(Balsaminaceae) Using Leaf Traits

Total Page:16

File Type:pdf, Size:1020Kb

(Balsaminaceae) Using Leaf Traits Botany Distinguishing Impatiens capensis from Impatiens pallida (Balsaminaceae) using leaf traits Journal: Botany Manuscript ID cjb-2020-0022.R1 Manuscript Type: Article Date Submitted by the 20-Mar-2020 Author: Complete List of Authors: Whitfield, Heather; University of Wisconsin Madison, Botany Toczydlowski, Rachel; Michigan State University, Integrative Biology jewelweed, leaf shape, linear discriminate analysis, morphometric Keyword: analysis, speciesDraft identification Is the invited manuscript for consideration in a Special Not applicable (regular submission) Issue? : https://mc06.manuscriptcentral.com/botany-pubs Page 1 of 29 Botany Distinguishing Impatiens capensis from Impatiens pallida (Balsaminaceae) using leaf traits Running head: Impatiens leaf traits Heather L. Whitfield Rachel H. Toczydlowski1 Authors’ Affiliation: Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706 Draft For: Botany 1Corresponding author: Rachel H. Toczydlowski, [email protected] 1 https://mc06.manuscriptcentral.com/botany-pubs Botany Page 2 of 29 Abstract Impatiens capensis (orange jewelweed) and Impatiens pallida (yellow jewelweed) are annual species with similar phenotypes that grow in similar environments throughout the eastern United States. This makes them extremely difficult to distinguish when (chasmogamous) flowers are absent. We use morphometric analyses to identify leaf characters that distinguish these species. After collecting and scanning 342 leaves from plants of each species growing in co-occurring populations in Madison, WI, we quantified: leaf size, shape (using elliptical Fourier analysis), serratedness, and color. Using leaf size and shape traits, a linear discriminate analysis assigned up to 100% of leaves to the correct species. The uppermost fully expanded leaf yielded the most accurate species assignments based on size and shape traits. This leaf was on average, smaller, less deeply serrated, with a more acute base,Draft apex, and elliptical shape in I. capensis as compared to I. pallida. Impatiens pallida leaves had more color contrast (lighter veins and margins) than I. capensis, which were solid green throughout. Morphometric analysis is a promising technique to identify species-distinguishing characters in the absence of binary traits or molecular genetic analyses. Leaves from across these species’ ranges should be analyzed to test the robustness of the species-distinguishing characters we present. 2 https://mc06.manuscriptcentral.com/botany-pubs Page 3 of 29 Botany Keywords: jewelweed, leaf shape, linear discriminate analysis, morphometric analysis, species identification Introduction Both Impatiens capensis (Meerb.) and Impatiens pallida (Nutt.), commonly referred to as orange and pale touch-me-not, or jewelweed, respectively, are challenging to distinguish annual dicot species. These species share many characteristics in both physical appearance and growing environment (Voss and Reznicek 2012). Both species are native to North America, and the range of I. pallida is completely nested within the range of I. capensis (USDA 2007). Although I. capensis tends to grow more frequently Draftin wetter and shadier areas whereas I. pallida prefers a more mesic environment, there is considerable overlap in the environmental niches of these species (Lechowicz 1988). In fact, the two species sometimes grow in completely intermixed stands (Lechowicz 1988). It is therefore difficult to identify the species based solely on habitat requirements. The species can be reliably distinguished from one another using (chasmogamous) flower color and shape – I. pallida flowers are light yellow, usually with limited spotting, and about as long as they are wide (Fernald 1950; Gleason and Cronquist 1991). In contrast, I. capensis flowers are orange, commonly with varying degrees of red spotting, and longer than they are wide (Fernald 1950; Schoen and Latta 1989). Chasmogamous flowers are typically only present from late July through mid-September or the first frost, however (Rust 1977). Aside from genetic analysis, which is costly and time intensive, there remains no concrete way to distinguish these species in the absence of chasmogamous flowers. Although some argue that petiole color can be used as a 3 https://mc06.manuscriptcentral.com/botany-pubs Botany Page 4 of 29 distinguishing character – red on I. capensis and green on I. pallida – petiole color is sensitive to light levels (among other environmental factors) and is thus not a reliable trait for species identification (personal observations). Experienced botanists can often distinguish morphologically similar species from one another based on “gestalt” or their “overall impression” of the plant (Harris et al. 2015). These perceptual skills require considerable time and effort to acquire, and when experts are able to detect species distinguishing patterns, they often find it difficult to convey this knowledge to others (Harris et al. 2015; Daston 2008). Recent advances in digital imaging and Draftcontemporary computing power now allow us to quantify and analyze subtle, complex, and/or continuous variation in shape and size (Rohlf and Marcus 1993; Adams et al. 2004). These modern or geometric morphometric outline analyses may allow us to identify, quantify, and describe the “gestalt” characters used by experienced botanists to distinguish highly similar species (Cope et al. 2011). Complex outlines (e.g. of a leaf) are decomposed into a set of mathematical coefficients using Elliptical Fourier analysis (EFA) that quantitatively describe the (size and) shape of the outline (McLellan and Endler 1998; see Bonhomme et al. 2014 for an accessible in-depth explanation). These mathematical coefficients from EFA can be used to visualize average shapes. They can also be summarized using principal components analysis (PCA) and fed into a discriminant analysis to test how accurately these continuous shape traits can assign individuals to species. For example, EFA has been used to distinguish agricultural crops from weeds (Neto et al. 2006), species of grapes (Klein et al. 2017), soft corals (Carlos et al. 2011), mosquitos (Rohlf and Archie 1984), and 4 https://mc06.manuscriptcentral.com/botany-pubs Page 5 of 29 Botany hominids (Gonzalez-Jose et al. 2008). We applied modern morphometric techniques to investigate the extent to which I. capensis and I. pallida can be distinguished based on leaf shape, size, and color. Methods Leaf collections We identified three nature reserves (sites) on the University of Wisconsin – Madison campus in Madison, Wisconsin, USA: Muir Woods, Bill’s Woods, and Picnic Point Marsh (Fig. 1) that contained co-occurring populations of I. capensis and I. pallida. These sites varied in light, soil moisture, and likely genetic composition. Within each site, we collected 3 leaves from each of 5- 10 randomly selected plants of each speciesDraft within each of 3 sub-locations (areas). We sampled until we reached 25 plants of each species in each site. We collected from areas where both species were growing in intermixed stands to standardize the range of environmental variability sampled across species. We could only find two areas of intermixed Impatiens in Bill’s Woods so we sampled two additional areas where only one of the species was present. We could only find two areas of I. capensis to sample in Muir Woods. We collected leaves from three standardized locations within each plant (Supp. Fig. 1) to test for differences in leaf shape or size depending on where they were growing on the plant (essentially leaf height, age, and susceptibility to herbivory and disease). We defined leaf position 1 as the lowest leaf on the plant borne on the main stem. The second leaf came from the middle of a branch that diverged from the main stem in the leafiest region of the plant. The third leaf was the fully expanded leaf closest to the top of the plant on the main stem. We collected leaves into 5 https://mc06.manuscriptcentral.com/botany-pubs Botany Page 6 of 29 envelopes labeled with the leaf position, species, site, and area and pressed them in a plant press. All leaves were collected between August and September of 2017. Leaf scanning and image processing We scanned pressed leaves one at a time using a CanoScan 8800F desktop scanner at a resolution of 300dpi in color photo mode with auto exposure settings and saved the scans in TIFF format. All leaves were scanned with the leaf tip positioned at twelve o’clock on the scanner bed. Using the program FIJI (Schindelin et al. 2012), we converted leaf scans into binary black and white images. We removed any leaves thatDraft did not have entire margins and filled in any interior holes using the black paint tool. We removed leaf petioles in the scans by painting over them with the white paint tool (petioles were torn at variable lengths when collected). We retained a total of 342 leaf blade silhouettes for morphometric analysis. Morphometric analysis – quantifying leaf shape, size, and color To characterize leaf shape, we performed elliptical Fourier analysis using the Momocs package V1.2.9.3 (Bonhomme et al. 2014) in R (R Core Team 2017). Elliptical Fourier analysis mathematically characterizes and quantifies complex shapes by decomposing them into a series of ellipses or harmonics that vary in shape, size, and orientation. We interpolated 500 points around each leaf margin and defined 4 landmarks at the maximum and minimum points in the horizontal and vertical directions to maintain a consistent
Recommended publications
  • State of New York City's Plants 2018
    STATE OF NEW YORK CITY’S PLANTS 2018 Daniel Atha & Brian Boom © 2018 The New York Botanical Garden All rights reserved ISBN 978-0-89327-955-4 Center for Conservation Strategy The New York Botanical Garden 2900 Southern Boulevard Bronx, NY 10458 All photos NYBG staff Citation: Atha, D. and B. Boom. 2018. State of New York City’s Plants 2018. Center for Conservation Strategy. The New York Botanical Garden, Bronx, NY. 132 pp. STATE OF NEW YORK CITY’S PLANTS 2018 4 EXECUTIVE SUMMARY 6 INTRODUCTION 10 DOCUMENTING THE CITY’S PLANTS 10 The Flora of New York City 11 Rare Species 14 Focus on Specific Area 16 Botanical Spectacle: Summer Snow 18 CITIZEN SCIENCE 20 THREATS TO THE CITY’S PLANTS 24 NEW YORK STATE PROHIBITED AND REGULATED INVASIVE SPECIES FOUND IN NEW YORK CITY 26 LOOKING AHEAD 27 CONTRIBUTORS AND ACKNOWLEGMENTS 30 LITERATURE CITED 31 APPENDIX Checklist of the Spontaneous Vascular Plants of New York City 32 Ferns and Fern Allies 35 Gymnosperms 36 Nymphaeales and Magnoliids 37 Monocots 67 Dicots 3 EXECUTIVE SUMMARY This report, State of New York City’s Plants 2018, is the first rankings of rare, threatened, endangered, and extinct species of what is envisioned by the Center for Conservation Strategy known from New York City, and based on this compilation of The New York Botanical Garden as annual updates thirteen percent of the City’s flora is imperiled or extinct in New summarizing the status of the spontaneous plant species of the York City. five boroughs of New York City. This year’s report deals with the City’s vascular plants (ferns and fern allies, gymnosperms, We have begun the process of assessing conservation status and flowering plants), but in the future it is planned to phase in at the local level for all species.
    [Show full text]
  • Hummingbird Gardening for Wisconsin Gardeners Using Native Plants
    HUMMINGBIRD GARDENING FOR WISCONSIN GARDENERS USING NATIVE PLANTS “The hummingbird is seen to stop thus some instants before a flower, and dart off like a gleam to another; it visits them all, plunging its little tongue into their bosom, caressing them with its wings, without ever settling, but at the same time ever quitting them.” W.C.L. Martin, General History of Hummingbirds, Circa 1840. KEY ELEMENTS OF A SUCCESSFUL HUMMINGBIRD GARDEN A “Wildscape” Filled With Native Plants Loved By Hummingbirds With Something in Bloom All Season Long! Well-Maintained Hummingbird Feeders from April through October (with no instant nectar or red food coloring) Cover, Perching & Preening Spots (trees & shrubs with dense, tiny branches for perching, shepherd’s hooks, tree snags, brush piles) Inclusion of Water Feature---water should be very shallow and feature should include waterfall and dripper and/or misting device to keep water moving and fresh Use of Hummingbird Beacons (red ribbons, metallic streamers, gazing ball, or any red object near feeders and flowers, especially in early spring!) NATIVE HUMMINGBIRD GARDENING & WILDSCAPING TIPS Plant Red or Orange Tubular Flowers with no fragrance (although some flowers of other colors can also be highly attractive to hummingbirds) Use Native Plants, Wildflowers & Single Flowers Plants with Many Small Blossoms Pointing Sideways or Down Use Plants With Long Bloom Period Use Plants that Bloom Profusely During August & September Create Mass Plantings (not just a single plant) of Flowers that are Hummingbird Favorites Eliminate or Greatly Decrease the Use of Turf Grass to Create a Natural Hummingbird and Wild Bird Habitat (native groundcovers can be used in place of turf grass if desired) Use Natural and/or Organic Mulches (Pine Needles, Leaves, Bark) Whenever Possible Height of Plants should be Tall, not Short (or utilize hanging baskets or large containers for shorter plants)---remember, hummingbirds are birds of the air and not the ground.
    [Show full text]
  • Reconstructing the Basal Angiosperm Phylogeny: Evaluating Information Content of Mitochondrial Genes
    55 (4) • November 2006: 837–856 Qiu & al. • Basal angiosperm phylogeny Reconstructing the basal angiosperm phylogeny: evaluating information content of mitochondrial genes Yin-Long Qiu1, Libo Li, Tory A. Hendry, Ruiqi Li, David W. Taylor, Michael J. Issa, Alexander J. Ronen, Mona L. Vekaria & Adam M. White 1Department of Ecology & Evolutionary Biology, The University Herbarium, University of Michigan, Ann Arbor, Michigan 48109-1048, U.S.A. [email protected] (author for correspondence). Three mitochondrial (atp1, matR, nad5), four chloroplast (atpB, matK, rbcL, rpoC2), and one nuclear (18S) genes from 162 seed plants, representing all major lineages of gymnosperms and angiosperms, were analyzed together in a supermatrix or in various partitions using likelihood and parsimony methods. The results show that Amborella + Nymphaeales together constitute the first diverging lineage of angiosperms, and that the topology of Amborella alone being sister to all other angiosperms likely represents a local long branch attrac- tion artifact. The monophyly of magnoliids, as well as sister relationships between Magnoliales and Laurales, and between Canellales and Piperales, are all strongly supported. The sister relationship to eudicots of Ceratophyllum is not strongly supported by this study; instead a placement of the genus with Chloranthaceae receives moderate support in the mitochondrial gene analyses. Relationships among magnoliids, monocots, and eudicots remain unresolved. Direct comparisons of analytic results from several data partitions with or without RNA editing sites show that in multigene analyses, RNA editing has no effect on well supported rela- tionships, but minor effect on weakly supported ones. Finally, comparisons of results from separate analyses of mitochondrial and chloroplast genes demonstrate that mitochondrial genes, with overall slower rates of sub- stitution than chloroplast genes, are informative phylogenetic markers, and are particularly suitable for resolv- ing deep relationships.
    [Show full text]
  • Harmonia+ and Pandora+
    Appendix A Harmonia+PL – procedure for negative impact risk assessment for invasive alien species and potentially invasive alien species in Poland QUESTIONNAIRE A0 | Context Questions from this module identify the assessor and the biological, geographical & social context of the assessment. a01. Name(s) of the assessor(s): first name and family name 1. Wojciech Adamowski 2. Monika Myśliwy – external expert 3. Zygmunt Dajdok acomm01. Comments: degree affiliation assessment date (1) dr Białowieża Geobotanical Station, Faculty of Biology, 15-01-2018 University of Warsaw (2) dr Department of Plant Taxonomy and Phytogeography, 26-01-2018 Faculty of Biology, University of Szczecin (3) dr Department of Botany, Institute of Environmental 31-01-2018 Biology, University of Wrocław a02. Name(s) of the species under assessment: Polish name: Niecierpek pomarańczowy Latin name: Impatiens capensis Meerb. English name: Orange balsam acomm02. Comments: The nomenclature was adapted after Mirek et al. (2002 – P). Latin name is widely accepted (The Plant List 2013 – B). Synonyms of the Latin name: Balsamina capensis (Meerb.) DC., Balsamina fulva Ser., Chrysaea biflora (Walter) Nieuwl. & Lunell, Impatiens biflora Walter, Impatiens fulva Nutt., Impatiens maculata Muhl., Impatiens noli-tangere ssp. biflora (Walter) Hultén A synonym of the Polish name: niecierpek przylądkowy Synonyms of the English name: orange jewelweed, spotted touch-me-not Polish name (synonym I) Polish name (synonym II) niecierpek przylądkowy – Latin name (synonym I) Latin name (synonym II) Impatiens biflora Impatiens fulva English name (synonym I) English name (synonym II) Common jewelweed Spotted jewelweed a03. Area under assessment: Poland acomm03. Comments: – a04. Status of the species in Poland. The species is: native to Poland alien, absent from Poland alien, present in Poland only in cultivation or captivity alien, present in Poland in the environment, not established X alien, present in Poland in the environment, established aconf01.
    [Show full text]
  • Plants of the Sacony Marsh and Trail, Kutztown, PA- Phase II
    Plants of the Sacony Creek Trail, Kutztown, PA – Phase I Wildflowers Anemone, Canada Anemone canadensis Aster, Crooked Stem Aster prenanthoides Aster, False Boltonia asteroids Aster, New England Aster novae angliae Aster, White Wood Aster divaricatus Avens, White Geum canadense Beardtongue, Foxglove Penstemon digitalis Beardtongue, Small’s Penstemon smallii Bee Balm Monarda didyma Bee Balm, Spotted Monarda punctata Bergamot, Wild Monarda fistulosa Bishop’s Cap Mitella diphylla Bitter Cress, Pennsylvania Cardamine pensylvanica Bittersweet, Oriental Celastrus orbiculatus Blazing Star Liatris spicata Bleeding Heart Dicentra spectabilis Bleeding Heart, Fringed Dicentra eximia Bloodroot Sanguinara Canadensis Blue-Eyed Grass Sisyrinchium montanum Blue-Eyed Grass, Eastern Sisyrinchium atlanticum Boneset Eupatorium perfoliatum Buttercup, Hispid Ranunculus hispidus Buttercup, Hispid Ranunculus hispidus Camas, Eastern Camassia scilloides Campion, Starry Silene stellata Cardinal Flower Lobelia cardinalis Carolina pea shrub Thermopsis caroliniani Carrion flower Smilax herbacea Carrot, Wild Daucus carota Chickweed Stellaria media Cleavers Galium aparine Clover, Least Hop rifolium dubium Clover, White Trifolium repens Clover, White Trifolium repens Cohosh, Black Cimicifuga racemosa Columbine, Eastern Aquilegia canadensis Coneflower, Green-Headed Rudbeckia laciniata Coneflower, Thin-Leaf Rudbeckia triloba Coreopsis, Tall Coreopsis tripteris Crowfoot, Bristly Ranunculus pensylvanicus Culver’s Root Veronicastrum virginicum Cup Plant Silphium perfoliatum
    [Show full text]
  • 100 Years of Change in the Flora of the Carolinas
    ASTERACEAE 224 Zinnia Linnaeus 1759 (Zinnia) A genus of about 17 species, herbs, of sw. North America south to South America. References: Smith in FNA (2006c); Cronquist (1980)=SE. 1 Achenes wingless; receptacular bracts (chaff) toothed or erose on the lip..............................................................Z. peruviana 1 Achenes winged; receptacular bracts (chaff) with a differentiated fimbriate lip........................................................Z. violacea * Zinnia peruviana (Linnaeus) Linnaeus, Zinnia. Cp (GA, NC, SC): disturbed areas; rare (commonly cultivated), introduced from the New World tropics. May-November. [= FNA, K, SE; ? Z. pauciflora Linnaeus – S] * Zinnia violacea Cavanilles, Garden Zinnia. Cp (GA, NC, SC): disturbed areas; rare (commonly cultivated), introduced from the New World tropics. May-November. [= FNA, K; ? Z. elegans Jacquin – S, SE] BALSAMINACEAE A. Richard 1822 (Touch-me-not Family) A family of 2 genera and 850-1000 species, primarily of the Old World tropics. References: Fischer in Kubitzki (2004). Impatiens Linnaeus (Jewelweed, Touch-me-not, Snapweed, Balsam) A genus of 850-1000 species, herbs and subshrubs, primarily tropical and north temperate Old World. References: Fischer in Kubitzki (2004). 1 Corolla purple, pink, or white; plants 3-6 (-8) dm tall; stems puberulent or glabrous; [cultivated alien, rarely escaped]. 2 Sepal spur strongly recurved; stems puberulent..............................................................................................I. balsamina 2 Sepal spur slightly
    [Show full text]
  • Experience Can Bias Bumble Bee Nectar-Robbing 1
    Learning about larceny: experience can bias bumble bees to rob nectar Item Type Article Authors Barker, Jessica L.; Dornhaus, Anna; Bronstein, Judith L.; Muth, Felicity Citation Barker, J.L., Dornhaus, A., Bronstein, J.L. et al. Behav Ecol Sociobiol (2018) 72: 68. https://doi.org/10.1007/ s00265-018-2478-6 DOI 10.1007/s00265-018-2478-6 Publisher SPRINGER Journal BEHAVIORAL ECOLOGY AND SOCIOBIOLOGY Rights © Springer-Verlag GmbH Germany, part of Springer Nature 2018. Download date 25/09/2021 12:14:54 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final accepted manuscript Link to Item http://hdl.handle.net/10150/627877 Experience can bias bumble bee nectar-robbing 1 1 Learning about larceny: experience can bias bumble bees to secondary-rob nectar 2 3 Jessica L. Barkera,b* 4 Anna Dornhausa 5 Judith L. Bronsteina 6 Felicity Muthc 7 8 aDepartment of Ecology and Evolutionary Biology, University of Arizona, Tucson, USA 9 bCurrent address: Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark 10 cDepartment of Biology, University of Nevada, Reno, USA 11 *Corresponding author: [email protected], +45 87 15 36 81 12 13 Abstract 14 How do nectar-feeding animals choose among alternative handling tactics? Such decisions have 15 consequences not only for animal fitness (via food intake) but for plant fitness as well: many 16 animals can choose to ‘rob’ nectar through holes chewed in the base of a flower instead of 17 ‘legitimately’ collecting it through the flower’s opening, thus failing to contact pollen. Although 18 variation among individuals in these nectar-foraging tactics is well documented, it is largely 19 unknown why some individuals specialize (at least in the short term) on robbing, others on 20 legitimate visitation, and others switch behaviors.
    [Show full text]
  • Impatiens Pallida Nutt.Jewelweed; Pale Touch-Me-Not; Touch-Me-Not
    Kasey Hartz Natural Area Reference Sheet Impatiens pallida Nutt.Jewelweed; Pale Touch-me-not; Touch-me-not BALSAMINACEAE (Touch-me-not Family) Blooming season: Midsummer to early fall. Plant: 0.5 - 2.5 m high, much branched annual with juicy watery stems. Leaves: Alternate, thin, ovate, blunt toothed, 2.5 - 7.5 cm long. Bright medium green. Seedlings have paired, round, pale green leaves. Flower: Lemon yellow, often (ours are) spotted with red or reddish brown, especially on the lip, although there are several color forms (Rickett 1966 Part 2). Bilaterally symmetrical, roughly snapdragon shape. 3 petals with 2 of them cleft into 2 unequal lobes forming the lip. 3 sepals - 2 being small and green and the third lemon yellow, large and forming a sack or funnel, ending in a spur. The spur is bent at 90 degrees (or little more), pointing down and is about 1/4 the length of the sack/funnel. Flowers are held horizontally on pendant stalks. Cleistogamous flowers can form late in the season (House Part 1). Fruit: The fruit is an oblong capsule, which explodes when ripe (or when handled at near maturity), shooting seeds out, leaving 5 spiraled valves. Ripens late summer through fall. Can be confused with: Impatiens capensis or spotted touch-me-not, also called jewelweed, which has an orange base color and a recurved spur facing the sack/funnel opening (not downward). Kasey Hartz Natural Area Reference Sheet Impatiens pallida Nutt. 2 Jewelweed; Pale Touch-me-not; Touch-me-not Geographic range: Type specimen location: State: Mostly the southern third of Michigan.
    [Show full text]
  • Balsaminaceae) Sandra M
    Eastern Illinois University The Keep Masters Theses Student Theses & Publications 1979 Biosystematic Studies of Impatiens pallida and Impatiens biflora (Balsaminaceae) Sandra M. Buening Eastern Illinois University This research is a product of the graduate program in Botany at Eastern Illinois University. Find out more about the program. Recommended Citation Buening, Sandra M., "Biosystematic Studies of Impatiens pallida and Impatiens biflora (Balsaminaceae)" (1979). Masters Theses. 3126. https://thekeep.eiu.edu/theses/3126 This is brought to you for free and open access by the Student Theses & Publications at The Keep. It has been accepted for inclusion in Masters Theses by an authorized administrator of The Keep. For more information, please contact [email protected]. PAPER CERTIFICATE #2 TO: Graduate Degree Candidates who have written formal theses. SUBJECT: Permission to reproduce theses. The University Library is receiving a number of requests from other institutions asking permission to reproduce dissertations for inclusion in their library holdings. Although no copyright laws are involved, we feel that professional courtesy demands that permission be obtained from the author before we allow theses to be copied. Please sign one of the following statements: Booth Library of Eastern Illinois University has my permission to lend my thesis to a reputable college or university for the purpose of copying it for inclusion in that institution's library or research holdings. I respectfully request Booth Library of Eastern Illinois University not allow my thesis be reproduced because Date Author pdm Biosystematic Studies of Impatiens pallida and Impatiens biflora (Balsaminaceae) (TITLE) BY Sandra M. -Buening THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF f13.ster of Science IN THE GRADUATE SCHOOL, EASTERN ILLINOIS UNIVERSITY CHARLESTON, ILLINOIS .
    [Show full text]
  • New York State Museum Institute Carex Flacca (Heath Sedge)
    New York Flora Association - New York State Museum Institute Gerry Moore, Catherine Rushworth, and Steve Young, Editors Correspondence to NYFA, 3140 CEC, Albany, NY 12230 Vol. 18 No. 2 Summer 2007 e-mail: [email protected] Dues $20/Year website: ww.nyflora.org to a successional forest. The soils are mesic and Carex flacca (Heath Sedge) a Non- associated species include Penstemon digitalis, Lonicera morrowii, Galium mollugo, Rosa Native (? Invasive) Addition to the multiflora, Cornus racemosa, and Equisetum Flora of Tompkins County and South arvense. It is colonial and forms a very dense Central New York. monospecific patch. In other parts of North America it is known from abandoned quarries, By David Werier ditches, marshes, and wet forest edges (Standley 2002). In Europe it is known from various habitats Last winter (2005-2006) while walking along a but usually prefers calcareous soils (Chater 1980). gas pipeline right-of-way I became aware of a large Although Carex flacca is only known from a clonal patch of a sedge. I was unable to identify the few locales in North America, it is believed to be species as it was not familiar to me and was in a increasing (Standley 2002). The population in vegetative state. I was particularly intrigued Tompkins County appears to be well established, because it grew in a dense patch about 25 square robust, and dominant to the exclusion of other meters in size, to the exclusion of all other plants. plants. From just seeing this one population I am This spring (May 2006) I returned to the site and obliged to believe that this species could become collected a voucher specimen (DW 2987, to be invasive.
    [Show full text]
  • Jewelweed, Impatiens Capensis
    A Horticulture Information article from the Wisconsin Master Gardener website, posted 28 Sept 2018 Jewelweed, Impatiens capensis Jewelweed, Impatiens capensis, is an annual plant in the balsam family (Balsaminaceae) native to northern and eastern North America that also goes by other common names including orange balsam, orange jewelweed, spotted jewelweed, and spotted touch-me-not. The species name capensis, meaning “of the cape”, was applied because its origin was mistakenly thought to be from South Africa. It is common and widespread in moist, shady areas such as low woodlands, margins of bogs and marshes, along streams and lakes, in ditches, and in disturbed areas such as road cuts. It is often found near the related but less common yellow jewelweed or touch-me- not, I. pallida, Jewelweed, Impatiens capensis, is a common native plant that is very found in moist places. similar but has larger yellow fl owers with a shorter spur and tends to be a larger plant. It was taken to England, France, and other parts northern and central Europe in the 1800 and 1900’s where it naturalized readily and is quite similar to I. noli-tangere, native to Europe and Asia. Native Americans used the muciliginous sap medicinally, applied topically to relieve itching and pain from hives, poison ivy, stinging nettle, and other skin problems. The sap has been shown to have fungicidal properties and has been used topically to treat athletes foot. Impatiens pallida has larger yellow fl owers with a shorter nectar spur. This self-seeding summer annual germinates in early spring and grows two to fi ve feet tall by mid- summer from a shallow branching taproot.
    [Show full text]
  • Conservation Assessment for Fraser’S Loosestrife (Lysimachia Fraseri Duby)
    Conservation Assessment for Fraser’s Loosestrife (Lysimachia fraseri Duby) USDA Forest Service, Eastern Region August 2003 Alice Long Heikens Franklin College Shawnee National Forest This document is undergoing peer review, comments welcome This Conservation Assessment was prepared to compile the published and unpublished information on the subject taxon or community; or this document was prepared by another organization and provides information to serve as a Conservation Assessment for the Eastern Region of the Forest Service. It does not represent a management decision by the U.S. Forest Service. Though the best scientific information available was used and subject experts were consulted in preparation of this document, it is expected that new information will arise. In the spirit of continuous learning and adaptive management, if you have information that will assist in conserving the subject taxon, please contact the Eastern Region of the Forest Service - Threatened and Endangered Species Program at 310 Wisconsin Avenue, Suite 580 Milwaukee, Wisconsin 53203. Conservation Assessment for Lysimachia fraseri 2 Table of Contents EXECUTIVE SUMMARY .......................................................................... 4 ACKNOWLEDGEMENTS ......................................................................... 4 NOMENCLATURE AND TAXONOMY................................................... 4 DESCRIPTION OF SPECIES..................................................................... 5 LIFE HISTORY...........................................................................................
    [Show full text]