The New Encyclopaedia Britannica

Total Page:16

File Type:pdf, Size:1020Kb

The New Encyclopaedia Britannica The New encyclopaedia Britannica Volume 29 MACROPEDIA Knowledge in Depth FOUNDED 1768 15 TH EDITION Encyclopaedia Britannica. Inc. Robert P. Gwinn, Chairman, Board of Directors Peter B. Norton, President Philip W.Goetz, Editor in Chief Chicago Auckland/Geneva/London1 Madrid/ Manila/ Paris Rome/Seoul/Sydne y /Tokyo/Toronto 'Let knowledge grow from more to more and thus be human life cnnched.* The Encyclopedia Brirannica is published with the editorial advice of the faculties of the University of Chicago. Additional advice is given by committees of members drawn from the faculties of the Australian National University. the universities of British Columbia (Can.). Cambridge (Eng.), Copenhagen (Den. 1. Edinburgh (Scot. ). Florence (Italy). London ( Eng.). Marburg (W.Ger.). Oxford (Eng.), the Ruhr ( W.Ger.), Sussex ( Eng. ), Toronto (Can. 1, Victoria (Can.), and Waterloo (Can.): the Cornplutensian University of Madrid (Spain): the Max Planck Institute for Biophysical Chemistry (W.Ger. ); the New University of Lisbon (Port.): the School of Higher Studies in Social Sciences (Fr.1: Simon Fraser University (Can.): and the State University of Leiden (Neth.). First Edition Second Edition Third Edition Supplement Fourth Edition Fifth Edition Sixth Edition Supplement Seventh Edition Eighth Edition Ninth Edition Tenth Edition Eleventh Edition C 1911 B) Encyclopadia Bntannica. inc. Twelfth Edition C- 1922 By Encvclopzdia Bntannica. Inc. Thirteenth Edition S 1926 By Enc>clopiedia Bntannica. tnc. Fourteenth Edition c 1929, 1930. 1932. 1933. 1936. 1937. 1938. 1939. 1940, 1941. 1942, 1943. 1944, 1945. 1946, 1947. 1948. 1949. 1950. 1951. 1952. 1953, 1954, 1955. 1956. 195'. 1958. 1959. 1960. 1961. 1962. 1963. 1964, 1965. 1966. 1%'. 1968. 1969. 1970, 1971, 1972. 1973 Bv Encyclopasdia Bntannica, inc. Fifteenth Edition  19'4. 19'5. 1976. 1977. 1978. 1979, 1980. 1981. 1982, 1983, 1984. 1985, 1986. 198" i988. 1989. 1990 By Encyclopaedia Bniannia. Inc.  1990 By Encyclopadia Britannia, Inc. Copvnght under International Copyright Union All ngh ts reserved under Pan Amencan and L'niversai Copyright Conventions by Encyclopaedia Bnunnica. Inc. No pan of this work mav be reproduced or utilized in any form or by any means. electronic or mechanical. including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the publisher. Library of Congress Catalog Card Number 88-83263 lniemanonal Standard Book Number 0-85229-51 1-1 War. Technology of 5-5 \IT Force began production of an advanced cruise mis- example. banum and krypton~equalledthat of the ura- 511~. which would incorporate stealth technologies such as nium nucleus. Much energy was reieased in the process. radar-absorbent materials and smooth. nonreflective sur- This news set off experiments at many laboratories. Bohr face shapes. The advanced cruise missile would have a worked with John Wheeler at hnceton: they postulated range of over 1 .a00 miles. (S.0.F1 that the uranium isotope uranium-235 was the one un. dergoing fission: the other isotope. unnium-2 38. merely Nuclear weapons absorbed the neutrons. It was discovered that neutrons were produced during the tission process; on the average. Nuclear weapons derive their enormous explosive force each fissioning atom produced more than two neutrons. from either the fission or fusion of atomic nuclei. Their If the proper amount of matenal were assembled. these sqnificance may ktbe appreciated by the coining of free neutrons might create a chain reaction. Under special the words kiloton ( 1,000 tons) and megaton (one million conditions, a very fast chain reaction might produce a ions) to describe their blast effect in equivalent weights of very large release of energy; in short. a weapon of faniasnc TNT. For example, the first nuclear fission bomb. the one power might be feasible. dropped on Hiroshima. Japan. in 1945. released energy The fint atomk bomb. The possibility that such a equaling 15.000 tons ( 15 kilotons) of chemical explosive weapon might first be developed by Nazi Germany from less than 130 pounds (60 kilograms) of uranium. alarmed many scientists and was drawn to the attention Fusion bombs, on the other hand. have given yeids up of President Franklin D. Roosevelt by Albert Einstein. 10 almost 60 megatons. The first nuclear weapons were then living in the United Slates. The president appointed bombs delivered by aircraft: warheads for strategic ballistic an Advisory Commitiee on Uranium: it reported that a missiles. however, have become by far the most important chain reaction in uranium was possible. though unproved. nuclear weapons (see above Strategic missiles). There are Chain-reaction experiments with carbon and uranium also smaller tactical nuclear weapons that include artillery were starred in New York City at Columbia University. projectiles. demolition munitions (land mines), antisub- and in March 1940 it was confirmed that the isotope marine depth bombs, torpedoes, and short-range ballistic uranium-235 was responsible for low-veloaty neutron fts- and cruise missiles. The U.S.stockpile of nuclear weapons sion in uranium. The Advisory Committee on Uranium reached its peak in 1967 with more than 32.000 warheads increased its support of the Columbia expenments and of 30 different types; the Soviet stockpile reached its peak arranged for a study of possible methods for separating of about 33.000 warheads in 1988. the uranium-235 isotope from the much more abundant The basic principle of nuclear fission weapons (also uranium-238. (Normal uranium contains approximately called atomic bombs) involves the assembly of a sum- 0.7 percent uranium-235. most of the remainder being I acnt amount of fissile material (e.g..the uranium isotope uranium-238.) The centrifuge process. in which the heavi- uranium-235 or the plutonium isotope plutonium-239) er isotope is spun to the outside. as in a cream separator. to "go supcrcnticaT-that is. for neutrons (which cause at first seemed the most useful. but at Columbia a rival fission and are in turn released during fission) to be pro process was proposed. In that process. gaseous uranium dud at a much faster rate than they can escape from hexafluonde is diffused through barriers. or filters: more the assembly. There arc two ways in which a subcnucal molecules containing the lighter isotope, uranium-235. assembly of fissionable matenal can be rendered super- would pass through the filter than those containing the cntical and made to explode. The subcntical assembly heavier isotope, slightly enriching the mixture on the far mav consist of two pans. each of which is too small to side. A sequence of several thousand stages would be have a positive multiplication rate: the two pans can be needed to enrich the mixture to 90 percent uranium-235: shot together by a gun-type device. Alternatively. a sub- the toud bamer area would be many acres. critical assembly surrounded bv a chemical high explosive Dunng the summer of 1940. Edwin McMillan and Philip may be compressed into a supercntical one by detonating Abelson of the University of California at Berkeley dis- the explosive. covered element 93. named neptunium; they inferred that The basic principle of the fusion weapon (also called the this element would decay into element 94. The Bohr and Discovery thermonuclear or hydrogen bomb) is to produce ignition Wheeler fission theoy suggested that one of the isotopes. of coodttions in a thermonuclear fuel such as deuterium. an mass number 239, of this new element might also fission plutonium Isotope of hydrogen with double the weight of normal hy- under low-velocity neutron bombardment. The cyclotron fission drogen. or lithium deuteride. The Sun may be considered at the University of California at Berkeley was put to work a thermonuclear device: its main fuel is deuterium. which to make enough element 94 for experiments: by mid-1 94 1. It consumes in iu core at temperatures of 18.000,000* to element 94 had been firmly identified and named pluto- 36.000,000' F ( 10,000.000" to 20.000.000' C).To achieve nium. and its fission characteristics had been established. comparable temperatures in a weapon, a fission triggering Low-velocity neutrons did indeed cause it to undergo fis- device is used. sion. and at a rate much higher than that of uranium- 235. The Berkeley group, under Ernest Lawrence, was THE DEVELOPMENT OF FISSION WEAPONS also considering producing large quantities of uranium- Following the discovery of artificial radioactivity in the 235 by ~umingone of their cyclotrons into a super mass ^%. the Italian physicist Ennco Fermi performed a se- spectrograph. A mass spectrograph employs a magnetic ne~of experiments in which he exposed many elements to field to bend a current of uranium ions: the heavier ions low-veiocitv neutrons. When he exposed thorium and ura- furanium-238) bend at a larger radius than the lighter ions nium. chemically different radioactive products resulted. (uranium-235). allowing the two separated currents to be 'ndjcating that new elements had been formed. rather collected in separate receivers. hnmerely isotopes of the original elements. Fenni con- In May 194 1 a review committee reported that a nuclear cluded that he had produced elements beyond uranium explosive probably could not be available before 1945. (clement 92). then the last element in the penodic table: that a chain reaction in natural uranium was probabty 18 called them transuranlc elements and named two of months off. and that it would take at least an additional auscnium (element 93) and hcspenum (element 94). year to produce enough plutonium for a bomb and three ^"ng the autumn of 1938. however, when Fermi was to five yean to separate enough uranium-235. Further. it diving the Nobel Pnze for his work. Otto Hahn and was held that all of these estimates were optimistic. In late Strassmann of Germany discovered that one of the June 1941 President Roosevelt established the Office of elements was actually banum (element 56).
Recommended publications
  • WINTER 2013 - Volume 60, Number 4 the Air Force Historical Foundation Founded on May 27, 1953 by Gen Carl A
    WINTER 2013 - Volume 60, Number 4 WWW.AFHISTORICALFOUNDATION.ORG The Air Force Historical Foundation Founded on May 27, 1953 by Gen Carl A. “Tooey” Spaatz MEMBERSHIP BENEFITS and other air power pioneers, the Air Force Historical All members receive our exciting and informative Foundation (AFHF) is a nonprofi t tax exempt organization. Air Power History Journal, either electronically or It is dedicated to the preservation, perpetuation and on paper, covering: all aspects of aerospace history appropriate publication of the history and traditions of American aviation, with emphasis on the U.S. Air Force, its • Chronicles the great campaigns and predecessor organizations, and the men and women whose the great leaders lives and dreams were devoted to fl ight. The Foundation • Eyewitness accounts and historical articles serves all components of the United States Air Force— Active, Reserve and Air National Guard. • In depth resources to museums and activities, to keep members connected to the latest and AFHF strives to make available to the public and greatest events. today’s government planners and decision makers information that is relevant and informative about Preserve the legacy, stay connected: all aspects of air and space power. By doing so, the • Membership helps preserve the legacy of current Foundation hopes to assure the nation profi ts from past and future US air force personnel. experiences as it helps keep the U.S. Air Force the most modern and effective military force in the world. • Provides reliable and accurate accounts of historical events. The Foundation’s four primary activities include a quarterly journal Air Power History, a book program, a • Establish connections between generations.
    [Show full text]
  • 2012 04 Newsletter
    United States Atmospheric & Underwater Atomic Weapon Activities National Association of Atomic Veterans, Inc. 1945 “TRINITY“ “Assisting America’s Atomic Veterans Since 1979” ALAMOGORDO, N. M. Website: www.naav.com E-mail: [email protected] 1945 “LITTLE BOY“ HIROSHIMA, JAPAN R. J. RITTER - Editor April, 2012 1945 “FAT MAN“ NAGASAKI, JAPAN 1946 “CROSSROADS“ BIKINI ISLAND 1948 “SANDSTONE“ ENEWETAK ATOLL 1951 “RANGER“ NEVADA TEST SITE 1951 “GREENHOUSE“ ENEWETAK ATOLL 1951 “BUSTER – JANGLE“ NEVADA TEST SITE 1952 “TUMBLER - SNAPPER“ NEVADA TEST SITE 1952 “IVY“ ENEWETAK ATOLL 1953 “UPSHOT - KNOTHOLE“ NEVADA TEST SITE 1954 “CASTLE“ BIKINI ISLAND 1955 “TEAPOT“ NEVADA TEST SITE 1955 “WIGWAM“ OFFSHORE SAN DIEGO 1955 “PROJECT 56“ NEVADA TEST SITE 1956 “REDWING“ ENEWETAK & BIKINI 1957 “PLUMBOB“ NEVADA TEST SITE 1958 “HARDTACK-I“ ENEWETAK & BIKINI 1958 “NEWSREEL“ JOHNSTON ISLAND 1958 “ARGUS“ SOUTH ATLANTIC 1958 “HARDTACK-II“ NEVADA TEST SITE 1961 “NOUGAT“ NEVADA TEST SITE 1962 “DOMINIC-I“ CHRISTMAS ISLAND JOHNSTON ISLAND 1965 “FLINTLOCK“ AMCHITKA, ALASKA 1969 “MANDREL“ AMCHITKA, ALASKA 1971 “GROMMET“ AMCHITKA, ALASKA 1974 “POST TEST EVENTS“ ENEWETAK CLEANUP ------------ “ IF YOU WERE THERE, YOU ARE AN ATOMIC VETERAN “ The Newsletter for America’s Atomic Veterans COMMANDER’S COMMENTS knowing the seriousness of the situation, did not register any Outreach Update: First, let me extend our discomfort, or dissatisfaction on her part. As a matter of fact, it thanks to the membership and friends of NAAV was kind of nice to have some of those callers express their for supporting our “outreach” efforts over the thanks for her kind attention and assistance. We will continue past several years. It is that firm dedication to to insure that all inquires, along these lines, are fully and our Mission-Statement that has driven our adequately addressed.
    [Show full text]
  • Nuclear Technology
    Nuclear Technology Joseph A. Angelo, Jr. GREENWOOD PRESS NUCLEAR TECHNOLOGY Sourcebooks in Modern Technology Space Technology Joseph A. Angelo, Jr. Sourcebooks in Modern Technology Nuclear Technology Joseph A. Angelo, Jr. GREENWOOD PRESS Westport, Connecticut • London Library of Congress Cataloging-in-Publication Data Angelo, Joseph A. Nuclear technology / Joseph A. Angelo, Jr. p. cm.—(Sourcebooks in modern technology) Includes index. ISBN 1–57356–336–6 (alk. paper) 1. Nuclear engineering. I. Title. II. Series. TK9145.A55 2004 621.48—dc22 2004011238 British Library Cataloguing in Publication Data is available. Copyright © 2004 by Joseph A. Angelo, Jr. All rights reserved. No portion of this book may be reproduced, by any process or technique, without the express written consent of the publisher. Library of Congress Catalog Card Number: 2004011238 ISBN: 1–57356–336–6 First published in 2004 Greenwood Press, 88 Post Road West, Westport, CT 06881 An imprint of Greenwood Publishing Group, Inc. www.greenwood.com Printed in the United States of America The paper used in this book complies with the Permanent Paper Standard issued by the National Information Standards Organization (Z39.48–1984). 10987654321 To my wife, Joan—a wonderful companion and soul mate Contents Preface ix Chapter 1. History of Nuclear Technology and Science 1 Chapter 2. Chronology of Nuclear Technology 65 Chapter 3. Profiles of Nuclear Technology Pioneers, Visionaries, and Advocates 95 Chapter 4. How Nuclear Technology Works 155 Chapter 5. Impact 315 Chapter 6. Issues 375 Chapter 7. The Future of Nuclear Technology 443 Chapter 8. Glossary of Terms Used in Nuclear Technology 485 Chapter 9. Associations 539 Chapter 10.
    [Show full text]
  • The Making of an Atomic Bomb
    (Image: Courtesy of United States Government, public domain.) INTRODUCTORY ESSAY "DESTROYER OF WORLDS": THE MAKING OF AN ATOMIC BOMB At 5:29 a.m. (MST), the world’s first atomic bomb detonated in the New Mexican desert, releasing a level of destructive power unknown in the existence of humanity. Emitting as much energy as 21,000 tons of TNT and creating a fireball that measured roughly 2,000 feet in diameter, the first successful test of an atomic bomb, known as the Trinity Test, forever changed the history of the world. The road to Trinity may have begun before the start of World War II, but the war brought the creation of atomic weaponry to fruition. The harnessing of atomic energy may have come as a result of World War II, but it also helped bring the conflict to an end. How did humanity come to construct and wield such a devastating weapon? 1 | THE MANHATTAN PROJECT Models of Fat Man and Little Boy on display at the Bradbury Science Museum. (Image: Courtesy of Los Alamos National Laboratory.) WE WAITED UNTIL THE BLAST HAD PASSED, WALKED OUT OF THE SHELTER AND THEN IT WAS ENTIRELY SOLEMN. WE KNEW THE WORLD WOULD NOT BE THE SAME. A FEW PEOPLE LAUGHED, A FEW PEOPLE CRIED. MOST PEOPLE WERE SILENT. J. ROBERT OPPENHEIMER EARLY NUCLEAR RESEARCH GERMAN DISCOVERY OF FISSION Achieving the monumental goal of splitting the nucleus The 1930s saw further development in the field. Hungarian- of an atom, known as nuclear fission, came through the German physicist Leo Szilard conceived the possibility of self- development of scientific discoveries that stretched over several sustaining nuclear fission reactions, or a nuclear chain reaction, centuries.
    [Show full text]
  • Chapter 4. CLASSIFICATION UNDER the ATOMIC ENERGY
    Chapter 4 CLASSIFICATION UNDER THE ATOMIC ENERGY ACT INTRODUCTION The Atomic Energy Act of 1946 was the first and, other than its successor, the Atomic Energy Act of 1954, to date the only U.S. statute to establish a program to restrict the dissemination of information. This Act transferred control of all aspects of atomic (nuclear) energy from the Army, which had managed the government’s World War II Manhattan Project to produce atomic bombs, to a five-member civilian Atomic Energy Commission (AEC). These new types of bombs, of awesome power, had been developed under stringent secrecy and security conditions. Congress, in enacting the 1946 Atomic Energy Act, continued the Manhattan Project’s comprehensive, rigid controls on U.S. information about atomic bombs and other aspects of atomic energy. That Atomic Energy Act designated the atomic energy information to be protected as “Restricted Data” and defined that data. Two types of atomic energy information were defined by the Atomic Energy Act of 1954, Restricted Data (RD) and a type that was subsequently termed Formerly Restricted Data (FRD). Before discussing further the Atomic Energy Act of 1946 and its unique requirements for controlling atomic energy information, some of the special information-control activities that accompanied the research, development, and production efforts that led to the first atomic bomb will be mentioned. Realization that an atomic bomb was possible had a profound impact on the scientists who first became aware of that possibility. The implications of such a weapon were so tremendous that the U.S. scientists conducting the initial, basic research related to nuclear fission voluntarily restricted the publication of their scientific work in this area.
    [Show full text]
  • The Development of Military Nuclear Strategy And
    The Development of Military Nuclear Strategy and Anglo-American Relations, 1939 – 1958 Submitted by: Geoffrey Charles Mallett Skinner to the University of Exeter as a thesis for the degree of Doctor of Philosophy in History, July 2018 This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University. (Signature) ……………………………………………………………………………… 1 Abstract There was no special governmental partnership between Britain and America during the Second World War in atomic affairs. A recalibration is required that updates and amends the existing historiography in this respect. The wartime atomic relations of those countries were cooperative at the level of science and resources, but rarely that of the state. As soon as it became apparent that fission weaponry would be the main basis of future military power, America decided to gain exclusive control over the weapon. Britain could not replicate American resources and no assistance was offered to it by its conventional ally. America then created its own, closed, nuclear system and well before the 1946 Atomic Energy Act, the event which is typically seen by historians as the explanation of the fracturing of wartime atomic relations. Immediately after 1945 there was insufficient systemic force to create change in the consistent American policy of atomic monopoly. As fusion bombs introduced a new magnitude of risk, and as the nuclear world expanded and deepened, the systemic pressures grew.
    [Show full text]
  • ROBERT SERBER March 14, 1909–June 1, 1997
    NATIONAL ACADEMY OF SCIENCES ROBE R T S E R BE R 1 9 0 9 — 1 9 9 7 A Biographical Memoir by ROBE R T P . Cr E A S E Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 2008 NATIONAL ACADEMY OF SCIENCES WASHINGTON, D.C. AIP Emilio Segre Visual Archives ROBERT SERBER March 14, 1909–June 1, 1997 BY ROBE RT P . CREASE OBERT SERBER (elected to the NAS in 1952) was one of Rthe leading theorists during the golden age of U.S. physics. He entered graduate school in 190 before such key discoveries as the neutron, positron, and deuteron and prior to the development of the principal tool of nuclear and high-energy physics, the particle accelerator. He retired from the Columbia University Physics Department (as its chairman) in 1978 after completion of the standard model of elementary particle physics, which comprises almost all known particles and forces in a single package, and which has proven hard to surpass. Shy and unostentatious, Serber did not mind being the detached spectator, and did not care when he was occasionally out of step with the mainstream, whether in politics or phys- ics. Nevertheless, others regularly counted on him for advice: he was an insider among insiders. He seemed to carry the entire field of physics in his head, and his particular strength was a synthetic ability. He could integrate all that was known of an area of physics and articulate it back to others clearly and consistently, explaining the connection of each part to the rest.
    [Show full text]
  • THE MEETING Meridel Rubenstein 1995
    THE MEETING Meridel Rubenstein 1995 Palladium prints, steel, single-channel video Video assistance by Steina Video run time 4:00 minutes Tia Collection The Meeting consists of twenty portraits of people from San Ildefonso Pueblo and Manhattan Project physicists—who met at the home of Edith Warner during the making of the first atomic bomb—and twenty photographs of carefully selected objects of significance to each group. In this grouping are people from San Ildefonso Pueblo and the objects they selected from the collections of the Museum of Indian Arts and Culture to represent their culture. 1A ROSE HUGHES 2A TALL-NECKED JAR 3A BLUE CORN 4A SLEIGH BELLS 5A FLORENCE NARANJO Rose Hughes holding a photograph of WITH AVANYU One of the most accomplished and (Museum of Indian Arts and Culture) Married to Louis Naranjo; her father, Tony Peña, who organized (plumed serpent) made by Julian and recognized of the San Ildefonso Sleigh bells are commonly used in granddaughter of Ignacio and Susana the building of Edith Warner’s second Maria Martinez, ca. 1930 (Museum of potters. Like many women from the ceremonial dances to attract rain. Aguilar; daughter of Joe Aguilar, who house. Hughes worked at Edith Indian Arts and Culture) Edith Warner pueblos, she worked as a maid for the Tilano Montoya returned with bells like helped Edith Warner remodel the Warner’s with Florence Naranjo one was shown a pot like this one in 1922 Oppenheimers. these from Europe, where he went on tearoom. Edith called her Florencita. summer. She recalls that Edith once on her first visit to San Ildefonso, in the tour with a group of Pueblo dancers.
    [Show full text]
  • The Newsletter for America's Atomic Veterans
    United States Atmospheric & Underwater Atomic Weapon Activities National Association of Atomic Veterans, Inc. 1945 “TRINITY“ “Assisting America’s Atomic Veterans Since 1979” ALAMOGORDO, N. M. Website: www.naav.com E-mail: [email protected] 1945 “LITTLE BOY“ HIROSHIMA, JAPAN R. J. RITTER - Editor July, 2011 1945 “FAT MAN“ NAGASAKI, JAPAN 1946 “CROSSROADS“ BIKINI ISLAND 1948 “SANDSTONE“ ENEWETAK ATOLL 1951 “RANGER“ NEVADA TEST SITE 1951 “GREENHOUSE“ ENEWETAK ATOLL 1951 “BUSTER – JANGLE“ NEVADA TEST SITE 1952 “TUMBLER - SNAPPER“ NEVADA TEST SITE 1952 “IVY“ ENEWETAK ATOLL 1953 “UPSHOT - KNOTHOLE“ NEVADA TEST SITE 1954 “CASTLE“ BIKINI ISLAND 1955 “TEAPOT“ NEVADA TEST SITE 1955 “WIGWAM“ OFFSHORE SAN DIEGO 1955 “PROJECT 56“ NEVADA TEST SITE 1956 “REDWING“ ENEWETAK & BIKINI 1957 “PLUMBOB“ NEVADA TEST SITE 1958 “HARDTACK-I“ ENEWETAK & BIKINI 1958 “NEWSREEL“ JOHNSON ISLAND 1958 “ARGUS“ SOUTH ATLANTIC 1958 “HARDTACK-II“ NEVADA TEST SITE 1961 “NOUGAT“ NEVADA TEST SITE 1962 “DOMINIC-I“ CHRISTMAS ISLAND JOHNSON ISLAND 1965 “FLINTLOCK“ AMCHITKA, ALASKA 1969 “MANDREL“ AMCHITKA, ALASKA 1971 “GROMMET“ AMCHITKA, ALASKA 1974 “POST TEST EVENTS“ AMCHITKA, ALASKA ------------ “ IF YOU WERE THERE, THE 1957 LAS VEGAS “MISS-NUKE” CONTEST WINNER YOU ARE AN ATOMIC VETERAN “ The Newsletter for America’s Atomic Veterans COMMANDER’S COMMENTS We will gather in Richmond, Va., on October 01, 2011 to celebrate 31 years of service to A. H. Bolin ( MN ) G. M. Everett ( MS ) honor the service and sacrifices of more Don McFarland ( WA ) W. J. Mitchell ( WA ) than 500,000 Atomic-Veterans, the majority J. C. Phillips ( AL ) M. A. Morriss ( VA ) of whom are now deceased, having carried G. D. Sherman ( ND ) R.
    [Show full text]
  • Bob Farquhar
    1 2 Created by Bob Farquhar For and dedicated to my grandchildren, their children, and all humanity. This is Copyright material 3 Table of Contents Preface 4 Conclusions 6 Gadget 8 Making Bombs Tick 15 ‘Little Boy’ 25 ‘Fat Man’ 40 Effectiveness 49 Death By Radiation 52 Crossroads 55 Atomic Bomb Targets 66 Acheson–Lilienthal Report & Baruch Plan 68 The Tests 71 Guinea Pigs 92 Atomic Animals 96 Downwinders 100 The H-Bomb 109 Nukes in Space 119 Going Underground 124 Leaks and Vents 132 Turning Swords Into Plowshares 135 Nuclear Detonations by Other Countries 147 Cessation of Testing 159 Building Bombs 161 Delivering Bombs 178 Strategic Bombers 181 Nuclear Capable Tactical Aircraft 188 Missiles and MIRV’s 193 Naval Delivery 211 Stand-Off & Cruise Missiles 219 U.S. Nuclear Arsenal 229 Enduring Stockpile 246 Nuclear Treaties 251 Duck and Cover 255 Let’s Nuke Des Moines! 265 Conclusion 270 Lest We Forget 274 The Beginning or The End? 280 Update: 7/1/12 Copyright © 2012 rbf 4 Preface 5 Hey there, I’m Ralph. That’s my dog Spot over there. Welcome to the not-so-wonderful world of nuclear weaponry. This book is a journey from 1945 when the first atomic bomb was detonated in the New Mexico desert to where we are today. It’s an interesting and sometimes bizarre journey. It can also be horribly frightening. Today, there are enough nuclear weapons to destroy the civilized world several times over. Over 23,000. “Enough to make the rubble bounce,” Winston Churchill said. The United States alone has over 10,000 warheads in what’s called the ‘enduring stockpile.’ In my time, we took care of things Mano-a-Mano.
    [Show full text]
  • Nuclear Weapons Technology 101 for Policy Wonks Bruce T
    NUCLEAR WEAPONS TECHNOLOGY FOR POLICY WONKS NUCLEAR WEAPONS TECHNOLOGY 101 FOR POLICY WONKS BRUCE T. GOODWIN BRUCE T. GOODWIN BRUCE T. Center for Global Security Research Lawrence Livermore National Laboratory August 2021 NUCLEAR WEAPONS TECHNOLOGY 101 FOR POLICY WONKS BRUCE T. GOODWIN Center for Global Security Research Lawrence Livermore National Laboratory August 2021 NUCLEAR WEAPONS TECHNOLOGY 101 FOR POLICY WONKS | 1 This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344. The views and opinions of the author expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC. ISBN-978-1-952565-11-3 LCCN-2021907474 LLNL-MI-823628 TID-61681 2 | BRUCE T. GOODWIN Table of Contents About the Author. 2 Introduction . .3 The Revolution in Physics That Led to the Bomb . 4 The Nuclear Arms Race Begins. 6 Fission and Fusion are "Natural" Processes . 7 The Basics of the Operation of Nuclear Explosives. 8 The Atom . .9 Isotopes . .9 Half-life . 10 Fission . 10 Chain Reaction . 11 Critical Mass . 11 Fusion . 14 Types of Nuclear Weapons . 16 Finally, How Nuclear Weapons Work . 19 Fission Explosives . 19 Fusion Explosives . 22 Staged Thermonuclear Explosives: the H-bomb . 23 The Modern, Miniature Hydrogen Bomb . 25 Intrinsically Safe Nuclear Weapons . 32 Underground Testing . 35 The End of Nuclear Testing and the Advent of Science-Based Stockpile Stewardship . 39 Stockpile Stewardship Today . 41 Appendix 1: The Nuclear Weapons Complex .
    [Show full text]
  • Historic Barriers to Anglo-American Nuclear Cooperation
    3 HISTORIC BARRIERS TO ANGLO- AMERICAN NUCLEAR COOPERATION ANDREW BROWN Despite being the closest of allies, with shared values and language, at- tempts by the United Kingdom and the United States to reach accords on nuclear matters generated distrust and resentment but no durable arrangements until the Mutual Defense Agreement of 1958. There were times when the perceived national interests of the two countries were unsynchronized or at odds; periods when political leaders did not see eye to eye or made secret agreements that remained just that; and when espionage, propaganda, and public opinion caused addi- tional tensions. STATUS IMBALANCE The Magna Carta of the nuclear age is the two-part Frisch-Peierls mem- orandum. It was produced by two European émigrés, Otto Frisch and Rudolf Peierls, at Birmingham University in the spring of 1940. Un- like Einstein’s famous letter to President Franklin D. Roosevelt, with its vague warning that a powerful new bomb might be constructed from uranium, the Frisch-Peierls memorandum set out detailed technical arguments leading to the conclusion that “a moderate amount of U-235 [highly enriched uranium] would indeed constitute an extremely effi- cient explosive.” Like Einstein, Frisch and Peierls were worried that the Germans might already be working toward an atomic bomb against which there would be no defense. By suggesting “a counter-threat with a similar bomb,” they first enunciated the concept of mutual deterrence and recommended “start[ing] production as soon as possible, even if 36 Historic Barriers to Anglo-American Nuclear Cooperation 37 it is not intended to use the bomb as a means of attack.”1 Professor Mark Oliphant from Birmingham convinced the UK authorities that “the whole thing must be taken rather seriously,”2 and a small group of senior scientists came together as the Maud Committee.
    [Show full text]