The Making of an Atomic Bomb
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
WINTER 2013 - Volume 60, Number 4 the Air Force Historical Foundation Founded on May 27, 1953 by Gen Carl A
WINTER 2013 - Volume 60, Number 4 WWW.AFHISTORICALFOUNDATION.ORG The Air Force Historical Foundation Founded on May 27, 1953 by Gen Carl A. “Tooey” Spaatz MEMBERSHIP BENEFITS and other air power pioneers, the Air Force Historical All members receive our exciting and informative Foundation (AFHF) is a nonprofi t tax exempt organization. Air Power History Journal, either electronically or It is dedicated to the preservation, perpetuation and on paper, covering: all aspects of aerospace history appropriate publication of the history and traditions of American aviation, with emphasis on the U.S. Air Force, its • Chronicles the great campaigns and predecessor organizations, and the men and women whose the great leaders lives and dreams were devoted to fl ight. The Foundation • Eyewitness accounts and historical articles serves all components of the United States Air Force— Active, Reserve and Air National Guard. • In depth resources to museums and activities, to keep members connected to the latest and AFHF strives to make available to the public and greatest events. today’s government planners and decision makers information that is relevant and informative about Preserve the legacy, stay connected: all aspects of air and space power. By doing so, the • Membership helps preserve the legacy of current Foundation hopes to assure the nation profi ts from past and future US air force personnel. experiences as it helps keep the U.S. Air Force the most modern and effective military force in the world. • Provides reliable and accurate accounts of historical events. The Foundation’s four primary activities include a quarterly journal Air Power History, a book program, a • Establish connections between generations. -
MARSHALL LEGACY SERIES: WEAPONS of WAR Suggested Reading List
MARSHALL LEGACY SERIES: WEAPONS OF WAR Suggested Reading List WEAPONS • Couffer, Jack. Bat Bomb: World War II’s Other Secret Weapon. Austin: University of Texas Press, 1992. • Lockwood, Jeffrey. Six-Legged Soldiers: Using Insects as Weapons of War. Oxford: Oxford University Press, 2008. • O’Connell, Robert L. Of Arms and Men: A History of War, Weapons, and Aggression. Oxford: Oxford University Press, 1990. PROPAGANDA • Balfour, Michael. Propaganda in War 1939-1945. London: Routledge and Kegan, 1979. • Darracott, Joseph. The First World War in Posters: From the Imperial War Museum. New York: Dover Publications, 1974 • Dewar, Michael Colonel. The Art of Deception in Warfare. New York: Sterling Publishing, 1989. • Dipaolo, Marc. War, Politics and Superheroes: Ethics and Propaganda in Comics and Film. North Carolina: McFarland, 2011. • Ellul, Jacques. Propaganda: The Formation of Men’s Attitudes. New York: Alfred A. Knopf, 1965. • Fyne, Robert. The Hollywood Propaganda of World War II. Maryland: Scarecrow Press, 2008. • Gregory, G.H. Posters of World War II. New York: Gramercy Books, 1993. • Hertzstein, Robert Edwin. The War that Hitler Won: The Most Infamous Propaganda Campaign in History. New York: Putnam, 1978. • Laswell, Harold. Propaganda Techniques in World War I. Cambridge: M.I.T. Press, 1971. • Laurie, Clayton. The Propaganda Warriors: America’s Crusade Against Nazi Germany. Kansas: University Press of Kansas, 1996. • Rendell, Kenneth W. With Weapons and Wits. Lincolnshire: Overlord Press, 1992. • Rhodes, Anthony. Propaganda: The Art of Persuasion World War II. Minneapolis: Book Sales, 1988. • Rutherford, Ward. Hitler’s Propaganda Machine. New York: Grosset and Dunlop, 1978. • Stanley, Peter. What Did You Do in the War, Daddy? A Visual History of Propaganda Posters. -
The Smithsonian and the Enola Gay: the Crew
AFA’s Enola Gay Controversy Archive Collection www.airforcemag.com The Smithsonian and the Enola Gay From the Air Force Association’s Enola Gay Controversy archive collection Online at www.airforcemag.com The Crew The Commander Paul Warfield Tibbets was born in Quincy, Ill., Feb. 23, 1915. He joined the Army in 1937, became an aviation cadet, and earned his wings and commission in 1938. In the early years of World War II, Tibbets was an outstanding B-17 pilot and squadron commander in Europe. He was chosen to be a test pilot for the B-29, then in development. In September 1944, Lt. Col. Tibbets was picked to organize and train a unit to deliver the atomic bomb. He was promoted to colonel in January 1945. In May 1945, Tibbets took his unit, the 509th Composite Group, to Tinian, from where it flew the atomic bomb missions against Japan in August. After the war, Tibbets stayed in the Air Force. One of his assignments was heading the bomber requirements branch at the Pentagon during the development of the B-47 jet bomber. He retired as a brigadier general in 1966. In civilian life, he rose to chairman of the board of Executive Jet Aviation in Columbus, Ohio, retiring from that post in 1986. At the dedication of the National Air and Space Museum’s Udvar- Hazy Center in December 2003, the 88-year-old Tibbets stood in front of the restored Enola Gay, shaking hands and receiving the high regard of visitors. (Col. Paul Tibbets in front of the Enola Gay—US Air Force photo) The Enola Gay Crew Airplane Crew Col. -
The Manhattan Project and Its Legacy
Transforming the Relationship between Science and Society: The Manhattan Project and Its Legacy Report on the workshop funded by the National Science Foundation held on February 14 and 15, 2013 in Washington, DC Table of Contents Executive Summary iii Introduction 1 The Workshop 2 Two Motifs 4 Core Session Discussions 6 Scientific Responsibility 6 The Culture of Secrecy and the National Security State 9 The Decision to Drop the Bomb 13 Aftermath 15 Next Steps 18 Conclusion 21 Appendix: Participant List and Biographies 22 Copyright © 2013 by the Atomic Heritage Foundation. All rights reserved. No part of this book, either text or illustration, may be reproduced or transmit- ted in any form by any means, electronic or mechanical, including photocopying, reporting, or by any information storage or retrieval system without written persmission from the publisher. Report prepared by Carla Borden. Design and layout by Alexandra Levy. Executive Summary The story of the Manhattan Project—the effort to develop and build the first atomic bomb—is epic, and it continues to unfold. The decision by the United States to use the bomb against Japan in August 1945 to end World War II is still being mythologized, argued, dissected, and researched. The moral responsibility of scientists, then and now, also has remained a live issue. Secrecy and security practices deemed necessary for the Manhattan Project have spread through the govern- ment, sometimes conflicting with notions of democracy. From the Manhattan Project, the scientific enterprise has grown enormously, to include research into the human genome, for example, and what became the Internet. Nuclear power plants provide needed electricity yet are controversial for many people. -
Richard G. Hewlett and Jack M. Holl. Atoms
ATOMS PEACE WAR Eisenhower and the Atomic Energy Commission Richard G. Hewlett and lack M. Roll With a Foreword by Richard S. Kirkendall and an Essay on Sources by Roger M. Anders University of California Press Berkeley Los Angeles London Published 1989 by the University of California Press Berkeley and Los Angeles, California University of California Press, Ltd. London, England Prepared by the Atomic Energy Commission; work made for hire. Library of Congress Cataloging-in-Publication Data Hewlett, Richard G. Atoms for peace and war, 1953-1961. (California studies in the history of science) Bibliography: p. Includes index. 1. Nuclear energy—United States—History. 2. U.S. Atomic Energy Commission—History. 3. Eisenhower, Dwight D. (Dwight David), 1890-1969. 4. United States—Politics and government-1953-1961. I. Holl, Jack M. II. Title. III. Series. QC792. 7. H48 1989 333.79'24'0973 88-29578 ISBN 0-520-06018-0 (alk. paper) Printed in the United States of America 1 2 3 4 5 6 7 8 9 CONTENTS List of Illustrations vii List of Figures and Tables ix Foreword by Richard S. Kirkendall xi Preface xix Acknowledgements xxvii 1. A Secret Mission 1 2. The Eisenhower Imprint 17 3. The President and the Bomb 34 4. The Oppenheimer Case 73 5. The Political Arena 113 6. Nuclear Weapons: A New Reality 144 7. Nuclear Power for the Marketplace 183 8. Atoms for Peace: Building American Policy 209 9. Pursuit of the Peaceful Atom 238 10. The Seeds of Anxiety 271 11. Safeguards, EURATOM, and the International Agency 305 12. -
Wahlen, R. K. History of 100-B Area
WHC-EP-0273 History of 100-B Area R. K. Wahlen Date Published October 1989 Prepared for the U.S. Department of Energy Assistant Secretary for Management and Administration w Westinghouse P.O. Box 1970 0- Hanford mpany Richland, Washington &I352 Hanford Operations and Engineering Contractor for the U.S. Department of Energy under Contract DE-ACO6-87RLlOg30 WHC-EP-0273 EXECUTIVE SUMMARY In August 1939, Albert Einstein wrote a letter to President Roosevelt that informed him of the work that had been done by Enrico Fermi and L. Szilard on converting energy from the element uranium. He also informed President Roosevelt that there was strong evidence that the Germans were also working on this same development. This letter initiated a program by the United States to develop an atomic bomb. The U.S. Army Corps of Engineers, under the Department of Defense, was assigned the task. The program, which involved several locations in the United States, was given the code name, Manhattan Project. E. I. du Pont de Nemours & Company (Du Pont) was contracted to build and operate the reactors and chemical separations plants for the production of plutonium. On December 14, 1942, officials of Du Pont met in Wilmington, Delaware, to develop a set of criteria for the selection of a site for the reactors and separations plants. The basic criteria specified four requirements: (1) a large supply of clean water, (2) a large supply of electricity, (3) a large area with low population density, and (4) an area that would cover at least 12 by 16 mi. -
Mflfihflttflfi PROJECT
MflfiHflTTflfi PROJECT U.S. DEPARTMENT OF ENERGY The Hanford Site began as part and the reactor stack are the ofthe United States Manhattan only facilities that remain. Project to research, test and build atomic weapons during World War II. Today, the U.S. Department The original 670-square mile ofEnergy (DOE) Richland Hanford Site, then known as Operations Office offers escorted the Hanford Engineer Works, public access to B Reactor along a was the last ofthree top-secret designated tour route. The National sites constructed in order to Park Service (NPS) is studying produce enriched uranium and preservation and interpretation plutonium for the world's first options for sites associated with nuclear weapons. the Manahattan Project. A draft is expected in summer 2009. A final report will recommend whether B Reactor, located about 45 the B Reactor, along with other miles northwest ofRichland, Manhattan Project facilities, should Washington, is the world's first be preserved, and ifso, what roles full-scale nuclear reactor. the DOE, the NPS and community Not only was B Reactor a first partners will play in preservation of-a-kind engineering structure, and public education. it was built and fully functional in just 11 months. Eventually, the shoreline of the Columbia River in south eastern Washington State held nine nuclear reactors at the height ofHanford's nuclear defense production during the Cold War era. The B Reactor was shut down in 1968. During the 1980's, the U.S. Department ofEnergy began removing B Reactor's support facilities. The reactor B Reactor operating in 1945 building, the river pumphouse 2 ! N 200 West 200 East Area Area _1-+....&+04.01 B Reactor today, looking west with Umtanum Ridge in the background MRNHI\TTI\N ~~~.,". -
A New Effort to Achieve World
Marshall and the Atomic Bomb Marshall and the Atomic Bomb By Frank Settle General George C. Marshall and the Atomic Bomb (Praeger, 2016) provides the first full narrative describing General Marshall’s crucial role in the first decade of nuclear weapons that included the Manhattan Project, the use of the atomic bomb on Japan, and their management during the early years of the Cold War. Marshall is best known today as the architect of the plan for Europe’s recovery in the aftermath of World War II—the Marshall Plan. He also earned acclaim as the master strategist of the Allied victory in World War II. Marshall mobilized and equipped the Army and Air Force under a single command, serving as the primary conduit for information between the Army and the Air Force, as well as the president and secretary of war. As Army Chief of Staff during World War II, he developed a close working relationship with Admiral Earnest King, Chief of Naval Operations; worked with Congress and leaders of industry on funding and producing resources for the war; and developed and implemented the successful strategy the Allies pursued in fighting the war. Last but not least of his responsibilities was the production of the atomic bomb. The Beginnings An early morning phone call to General Marshall and a letter to President Franklin Roosevelt led to Marshall’s little known, nonetheless critical, role in the development and use of the atomic bomb. The call, received at 3:00 a.m. on September 1, 1939, informed Marshall that German dive bombers had attacked Warsaw. -
Hanford B Reactor and Beyond
How DOE and the Tri Cities Community are Working to Redefine Hanford’s Post‐Cleanup Future Colleen French DOE Richland Operations Office Government Programs Manager Hanford • Hanford was created in 1943 as part of the top secret Manhattan Project • 586 square miles • Production of plutonium increased during Cold War (peaking between 1959‐1965) • Hanford produced 2/3 of the nation’s plutonium between 1945‐1985 • Home to the first full‐scale nuclear producon reactor ― B Reactor Complex during operations (1940s‐1960s) the B Reactor, now a National Historic Landmark 2 The Hanford Site • Fuel fabrication and irradiation in nuclear reactors along the Columbia River • Chemical separations in canyon facilities to dissolve fuel and extract plutonium in the Central Plateau • Liquid and solid wastes disposed of in Central Plateau • Eventually, 9 reactors were built and Hanford operated for defense production through 1988 3 Hanford Cleanup Overview Two Department of Energy Offices Office of River Protection • Tank Waste Richland Operations Office • River Corridor • Central Plateau Cleanup Work • Treat contaminated groundwater • Demolish facilities • Move buried waste, contaminated soil away from Columbia River • Isolate contamination from environment on Central Plateau • Treat underground tank waste Workforce • 8,500 total Department of Energy and contractor employees 4 www.em.doe.gov HANFORD SITE CLEANUP 859 waste sites BY THE NUMBERS have been remediated SIX of Hanford’s nine reactors have been “cocooned” 12K cubic meters of underground waste have been removed more reactors will be TWO cocooned in the coming years 49K visitors have toured the B Reactor percent of the site’s spent National Historic fuel has been moved to dry Landmark 100 storage 10 billion gallons of buildings have been demolished contaminated 743 groundwater have been treated 5 What are Hanford’s “Assets”? 6 Hanford Site Post 2015 Cleanup Controlled Access Vision for Access and Use to Some of the Cleaned-up River Shoreline Natural Resource Preservation 1. -
Trinity Scientific Firsts
TRINITY SCIENTIFIC FIRSTS THE TRINITY TEST was perhaps the greatest scientifi c experiment ever. Seventy-fi ve years ago, Los Alamos scientists and engineers from the U.S., Britain, and Canada changed the world. July 16, 1945 marks the entry into the Atomic Age. PLUTONIUM: THE BETHE-FEYNMAN FORMULA: Scientists confi rmed the newly discovered 239Pu has attractive nuclear Nobel Laureates Hans Bethe and Richard Feynman developed the physics fi ssion properties for an atomic weapon. They were able to discern which equation used to estimate the yield of a fi ssion weapon, building on earlier production path would be most effective based on nuclear chemistry, and work by Otto Frisch and Rudolf Peierls. The equation elegantly encapsulates separated plutonium from Hanford reactor fuel. essential physics involved in the nuclear explosion process. PRECISION HIGH-EXPLOSIVE IMPLOSION FOUNDATIONAL RADIOCHEMICAL TO CREATE A SUPER-CRITICAL ASSEMBLY: YIELD ANALYSIS: Project Y scientists developed simultaneously-exploding bridgewire detonators Wartime radiochemistry techniques developed and used at Trinity with a pioneering high-explosive lens system to create a symmetrically provide the foundation for subsequent analyses of nuclear detonations, convergent detonation wave to compress the core. both foreign and domestic. ADVANCED IMAGING TECHNIQUES: NEW FRONTIERS IN COMPUTING: Complementary diagnostics were developed to optimize the implosion Human computers and IBM punched-card machines together calculated design, including fl ash x-radiography, the RaLa method, -
Trivia Questions
TRIVIA QUESTIONS Submitted by: ANS Savannah River - A. Bryson, D. Hanson, B. Lenz, M. Mewborn 1. What was the code name used for the first U.S. test of a dry fuel hydrogen bomb? Castle Bravo 2. What was the name of world’s first artificial nuclear reactor to achieve criticality? Chicago Pile-1 (CP-1), I also seem to recall seeing/hearing them referred to as “number one,” “number two,” etc. 3. How much time elapsed between the first known sustained nuclear chain reaction at the University of Chicago and the _____ Option 1: {first use of this new technology as a weapon} or Option 2: {dropping of the atomic bomb in Hiroshima} A3) First chain reaction = December 2nd 1942, First bomb-drop = August 6th 1945 4. Some sort of question drawing info from the below tables. For example, “what were the names of the other aircraft that accompanied the Enola Gay (one point for each correct aircraft name)?” Another example, “What was the common word in the call sign of the pilots who flew the Japanese bombing missions?” A4) Screenshots of tables from the Wikipedia page “Atomic bombings of Hiroshima and Nagasaki” Savannah River Trivia / Page 1 of 18 5. True or False: Richard Feynman’s name is on the patent for a nuclear powered airplane? (True) 6. What is the Insectary of Bobo-Dioulasso doing to reduce the spread of sleeping sickness and wasting diseases that affect cattle using a nuclear technique? (Sterilizing tsetse flies; IAEA.org) 7. What was the name of the organization that studied that radiological effects on people after the atomic bombings? Atomic Bomb Casualty Commission 8. -
Chicago Pile-1 - Wikipedia, the Free Encyclopedia
Chicago Pile-1 - Wikipedia, the free encyclopedia Not logged in Talk Contributions Create account Log in Article Talk Read Edit View history Chicago Pile-1 From Wikipedia, the free encyclopedia Coordinates : 41°47′32″N 87°36′3″W Main page Contents Chicago Pile-1 (CP-1) was the world's first nuclear Site of the First Self Sustaining Nuclear Featured content reactor to achieve criticality. Its construction was part of Reaction Current events the Manhattan Project, the Allied effort to create atomic U.S. National Register of Historic Places Random article bombs during World War II. It was built by the U.S. National Historic Landmark Donate to Wikipedia Manhattan Project's Metallurgical Laboratory at the Wikipedia store Chicago Landmark University of Chicago , under the west viewing stands of Interaction the original Stagg Field . The first man-made self- Help sustaining nuclear chain reaction was initiated in CP-1 About Wikipedia on 2 December 1942, under the supervision of Enrico Community portal Recent changes Fermi, who described the apparatus as "a crude pile of [4] Contact page black bricks and wooden timbers". Tools The reactor was assembled in November 1942, by a team What links here that included Fermi, Leo Szilard , discoverer of the chain Related changes reaction, and Herbert L. Anderson, Walter Zinn, Martin Upload file D. Whitaker, and George Weil . It contained 45,000 Drawing of the reactor Special pages graphite blocks weighing 400 short tons (360 t) used as Permanent link a neutron moderator , and was fueled by 6 short tons Page information Wikidata item (5.4 t) of uranium metal and 50 short tons (45 t) of Cite this page uranium oxide.