phosphate buffer 54 - Potassium phosphate buffer 54 - Sodium phosphate buffer, N a2HP 0 4 -NaH 2PQ 4 55 - Sodium phosphate buffer, NaOH-NaFbPC^ 55 - Sodium phosphate buffer (inoculum preparation) 55 2.1.5 Stains 55 2.2 Methods 56 2.2.1 Identification of yeast isolates 56 2.2.1.1 Tests used in yeast identification - Ascospore test 56 - Carbon assimilation 56 - Cell morphology 57 - Colony morphology 57 - Cycloheximide resistance 58 - Diazonium Blue B (DBB) colour test 58 - Fermentation of carbohydrates 59 - Growth at 37°C 60 - Growth in 10% sodium chloridc-5% glucose medium 60 - Growth in 50% glucose-yeast extract medium 61 - Liquid morphology 61 - Nitrate assimilation 61 - Production of ammonia from urea (urease test) 62 2.2.1.2 Identification scheme for yeast isolates 63 2.2.2 Yeast maintenance 63 2.2.3 Inoculum preparation 64 2.2.4 Measurement of growth 64 2.2.4.1 Cell number and cell viability 64 2.2.4.2 Cell dry weight 64 2.2.5 Measurement of mycelium ratio 65 2.2.6 Growth studies 65 2.2.6.1 Shake flask studies 6 6 2.2.6 .2 2 L bench-top fermenter studies 6 6 - Fermenter configuration 6 6 - Fermenter set-up 67 2.2.6 .3 10 L pilot-scale fermenter studies 6 8 - Fermenter configuration 6 8 - Fermenter set-up 69 2.2.6.4 Scale-up of agitation from 2 L to 10 L fermenter 70 2.2.7 Measurement of glucose 71 2.2.8 Measurement of percentage free fatty acids in tallow 72 2.2.9 Measurement of fat removal 73 2.2.10 Intracellular analysis 73 2.2.10.1 Preparation of freeze-dried cells 73 2.2.10.2 Measurement of intracellular fat 73 2.2.10.3 Cell disruption with glass beads 74 2.2.10.4 Measurement of intracellular protein 74 2.2.10.5 Measurement of cellular total nitrogen 75 2.2.11 Biosurfactant measurement 75 2.2.11.1 Surface tension measurement 75 2.2.11.2 Measurement of relative biosurfactant concentration 76 2.2.11.3 Emulsification measurement 76 2.2.11.4 Validation of biosurfactant measurement 76 2.2.12 Metal analysis 77 2.2.12 Sludge Volum e Index (SVI) 77 2.2.14 Data analysis 78 - Growth rate 78 - Specific rate of substrate removal 79 - Yield coefficient 79 3.0 Results 3.1 Identification and selection of yeasl isolates capable of growth on 80 tallow as the sole carbon source 3.1.1 Identi fication of the isolates 80 3.1.1.1 Macroscopic appearance of the isolates 80 3.1.1.2 Microscopic appearance of the isolates 84 3.1.1.3 Physiological characteristics of the isolates 88 3.1.1.4 Isolate identification schemes 92 3.1.2 Selection of the isolates 104 3.2 Characterisation and optimisation of the environmental conditions 106 for the degradation of tallow (20 g I/1) by Yarrowia lipolytica RP2 in shake flask culture 3.2.1 Characteristics of the growth of Y. lipolytica RP2 on tallow (20 g 106 L'1) in minimal medium 3.2.2 Optimisation of growth temperature 112 3.2.3 Effect of chemical surfactant addition on tallow émulsification 114 and biodégradation 3.2.4 Role of pH control 120 3.2.4.1 Optimisation of medium pH between pH 3.0 - 8.0 with 120 0.1 M citrate phosphate buffer 3.2.4.2 Influence of various buffers (0.1 M) at pH 7.0 on tallow 124 biodégradation 3.2.4.3 Optimisation of the concentration of potassium phosphate 125 buffer, pH 7.0 and growth temperature 3.2.4.4 Characteristics of the growth of Y. lipolytica RP2 on tallow 129 (20 g L'1) at optimised growth temperature, 25°C and pH, 7.0 3.2.5 Effect of agitation on growth and fat removal 133 3.2.6 Influence of the method of inoculum preparation of 7.
Recommended publications
  • Phylogenetic Circumscription of Saccharomyces, Kluyveromyces
    FEMS Yeast Research 4 (2003) 233^245 www.fems-microbiology.org Phylogenetic circumscription of Saccharomyces, Kluyveromyces and other members of the Saccharomycetaceae, and the proposal of the new genera Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and Zygotorulaspora Cletus P. Kurtzman à Microbial Genomics and Bioprocessing Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, 1815 N. University Street, Peoria, IL 61604, USA Received 22 April 2003; received in revised form 23 June 2003; accepted 25 June 2003 First published online Abstract Genera currently assigned to the Saccharomycetaceae have been defined from phenotype, but this classification does not fully correspond with species groupings determined from phylogenetic analysis of gene sequences. The multigene sequence analysis of Kurtzman and Robnett [FEMS Yeast Res. 3 (2003) 417^432] resolved the family Saccharomycetaceae into 11 well-supported clades. In the present study, the taxonomy of the Saccharomyctaceae is evaluated from the perspective of the multigene sequence analysis, which has resulted in reassignment of some species among currently accepted genera, and the proposal of the following five new genera: Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and Zygotorulaspora. ß 2003 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved. Keywords: Saccharomyces; Kluyveromyces; New ascosporic yeast genera; Molecular systematics; Multigene phylogeny 1. Introduction support the maintenance of three distinct genera. Yarrow [8^10] revived the concept of three genera and separated The name Saccharomyces was proposed for bread and Torulaspora and Zygosaccharomyces from Saccharomyces, beer yeasts by Meyen in 1838 [1], but it was Reess in 1870 although species assignments were often di⁄cult.
    [Show full text]
  • A Report of Candida Blankii Fungemia and Possible Endocarditis in an Immunocompetent Individual and the Review of Literature
    Open Access Case Report DOI: 10.7759/cureus.14945 A Report of Candida blankii Fungemia and Possible Endocarditis in an Immunocompetent Individual and the Review of Literature Vidya S. Kollu 1 , Pramod K. Kalagara 2 , Shehla Islam 3 , Asmita Gupte 3 1. Department of Infectious Diseases and Global Medicine, College of Medicine, University of Florida, Gainesville, USA 2. Department of Hospital Medicine, Covenant Healthcare, Saginaw, USA 3. Division of Infectious Diseases, Veterans Affairs Medical Center, Gainesville, USA Corresponding author: Vidya S. Kollu, [email protected] Abstract Candida blankii is an emerging pathogenic fungus, first identified in 1968 as a new species. In the past five years, it has been identified in cystic fibrosis patient's airways and as fungemia in immunocompromised patients (post lung transplant and preterm neonates). It has been postulated to be a possible opportunistic pathogen based on the published case reports. We report a case of C. blankii fungemia with possible endocarditis in an immunocompetent individual. To our knowledge, this is also the first case of C. blankii bloodstream infection reported in an adult patient (age > 18 years). The C. blankii isolate from our patient had high minimum inhibitory concentrations (MICs) to azoles similar to the published reports. There is a dearth of literature guiding the treatment of this organism, given the variable susceptibility pattern and lack of data. Here, we describe successful treatment of possible C. blankii endocarditis with a combination of polyene and echinocandin antifungal agents. Categories: Cardiology, Internal Medicine, Infectious Disease Keywords: candida blankii, fungal endocarditis, fungemia, antifungal resistance, antifungal duration Introduction C. blankii is an emerging fungal pathogen [1].
    [Show full text]
  • Fungi P1: OTA/XYZ P2: ABC JWST082-FM JWST082-Kavanagh July 11, 2011 19:19 Printer Name: Yet to Come
    P1: OTA/XYZ P2: ABC JWST082-FM JWST082-Kavanagh July 11, 2011 19:19 Printer Name: Yet to Come Fungi P1: OTA/XYZ P2: ABC JWST082-FM JWST082-Kavanagh July 11, 2011 19:19 Printer Name: Yet to Come Fungi Biology and Applications Second Edition Editor Kevin Kavanagh Department of Biology National University of Ireland Maynooth Maynooth County Kildare Ireland A John Wiley & Sons, Ltd., Publication P1: OTA/XYZ P2: ABC JWST082-FM JWST082-Kavanagh July 11, 2011 19:19 Printer Name: Yet to Come This edition first published 2011 © 2011 by John Wiley & Sons, Ltd. Wiley-Blackwell is an imprint of John Wiley & Sons, formed by the merger of Wiley’s global Scientific, Technical and Medical business with Blackwell Publishing. Registered Office: John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK Editorial Offices: 9600 Garsington Road, Oxford, OX4 2DQ, UK The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK 111 River Street, Hoboken, NJ 07030-5774, USA For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com/ wiley-blackwell. The right of the author to be identified as the author of this work has been asserted in accordance with the UK Copyright, Designs and Patents Act 1988. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,539,217 B2 Sosin Et Al
    USO09539217B2 (12) United States Patent (10) Patent No.: US 9,539,217 B2 Sosin et al. (45) Date of Patent: Jan. 10, 2017 (54) NANOPARTICLE COMPOSITIONS (56) References Cited (71) Applicant: ALLERTEIN THERAPEUTICS, U.S. PATENT DOCUMENTS LLC, Fairfield, CT (US) 3,977,794. A 8/1976 Liedholz 4,191,743 A 3, 1980 Klemm et al. (72) Inventors: Howard Sosin, Southport, CT (US); 4,270,537 A 6, 1981 Romaine Michael Caplan, Woodbridge, CT 4,316,885. A 2f1982 Rakhit (US); Tarek Fahmy, Fairfield, CT (US) 4,384,996 A 5/1983 Bollinger et al. 4,596,556 A 6, 1986 Morrow et al. (73) Assignee: Allertein Therapeutics, LLC, Fairfield, SS s 38. Stet al. CT (US) 4,790,824. A 12/1988 Morrow et al. 4,798,823. A 1, 1989 Witzel (*) Notice: Subject to any disclaimer, the term of this 4,886,499 A 12/1989 Cirelli et al. patent is extended or adjusted under 35 is: A 3. thatara et al.al U.S.C. 154(b) by 0 days. 4.940,460 A 7/1990 Casey et al. 4.941,880 A 7, 1990 Burns (21) Appl. No.: 14/782.285 4.956,352. A 9/1990 Okuhara et al. 5,008, 110 A 4, 1991 Benecke et al. 22) PCT Fed: Apr.p 3, 2014 5,015,235 A 5/1991 Crossman 5,064,413 A 11/1991 McKinnon et al. (86). PCT No.: PCT/US2O14/O32838 (Continued) S 371 (c)(1), FOREIGN PATENT DOCUMENTS (2) Date: Oct. 2, 2015 EP 1752151 A1 2, 2007 (87) PCT Pub.
    [Show full text]
  • Prevalence, Antifungal Susceptibility and Role in Neonatal Fungemia
    RESEARCH ARTICLE Candida lusitaniae in Kuwait: Prevalence, antifungal susceptibility and role in neonatal fungemia 1 1 1,2 2 1 Ziauddin KhanID *, Suhail Ahmad , Noura Al-Sweih , Seema Khan , Leena Joseph 1 Department of Microbiology, Faculty of Medicine, Kuwait University, Safat, Kuwait, 2 Microbiology Department, Maternity Hospital, Shuwaikh, Kuwait * [email protected] a1111111111 a1111111111 a1111111111 Abstract a1111111111 a1111111111 Objectives Candida lusitaniae is an opportunistic yeast pathogen in certain high-risk patient popula- OPEN ACCESS tions/cohorts. The species exhibits an unusual antifungal susceptibility profile with tendency Citation: Khan Z, Ahmad S, Al-Sweih N, Khan S, to acquire rapid resistance. Here, we describe prevalence of C. lusitaniae in clinical speci- Joseph L (2019) Candida lusitaniae in Kuwait: mens in Kuwait, its antifungal susceptibility profile and role in neonatal fungemia. Prevalence, antifungal susceptibility and role in neonatal fungemia. PLoS ONE 14(3): e0213532. https://doi.org/10.1371/journal.pone.0213532 Methods Editor: David D. Roberts, Center for Cancer Research, UNITED STATES Clinical C. lusitaniae isolates recovered from diverse specimens during 2011 to 2017 were retrospectively analyzed. All isolates were identified by germ tube test, growth on CHROMa- Received: October 8, 2018 gar Candida and by Vitek 2 yeast identification system. A simple species-specific PCR Accepted: February 22, 2019 assay was developed and results were confirmed by PCR-sequencing of ITS region of Published: March 7, 2019 rDNA. Antifungal susceptibility was determined by Etest. Minimum inhibitory concentrations Copyright: © 2019 Khan et al. This is an open (MICs) were recorded after 24 h incubation at 35ÊC. access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and Results reproduction in any medium, provided the original author and source are credited.
    [Show full text]
  • Recherche De Levures Productrices D'enzymes Glycolytiques
    ا ﻟﺠﻤﮭﻮرﯾﺔ اﻟﺠﺰاﺋﺮﯾﺔ اﻟﺪﯾﻤﻘﺮاطﯿﺔ اﻟﺸﻌﺒﯿﺔ RÉPUBLIQUE ALGÉRIENNE DÉMOCRATIQUE ET POPULAIRE وزارة اﻟﺘﻌﻠﯿﻢ اﻟﻌﺎﻟﻲ و اﻟﺒﺤﺚ اﻟﻌﻠﻤﻲ MINISTÈRE DE L’ENSEIGNEMENT SUPÉRIEUR ET DE LA RECHERCHE SCIENTIFIQUE ﺟﺎﻣﻌﺔ اﻻﺧﻮة ﻣﻨﺘﻮري Université Mentouri Constantine ﻛﻠﯿﺔ ﻋﻠﻮم اﻟﻄﺒﯿﻌﺔ و اﻟﺤﯿﺎة Faculté des sciences de la nature et de la vie Département : Biochimie/ Biologie Cellulaire et Moléculaire Mémoire présenté en vue de l’obtention du Diplôme de Master Domaine : Sciences de la Nature et de la Vie Filière : Sciences Biologiques Spécialité : Biochimie / Analyse Protéomique et Santé Theme: Recherche de levures productrices d’enzymes glycolytiques exocellulaires thermostables : Production (sur boite de Pétri et en batch) et Caractérisation des enzymes produite s. Présenté et soutenu par : DALI Nadine Sofia Le : 28/06/2016 HAMAME Afaf Jury d’évaluation : Président du jury : BE N HAMDI A. M.C.B, Université Frères MENTOURI Constantine. Encadreur : MERAIHI Z. Professeur, Université Frères MENTOURI Constantine. Co - encadreur : DAKHMOUCHE S. M.A.A., ENS, Université Constantine 3. Examinateur : BENNAMOUN L. M.A.A., Université Frères MENTOURI Constantine . Année universitaire : 2015 - 2016 Remerciements Nous tenons à remercier en premier lieu Dieu , le tout Puissant de nous avoir donné volonté et patience pour achever ce travail réalisé à la Faculté des Sciences de la Nature et de la Vie de l’Université Frères Mentouri Constantine. C’est avec grand plaisir que nous tenons à exprimer toute notre gratitude à Madame le Professeur Meraihi Z , notre encadreur, qui a dirigé ce travail, nous a souten ues et nous a poussées à nous surpasser et à donner le meilleur de nous même grâce à ses critiques constructives et avisées.
    [Show full text]
  • C:\Documents and Settings\Andre Lachance\Local Settings\Temp
    ISSN 0513-5222 A Newsletter for Persons Interested in Yeast Official Publication of the International Commission on Yeasts of the International Union of Microbiological Societies (IUMS) JUNE 2003 Volume LII, Number I Marc-André Lachance, Editor University of Western Ontario, London, Ontario, Canada N6A 5B7 <[email protected]> Associate Editors Peter Biely G.G. Stewart Institute of Chemistry International Centre for Brewing and Distilling Slovak Academy of Sciences Department of Biological Sciences Dúbravská cesta 9 Heriot-Watt University 842 38 Bratislava, Slovakia Riccarton, Edinburgh EH14 4AS, Scotland Yasuji Oshima Patrizia Romano Department of Biotechnology Dipartimento di Biologia, Difesa Faculty of Engineering e Biotecnologie Agro-Forestali Kansai University Università della Basilicata, 3-3-35 Yamate-Cho, Suita-Shi Via Nazario Sauro, 85, Osaka 564-8680, Japan 85100 Potenza, Italy A. Bakalinsky, Corvallis, Oregon, USA . 1 H. Prillinger, Vienna, Austria . 6 J.A. Barnett, Norwich, England . 1 P. Strehaiano, Toulouse, France . 7 A. Caridi, Gallina (RC), Italy . 1 H. Visser, Wageningen, The Netherlands . 8 I.Yu. Chernov, Moscow, Russia . 2 M.J. Leibowitz, Piscataway, New Jersey, USA . 9 W.I. Golubev, Puschino, Russia . 3 B. Hahn-Hägerdal, Lund, Sweden . 10 M. Kopecka, Brno, Czech Republic . 4 G. Kunze, Gatersleben, Germany . 10 M. Manzano, Udine, Italy ................. 4 L. Olsson, Lyngby, Denmark . 10 W.J. Middlehoven, P. Raspor, Lubljana, Slovenia . 11 Wageningen, The Netherlands . 5 J.P. Sampaio & Á. Fonseca, Caparica, Portugal 13 E. Minárik, Bratislava, Slovakia . 5 M.A. Lachance, London, Ontario, Canada . 13 G.I. Naumov and E.S. Naumova, International Commission on Yeasts . 15 Moscow, Russia .................. 6 Forthcoming meetings ................... 15 J.
    [Show full text]
  • A Survey of Ballistosporic Phylloplane Yeasts in Baton Rouge, Louisiana
    Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2012 A survey of ballistosporic phylloplane yeasts in Baton Rouge, Louisiana Sebastian Albu Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Plant Sciences Commons Recommended Citation Albu, Sebastian, "A survey of ballistosporic phylloplane yeasts in Baton Rouge, Louisiana" (2012). LSU Master's Theses. 3017. https://digitalcommons.lsu.edu/gradschool_theses/3017 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. A SURVEY OF BALLISTOSPORIC PHYLLOPLANE YEASTS IN BATON ROUGE, LOUISIANA A Thesis Submitted to the Graduate Faculty of the Louisiana Sate University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in The Department of Plant Pathology by Sebastian Albu B.A., University of Pittsburgh, 2001 B.S., Metropolitan University of Denver, 2005 December 2012 Acknowledgments It would not have been possible to write this thesis without the guidance and support of many people. I would like to thank my major professor Dr. M. Catherine Aime for her incredible generosity and for imparting to me some of her vast knowledge and expertise of mycology and phylogenetics. Her unflagging dedication to the field has been an inspiration and continues to motivate me to do my best work.
    [Show full text]
  • Phylogenetic Circumscription of Saccharomyces, Kluyveromyces
    FEMS Yeast Research 4 (2003) 233^245 www.fems-microbiology.org Phylogenetic circumscription of Saccharomyces, Kluyveromyces and other members of the Saccharomycetaceae, and the proposal of the new genera Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and Zygotorulaspora Downloaded from https://academic.oup.com/femsyr/article-abstract/4/3/233/562841 by guest on 29 May 2020 Cletus P. Kurtzman à Microbial Genomics and Bioprocessing Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, 1815 N. University Street, Peoria, IL 61604, USA Received 22 April 2003; received in revised form 23 June 2003; accepted 25 June 2003 First published online Abstract Genera currently assigned to the Saccharomycetaceae have been defined from phenotype, but this classification does not fully correspond with species groupings determined from phylogenetic analysis of gene sequences. The multigene sequence analysis of Kurtzman and Robnett [FEMS Yeast Res. 3 (2003) 417^432] resolved the family Saccharomycetaceae into 11 well-supported clades. In the present study, the taxonomy of the Saccharomyctaceae is evaluated from the perspective of the multigene sequence analysis, which has resulted in reassignment of some species among currently accepted genera, and the proposal of the following five new genera: Lachancea, Nakaseomyces, Naumovia, Vanderwaltozyma and Zygotorulaspora. ß 2003 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved. Keywords: Saccharomyces; Kluyveromyces; New ascosporic yeast genera; Molecular systematics; Multigene phylogeny 1. Introduction support the maintenance of three distinct genera. Yarrow [8^10] revived the concept of three genera and separated The name Saccharomyces was proposed for bread and Torulaspora and Zygosaccharomyces from Saccharomyces, beer yeasts by Meyen in 1838 [1], but it was Reess in 1870 although species assignments were often di⁄cult.
    [Show full text]
  • Caracterização Bioenergética De Saccharomyces Cerevisiae Em Fermentação Vinária
    CARACTERIZAÇÃO BIOENERGÉTICA DE SACCHAROMYCES CEREVISIAE EM FERMENTAÇÃO VINÁRIA Tiago Monteiro Lomba Viana Dissertação para obtenção do Grau de Mestre em Engenharia Alimentar Orientador: Doutora Catarina Paula Guerra Geoffroy Prista Co-orientador: Doutora Maria da Conceição da Silva Loureiro Dias Jú ri: Presidente: Doutor Virgílio Borges Loureiro, Professor Associado do Instituto Superior de Agronomia da Universidade Técnica de Lisboa. Vogais: Doutor José Martínez Peinado, Professor Catedrático da Facultad de Ciencias Biologicas da Universidad Complutense de Madrid, Espanha. Doutora Maria da Conceição da Silva Loureiro Dias, Professora Catedrática Convidada do Instituto Superior de Agronomia da Univesidade Técnica de Lisboa. Doutora Catarina Paula Guerra Geoffroy Prista, Investigadora Auxilar do Instituto Superior de Agronomia da Universiadade Técnica de Lisboa. Lisboa, 2009 AGRADECIMENTOS Terminada esta etapa da minha formação académica, gostaria de expressar o meu reconhecimento e referir as pessoas e instituição que contribuíram para este trabalho, sem as quais muito dificilmente teria sido levado a cabo. As minhas primeiras palavras de agradecimento são dirigidas à Professora Doutora Maria da Conceição Loureiro Dias, a quem devo grande parte do meu interesse no mundo da Microbiologia, guiando os meus primeiros passos neste ramo da Ciência, mostrando-me o seu encanto e incentivando o meu entusiasmo. Foi um enorme privilégio ter iniciado a minha vida de investigação científica na sua equipa e poder contar com a sua sapiência. O seu contributo não foi apenas importante no progresso deste trabalho, mas foi igualmente essencial na minha formação científica/pessoal durante este tempo. Gostaria de expressar à Doutora Catarina Prista o meu sincero agradecimento por tudo a que este ano inesquecível diz respeito.
    [Show full text]
  • Towards an Integrated Phylogenetic Classification of the Tremellomycetes
    http://www.diva-portal.org This is the published version of a paper published in Studies in mycology. Citation for the original published paper (version of record): Liu, X., Wang, Q., Göker, M., Groenewald, M., Kachalkin, A. et al. (2016) Towards an integrated phylogenetic classification of the Tremellomycetes. Studies in mycology, 81: 85 http://dx.doi.org/10.1016/j.simyco.2015.12.001 Access to the published version may require subscription. N.B. When citing this work, cite the original published paper. Permanent link to this version: http://urn.kb.se/resolve?urn=urn:nbn:se:nrm:diva-1703 available online at www.studiesinmycology.org STUDIES IN MYCOLOGY 81: 85–147. Towards an integrated phylogenetic classification of the Tremellomycetes X.-Z. Liu1,2, Q.-M. Wang1,2, M. Göker3, M. Groenewald2, A.V. Kachalkin4, H.T. Lumbsch5, A.M. Millanes6, M. Wedin7, A.M. Yurkov3, T. Boekhout1,2,8*, and F.-Y. Bai1,2* 1State Key Laboratory for Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; 2CBS Fungal Biodiversity Centre (CBS-KNAW), Uppsalalaan 8, Utrecht, The Netherlands; 3Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig 38124, Germany; 4Faculty of Soil Science, Lomonosov Moscow State University, Moscow 119991, Russia; 5Science & Education, The Field Museum, 1400 S. Lake Shore Drive, Chicago, IL 60605, USA; 6Departamento de Biología y Geología, Física y Química Inorganica, Universidad Rey Juan Carlos, E-28933 Mostoles, Spain; 7Department of Botany, Swedish Museum of Natural History, P.O. Box 50007, SE-10405 Stockholm, Sweden; 8Shanghai Key Laboratory of Molecular Medical Mycology, Changzheng Hospital, Second Military Medical University, Shanghai, PR China *Correspondence: F.-Y.
    [Show full text]
  • Print This Article
    PEER-REVIEWED ARTICLE bioresources.com Hydrolysate from Phosphate Supplemented Sugarcane Leaves for Enhanced Oil Accumulation in Candida sp. NG17 Ratchana Pranimit,a Patcharaporn Hoondee,a Somboon Tanasupawat,b,c and Ancharida Savarajara a,c,* The objective was to identify yeast NG17, a newly isolated oleaginous yeast obtained from soil in Thailand and to characterize its oil yield and composition in sugarcane leaves hydrolysate (SLH), a sustainable resource. Biochemical and phylogenetic approaches were used to characterize yeast NG17, and its lipid content was determined by gas chromatography. Yeast NG17 was placed in the genus Candida, but not identified to species. It had an oil content of 27.9% (w/w, dry weight) with a major fatty acid composition of oleic (57.6%) and palmitic (25.4%) acids when grown in a high carbon/nitrogen (C/N) ratio medium for 6 d. The oil yield of Candida sp. NG17 was 2.3 g/L when grown in SLH, which contained 18.7 and 19.1 g/L glucose and xylose, respectively, without any supplementation. Meanwhile, the oleic and palmitic acid composition of the oil was reduced to 48.5% and 22.1%, respectively. The oil yield obtained in SLH was higher than that in the detoxified SLH (2.1 g/L). Increasing the SLH pH to 6.5 resulted in an increased oil yield to 5.07 g/L. Supplementation of SLH (pH 6.5) with 0.1% (w/v) KH2PO4 further increased the oil yield of Candida sp. NG17 to 6.67 g/L. Overall, Candida sp. NG17 is a good source of oil for renewable oleochemicals and biodiesel production.
    [Show full text]