A Contribuição De Chien Shiung Wu Para a Teoria Quântica
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Divine Action and the World of Science: What Cosmology and Quantum Physics Teach Us About the Role of Providence in Nature 247 Bruce L
Journal of Biblical and Theological Studies JBTSVOLUME 2 | ISSUE 2 Christianity and the Philosophy of Science Divine Action and the World of Science: What Cosmology and Quantum Physics Teach Us about the Role of Providence in Nature 247 Bruce L. Gordon [JBTS 2.2 (2017): 247-298] Divine Action and the World of Science: What Cosmology and Quantum Physics Teach Us about the Role of Providence in Nature1 BRUCE L. GORDON Bruce L. Gordon is Associate Professor of the History and Philosophy of Science at Houston Baptist University and a Senior Fellow of Discovery Institute’s Center for Science and Culture Abstract: Modern science has revealed a world far more exotic and wonder- provoking than our wildest imaginings could have anticipated. It is the purpose of this essay to introduce the reader to the empirical discoveries and scientific concepts that limn our understanding of how reality is structured and interconnected—from the incomprehensibly large to the inconceivably small—and to draw out the metaphysical implications of this picture. What is unveiled is a universe in which Mind plays an indispensable role: from the uncanny life-giving precision inscribed in its initial conditions, mathematical regularities, and natural constants in the distant past, to its material insubstantiality and absolute dependence on transcendent causation for causal closure and phenomenological coherence in the present, the reality we inhabit is one in which divine action is before all things, in all things, and constitutes the very basis on which all things hold together (Colossians 1:17). §1. Introduction: The Intelligible Cosmos For science to be possible there has to be order present in nature and it has to be discoverable by the human mind. -
Dear Fellow Quantum Mechanics;
Dear Fellow Quantum Mechanics Jeremy Bernstein Abstract: This is a letter of inquiry about the nature of quantum mechanics. I have been reflecting on the sociology of our little group and as is my wont here are a few notes. I see our community divided up into various subgroups. I will try to describe them beginning with a small group of elderly but distinguished physicist who either believe that there is no problem with the quantum theory and that the young are wasting their time or that there is a problem and that they have solved it. In the former category is Rudolf Peierls and in the latter Phil Anderson. I will begin with Peierls. In the January 1991 issue of Physics World Peierls published a paper entitled “In defence of ‘measurement’”. It was one of the last papers he wrote. It was in response to his former pupil John Bell’s essay “Against measurement” which he had published in the same journal in August of 1990. Bell, who had died before Peierls’ paper was published, had tried to explain some of the difficulties of quantum mechanics. Peierls would have none of it.” But I do not agree with John Bell,” he wrote,” that these problems are very difficult. I think it is easy to give an acceptable account…” In the rest of his short paper this is what he sets out to do. He begins, “In my view the most fundamental statement of quantum mechanics is that the wave function or more generally the density matrix represents our knowledge of the system we are trying to describe.” Of course the wave function collapses when this knowledge is altered. -
Multi-Dimensional Entanglement Transport Through Single-Mode Fibre
Multi-dimensional entanglement transport through single-mode fibre Jun Liu,1, ∗ Isaac Nape,2, ∗ Qianke Wang,1 Adam Vall´es,2 Jian Wang,1 and Andrew Forbes2 1Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China. 2School of Physics, University of the Witwatersrand, Private Bag 3, Wits 2050, South Africa (Dated: April 8, 2019) The global quantum network requires the distribution of entangled states over long distances, with significant advances already demonstrated using entangled polarisation states, reaching approxi- mately 1200 km in free space and 100 km in optical fibre. Packing more information into each photon requires Hilbert spaces with higher dimensionality, for example, that of spatial modes of light. However spatial mode entanglement transport requires custom multimode fibre and is lim- ited by decoherence induced mode coupling. Here we transport multi-dimensional entangled states down conventional single-mode fibre (SMF). We achieve this by entangling the spin-orbit degrees of freedom of a bi-photon pair, passing the polarisation (spin) photon down the SMF while ac- cessing multi-dimensional orbital angular momentum (orbital) subspaces with the other. We show high fidelity hybrid entanglement preservation down 250 m of SMF across multiple 2 × 2 dimen- sions, demonstrating quantum key distribution protocols, quantum state tomographies and quantum erasers. This work offers an alternative approach to spatial mode entanglement transport that fa- cilitates deployment in legacy networks across conventional fibre. Entanglement is an intriguing aspect of quantum me- chanics with well-known quantum paradoxes such as those of Einstein-Podolsky-Rosen (EPR) [1], Hardy [2], and Leggett [3]. -
Samuel Goudsmit
NATIONAL ACADEMY OF SCIENCES SAMUEL ABRAHAM GOUDSMIT 1 9 0 2 — 1 9 7 8 A Biographical Memoir by BENJAMIN BEDERSON Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 2008 NATIONAL ACADEMY OF SCIENCES WASHINGTON, D.C. Photograph courtesy Brookhaven National Laboratory. SAMUEL ABRAHAM GOUDSMIT July 11, 1902–December 4, 1978 BY BENJAMIN BEDERSON AM GOUDSMIT LED A CAREER that touched many aspects of S20th-century physics and its impact on society. He started his professional life in Holland during the earliest days of quantum mechanics as a student of Paul Ehrenfest. In 1925 together with his fellow graduate student George Uhlenbeck he postulated that in addition to mass and charge the electron possessed a further intrinsic property, internal angular mo- mentum, that is, spin. This inspiration furnished the missing link that explained the existence of multiple spectroscopic lines in atomic spectra, resulting in the final triumph of the then struggling birth of quantum mechanics. In 1927 he and Uhlenbeck together moved to the United States where they continued their physics careers until death. In a rough way Goudsmit’s career can be divided into several separate parts: first in Holland, strictly as a theorist, where he achieved very early success, and then at the University of Michigan, where he worked in the thriving field of preci- sion spectroscopy, concerning himself with the influence of nuclear magnetism on atomic spectra. In 1944 he became the scientific leader of the Alsos Mission, whose aim was to determine the progress Germans had made in the development of nuclear weapons during World War II. -
After Dinner Speech by Dr
1 After Dinner Speech by Dr. Josef Rembser CERN, Geneva 14 September 2009 Celebration in honour of Professor Herwig Schopper’s 85 th Birthday I. Dear Friends, honourable, dear Professor Schopper! On 28 February of this year, you celebrated your 85th Birthday. This evening we are looking back on this memorable date, wishing you many happy returns of the day. You have been blessed with a life full of harmony and accomplishments, always keeping young physically and intellectually. This is a special blessing granted to a person: Love and family, friendships and encounters, giving and receiving, working and achieving acknowledgements and honours in a fulfilling profession and in challenging missions. Tomorrow, a scientific Colloquium will honour you as researcher and scientific teacher . Today, on the eve of the colloquium, I would like to speak about Herwig Schopper as a research politician and a research manager . My personal remarks and remembrances will focus, dear Herwig Schopper, on the guiding contributions you made in shaping, promoting and advancing science and research and their relevant policies in Germany and in Europe. 2 Professor Heuer, I am grateful for your invitation. It is a pleasure for me to give today's After-Dinner speech in honour of our jubilee. For many years during my service in the German Ministry of Research and Technology (BMFT) in Bonn I had close personal and professional connections with you, dear Professor Schopper, regarding German science and research policy including CERN. II. In 1945, with the end of the 2 nd World War, Germany as guilty party and loser plunged the world and its own country into destruction and suffering, thus experiencing a historical catastrophe. -
A Selected Bibliography of Publications By, and About, J
A Selected Bibliography of Publications by, and about, J. Robert Oppenheimer Nelson H. F. Beebe University of Utah Department of Mathematics, 110 LCB 155 S 1400 E RM 233 Salt Lake City, UT 84112-0090 USA Tel: +1 801 581 5254 FAX: +1 801 581 4148 E-mail: [email protected], [email protected], [email protected] (Internet) WWW URL: http://www.math.utah.edu/~beebe/ 17 March 2021 Version 1.47 Title word cross-reference $1 [Duf46]. $12.95 [Edg91]. $13.50 [Tho03]. $14.00 [Hug07]. $15.95 [Hen81]. $16.00 [RS06]. $16.95 [RS06]. $17.50 [Hen81]. $2.50 [Opp28g]. $20.00 [Hen81, Jor80]. $24.95 [Fra01]. $25.00 [Ger06]. $26.95 [Wol05]. $27.95 [Ger06]. $29.95 [Goo09]. $30.00 [Kev03, Kle07]. $32.50 [Edg91]. $35 [Wol05]. $35.00 [Bed06]. $37.50 [Hug09, Pol07, Dys13]. $39.50 [Edg91]. $39.95 [Bad95]. $8.95 [Edg91]. α [Opp27a, Rut27]. γ [LO34]. -particles [Opp27a]. -rays [Rut27]. -Teilchen [Opp27a]. 0-226-79845-3 [Guy07, Hug09]. 0-8014-8661-0 [Tho03]. 0-8047-1713-3 [Edg91]. 0-8047-1714-1 [Edg91]. 0-8047-1721-4 [Edg91]. 0-8047-1722-2 [Edg91]. 0-9672617-3-2 [Bro06, Hug07]. 1 [Opp57f]. 109 [Con05, Mur05, Nas07, Sap05a, Wol05, Kru07]. 112 [FW07]. 1 2 14.99/$25.00 [Ber04a]. 16 [GHK+96]. 1890-1960 [McG02]. 1911 [Meh75]. 1945 [GHK+96, Gow81, Haw61, Bad95, Gol95a, Hew66, She82, HBP94]. 1945-47 [Hew66]. 1950 [Ano50]. 1954 [Ano01b, GM54, SZC54]. 1960s [Sch08a]. 1963 [Kuh63]. 1967 [Bet67a, Bet97, Pun67, RB67]. 1976 [Sag79a, Sag79b]. 1981 [Ano81]. 20 [Goe88]. 2005 [Dre07]. 20th [Opp65a, Anoxx, Kai02]. -
On Monte Carlo Time-Dependent Variational Principles
On Monte Carlo Time-Dependent Variational Principles Von der QUEST-Leibniz-Forschungsschule der Gottfried Wilhelm Leibniz Universit¨atHannover zur Erlangung des akademischen Grades Doktor der Naturwissenschaften { Doctor rerum naturalium { genehmigte Dissertation von FABIANWOLFGANGG UNTERTRANSCHEL¨ Geboren am 10.01.1987 in Gehrden 2016 0 Erstpr¨ufer : Prof. Dr. Reinhard F. Werner Zweitpr¨ufer : Prof. Dr. Klemens Hammerer Beratendes Mitglied des Pr¨ufungsausschusses : Prof. Dr. Tobias J. Osborne Vorsitzender des Pr¨ufungsausschusses : Prof. Dr. Rolf Haug Tag der Promotion: 17. Dezember 2015 On Monte Carlo Time-Dependent Variational Principles Fabian W. G. Transchel Abstract The present dissertation is concerned with the development and implementation of a novel scheme for quantitative, numeric approximation of the dynamics of quantum lattice systems based on the Time-Dependent Variational Principle together with Monte Carlo techniques in order to include dissipative interactions. The specific implementation is demonstrated on both common and not yet in-detail explored Heisenberg- and Fermi-Hubbard models in one and two dimensions. Additionally, the technical requirements regarding computational complexity and capacity are discussed, especially with regards toward parallelizable components of the imple- mentation. Concluding remarks include prospects with respect to application and extension of the presented methods. Keywords: Monte Carlo method, Dissipative Dynamics, Lindblad Equation iii Zusammenfassung Die vorliegende Dissertation befasst sich mit der Entwicklung und Umsetzung eines neuartigen Schemas zur quantitativen numerischen N¨aherung der Dynamik von Quantengittersystemen auf Grundlage des zeitabh¨angigenVariationsprinzips unter Zuhilfenahme von Monte-Carlo-Techniken zur Einbeziehung von dissipativen Wech- selwirkungen. Die Implementierung wird anhand von Beispielen f¨urHeisenberg- und Fermi-Hubbard-Modellen in einer und zwei Dimensionen gezeigt und erl¨autert. -
Cold War Requisitions, Scientific Manpower, and the Production of American Physicists After World War II
DAVID KAISER* Cold War requisitions, scientific manpower, and the production of American physicists after World War II 1. RAYMOND BIRGE’S “MAIN OBJECTIVE” “THE MAIN OBJECTIVE of this department of physics,” Raymond Birge wrote in late May 1955, “is to train Ph.D.’s in physics.” Birge— iconic, somber, a displaced Yankee who traced his New England ancestry nine generations back—had been chair of Berkeley’s physics department for twenty-two years; by the mid-1950s, it was the nation’s largest. At the time he explained his department’s “main objec- tive,” Birge was the retiring president of the American Physical Society (APS). Birge and his colleagues in Berkeley’s physics department had emphasized the importance of its graduate program many times before in annual budget requests to the university administration and in funding reports to private industries; it would be easy to read such remarks as thinly-veiled requests for more funding, since training physics Ph.D.s became expensive after World War II. This time, however, Birge articulated his department’s mission in a letter to a local citizen, far outside of the university bureaucracy, who had no funds to offer and who had requested no such pronouncement. 1 *Program in Science, Technology, and Society, and Department of Physics, Building E51- 185, MIT, Cambridge, MA 02139; [email protected]. My thanks to Shane Hamilton for his research assistance, and to Alexis De Greiff, Kenji Ito, John Krige, Elizabeth Paris, and John Rudolph for their helpful comments on an earlier draft. The following abbreviations are used: AIP-EMD, American Institute of Physics, Edu- cation and Manpower Division Records, Niels Bohr Library, American Institute of Physics, College Park, MD; BAS, Bulletin of the atomic scientists; BDP , University of California, Berkeley, Department of Physics Records, Bancroft Library, Berkeley, CA; HDP, Harvard University Department of Physics Records, Pusey Library, Cambridge, MA; PDP, Princeton University Department of Physics Records, Seeley G. -
ROBERT SERBER March 14, 1909–June 1, 1997
NATIONAL ACADEMY OF SCIENCES ROBE R T S E R BE R 1 9 0 9 — 1 9 9 7 A Biographical Memoir by ROBE R T P . Cr E A S E Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 2008 NATIONAL ACADEMY OF SCIENCES WASHINGTON, D.C. AIP Emilio Segre Visual Archives ROBERT SERBER March 14, 1909–June 1, 1997 BY ROBE RT P . CREASE OBERT SERBER (elected to the NAS in 1952) was one of Rthe leading theorists during the golden age of U.S. physics. He entered graduate school in 190 before such key discoveries as the neutron, positron, and deuteron and prior to the development of the principal tool of nuclear and high-energy physics, the particle accelerator. He retired from the Columbia University Physics Department (as its chairman) in 1978 after completion of the standard model of elementary particle physics, which comprises almost all known particles and forces in a single package, and which has proven hard to surpass. Shy and unostentatious, Serber did not mind being the detached spectator, and did not care when he was occasionally out of step with the mainstream, whether in politics or phys- ics. Nevertheless, others regularly counted on him for advice: he was an insider among insiders. He seemed to carry the entire field of physics in his head, and his particular strength was a synthetic ability. He could integrate all that was known of an area of physics and articulate it back to others clearly and consistently, explaining the connection of each part to the rest. -
Sterns Lebensdaten Und Chronologie Seines Wirkens
Sterns Lebensdaten und Chronologie seines Wirkens Diese Chronologie von Otto Sterns Wirken basiert auf folgenden Quellen: 1. Otto Sterns selbst verfassten Lebensläufen, 2. Sterns Briefen und Sterns Publikationen, 3. Sterns Reisepässen 4. Sterns Züricher Interview 1961 5. Dokumenten der Hochschularchive (17.2.1888 bis 17.8.1969) 1888 Geb. 17.2.1888 als Otto Stern in Sohrau/Oberschlesien In allen Lebensläufen und Dokumenten findet man immer nur den VornamenOt- to. Im polizeilichen Führungszeugnis ausgestellt am 12.7.1912 vom königlichen Polizeipräsidium Abt. IV in Breslau wird bei Stern ebenfalls nur der Vorname Otto erwähnt. Nur im Emeritierungsdokument des Carnegie Institutes of Tech- nology wird ein zweiter Vorname Otto M. Stern erwähnt. Vater: Mühlenbesitzer Oskar Stern (*1850–1919) und Mutter Eugenie Stern geb. Rosenthal (*1863–1907) Nach Angabe von Diana Templeton-Killan, der Enkeltochter von Berta Kamm und somit Großnichte von Otto Stern (E-Mail vom 3.12.2015 an Horst Schmidt- Böcking) war Ottos Großvater Abraham Stern. Abraham hatte 5 Kinder mit seiner ersten Frau Nanni Freund. Nanni starb kurz nach der Geburt des fünften Kindes. Bald danach heiratete Abraham Berta Ben- der, mit der er 6 weitere Kinder hatte. Ottos Vater Oskar war das dritte Kind von Berta. Abraham und Nannis erstes Kind war Heinrich Stern (1833–1908). Heinrich hatte 4 Kinder. Das erste Kind war Richard Stern (1865–1911), der Toni Asch © Springer-Verlag GmbH Deutschland 2018 325 H. Schmidt-Böcking, A. Templeton, W. Trageser (Hrsg.), Otto Sterns gesammelte Briefe – Band 1, https://doi.org/10.1007/978-3-662-55735-8 326 Sterns Lebensdaten und Chronologie seines Wirkens heiratete. -
Asia Pacific Physics Newsletter
Asia Pacific Physics Newsletter March 2016 Volume 5 • Number 1 worldscinet.com/appn Takaaki Kajita 2015 Physics Nobel Laureate published by Institute of Advanced Studies, Nanyang Technological University (IAS@NTU) and South East Asia Theoretical Physics Association (SEATPA) South East Asia Theoretical Physics Association Asia Pacific Physics Newsletter March 2016 • Volume 5 • Number 1 A publication of the IAS@NTU Singapore and SEATPA Asia Pacific Physics Newsletter publishes articles reporting frontier discoveries in EDITORIAL physics, research highlights, and news to facilitate interaction, collaboration and 3 cooperation among physicists in Asia Pacific physics community. PEOPLE Editor-in-Chief 4 “Observing the Distant Supernova” — Interview with Kok Khoo Phua Nobel Laureate Prof Brian Schmidt Associate Editor-in-Chief “Discovering the W and Z Bosons” — Interview with Swee Cheng Lim Nobel Laureate Prof Carlo Rubbia SEATPA Committee Christopher C Bernido Phil Chan Leong Chuan Kwek Choy Heng Lai Swee Cheng Lim Ren Bao Liu Hwee Boon Low Anh Ký Nguyên Choo Hiap Oh OPINION AND COMMENTARY Kok Khoo Phua 10 China’s Great Scientific Leap Forward: Completion of a Roh Suan Tung Preecha Yupapin planned ‘Great Collider’ would transform particle physics Hishamuddin Zainuddin Freddy Zen Editorial Team NEWS Sen Mu 12 CityU’s Institute for Advanced Study will Champion Bold New Han Sun Chi Xiong Research Initiatives Case made for 'Ninth Planet' Graphic Designers Chuan Ming Loo Erin Ong Cover Photo: "Takaaki Kajita 5171- 2015" by Bengt Nyman - Own work. -
Quantum Theory Needs No 'Interpretation'
Quantum Theory Needs No ‘Interpretation’ But ‘Theoretical Formal-Conceptual Unity’ (Or: Escaping Adán Cabello’s “Map of Madness” With the Help of David Deutsch’s Explanations) Christian de Ronde∗ Philosophy Institute Dr. A. Korn, Buenos Aires University - CONICET Engineering Institute - National University Arturo Jauretche, Argentina Federal University of Santa Catarina, Brazil. Center Leo Apostel fot Interdisciplinary Studies, Brussels Free University, Belgium Abstract In the year 2000, in a paper titled Quantum Theory Needs No ‘Interpretation’, Chris Fuchs and Asher Peres presented a series of instrumentalist arguments against the role played by ‘interpretations’ in QM. Since then —quite regardless of the publication of this paper— the number of interpretations has experienced a continuous growth constituting what Adán Cabello has characterized as a “map of madness”. In this work, we discuss the reasons behind this dangerous fragmentation in understanding and provide new arguments against the need of interpretations in QM which —opposite to those of Fuchs and Peres— are derived from a representational realist understanding of theories —grounded in the writings of Einstein, Heisenberg and Pauli. Furthermore, we will argue that there are reasons to believe that the creation of ‘interpretations’ for the theory of quanta has functioned as a trap designed by anti-realists in order to imprison realists in a labyrinth with no exit. Taking as a standpoint the critical analysis by David Deutsch to the anti-realist understanding of physics, we attempt to address the references and roles played by ‘theory’ and ‘observation’. In this respect, we will argue that the key to escape the anti-realist trap of interpretation is to recognize that —as Einstein told Heisenberg almost one century ago— it is only the theory which can tell you what can be observed.