<<

arXiv:2108.08507v1 [astro-ph.GA] 19 Aug 2021 oprsno h ria rpriso h ik Way Milky the of Properties Orbital the of Comparison L hsbmdlt,Gsblnigt h ik .. hs htfre nthe in formed that those i.e., disk, the to belonging GCs bimodality, this ntebmdlt edsoee nteG itiuinoe h parame the over separa distribution The fo GC the [4]. method in halo new discovered and a we disk, use developed bimodality thick We we the bulge, on orbits. Thus, : of the GCs. calculation of the of subsystems for properties required orbital space the allo phase which [3], 6d GCs the 150 for of catalog GCs (2019) all Vasiliev’s nearly mention specifically of to motion proper orbital GC the mean on study data of to astrometric possible catalogs other it with of made combination positions appearance in release The DR2 second v spacecraft. spatial their Gaia of measurements the high-accuracy to thanks possible srnm eot,22,Vl 5 o9 p 737–754 pp. 9, No 65, Vol. 2021, Reports, Astronomy fGsi h ik a a eaon 200. es around be theoretical can to Way According Milky the known. in the currently Galax GCs of are age of the the GCs to of Way equal evolution Milky almost is and 170 age birth Their the formations. objec of stellar interesting oldest understanding most provide the among GCs are of (GCs) clusters Globular INTRODUCTION 1 dat catalog DR2 identified. Gaia were changes the ea significant from calculated underwent motions clusters orbits proper globular using same potential the axisy para tional of orbital an obtained parameters The orbital in kpc. the cu back 200 rotation to Gyr the up s distances using 5 obtain and galactocentric refined component, integrated motions we disk which were bulge, proper form, spherical Navarro–Frenk–White orbits mean a The with new potential the component data. using catalog calculated EDR3 are which ters, Z mn h srmti aactlg ihpoe oin rmGaia from motions proper with catalogs data astrometric the Among w motion, orbital their examine to is studies GC of methods the of One 10.1134/S1063772921090018 DOI: Abstract sthe is lblrCutr rmteDt fteGi DR2 Gaia the of Data the from Clusters Globular Z eta Ploo srnmclOsraoy usa Acade Russian Observatory, Astronomical (Pulkovo) Central opnn fteaglrmmnu and momentum angular the of component W rvd e auso h ria aaeeso 5 lblrclu globular 152 of parameters orbital the of values new provide —We ukvkesos 5 t eesug 910Russia 196140 Petersburg, St. 65, shosse Pulkovskoe n D3Catalogs EDR3 and ..BjoaadVV Bobylev V.V. and Bajkova A.T. 1 ecc steobtlecnrct.Deto Due eccentricity. orbital the is lcte n oiin from positions and elocities eeswr oprdwith compared were meters le ntesm gravita- same the in rlier si u aay Studies Galaxy. our in ts nvre Approximately Universe. yo Sciences, of my hrcldr aoi the in halo dark pherical v fojcswt large with objects of rve hsctlgt study to catalog this d oin ae nthe on based motions .Teojcswhose objects The a. inmto sbased is method tion eaaigGsby GCs separating r iae,tenumber the timates, ,snete r the are they since y, nw odt [1–3]. date to known ailvlcte and velocities radial steconstruction the ws like would we DR2, dfo h Gaia the from ed ter aayisl,can itself, Galaxy mti three- mmetric L Z ihbecame hich /ecc where , s- be easily distinguished from halo GCs of extragalactic origin using the probabilistic method described in detail in [4]. Massari et al. [5] give a classification of halo GCs that formed outside the Milky Way and ended up in our Galaxy as a result of accretion from dwarf (Sagittarius, Sausage, Sequoia [6]). A catalog of 152 GC orbits and their orbital parameters is presented by us in [7], as well as a modified classification by the Galaxy subsystems based on the obtained orbital properties of GCs. This classification is confirmed in this study as well. The appearance of a new, more accurate version of the GC proper motions catalog [8] based on the Gaia EDR3 measurement data leads to a natural problem of refining the GC orbital parameters and identifying GCs whose orbital motion underwent the greatest changes. This is the scope of the present paper. This study is structured as follows. The first section provides a brief description and justification of the adopted model of the gravitational potential in which the GC orbits are integrated; the equations of motion and the formulas for calculating the orbital parameters are also given. The second section describes the data and compares the mean proper motions and their uncertainties obtained from the data of the Gaia DR2 and EDR3 catalogs. The third section is dedicated to the discussion of the study results; a catalog of GC orbital parameters calculated from the Gaia EDR3 data is presented, and they are compared with the orbital parameters obtained from the Gaia DR2 catalog and published in [7]; the orbits for a number of GCs that have undergone the greatest changes are given. The main conclusions are drawn in the final section.

2 METHODS

2.1 Axisymmetric Galactic Potential Model The axisymmetric gravitational potential of the Galaxy is represented as a sum of three components: central spherical bulge Φb(r(R,Z)), disk Φd(r(R,Z)), and a massive spherical dark-matter halo Φh(r(R,Z)) [9, 10]:

Φ(R,Z) = Φb(r(R,Z))+Φd(r(R,Z))+Φh(r(R,Z)). (1) Here, we use a cylindrical coordinate system (R,ψ,Z) with the origin at the center of the Galaxy. In a rectangular Cartesian coordinate system (X,Y,Z) with the origin at the center of the Galaxy, the distance to the star (spherical radius) is r2 = X2 + Y 2 + Z2 = R2 + Z2. The bulge Φb(r(R,Z)) and disk Φd(r(R,Z)) potentials are expressed in the form proposed by Miyamoto and Nagai [11], and the halo component is represented according to Navarro et al. [12]. The specific values of the parameters of this model, provided that the potential is expressed in units of 100 km2/s2, distances in kpc, masses in units of the mass of the 7 Galaxy, Mgal =2.325 10 M⊙, and the gravitational constant G = 1, are given in the paper by Bajkova and Bobylev× [9], where it is designated as model III. It should be noted that the model of the galactic potential that we have adopted and denoted here, same as in [7], by NFWBB, has the parameters obtained by fitting them to the data on the circular velocities of ionized hydrogen clouds HI, maser sources, and various halo objects with large galactocentric distances R up to 200 kpc from Bhattacharjee et al. [13] (see Fig. 1). In addition, the fitting of the parameters∼ involved the constraints on −3 the local dynamic density of matter ρ⊙ =0.1M⊙ pc and the force acting perpendicular to −2 the plane of the Galaxy Kz . /2πG = 77M⊙ pc [14]. | =1 1| 2 Figure 1: Rotation curve corresponding to the NFWBB model of the potential. The blue dots show the circular velocities of the disk GCs with orbital eccentricities ¡0.2.

The rotation curve corresponding to the NFWBB model is shown in Fig. 1. We plotted this curve using the values R⊙ = 8.3 kpc for the galactocentric distance of the Sun and V⊙ = 244 km/s for the rotation’s linear velocity of the local standard of rest around the Galaxy center, as it is taken in [13]. According to this model [9], the mass of the Galaxy 12 MG(R≤200 kpc) = 0.75 0.19 10 M⊙. This value is in good agreement with modern inde- pendent estimates. For± example,× the lower estimate of the NFW halo mass obtained quite recently by Koppelman and Helmi [15] from the data on the velocities of runaway halo +0.30 12 is MG =0.67− 10 M⊙. Figure 1, in addition to the available data, also shows (R≤200 kpc) 0.15 × the circular velocities of the thick disk GCs with orbital eccentricities ¡0.2 (blue dots), which demonstrate good agreement with the data from maser sources at interval of galactocentric distances 2

2.2 Integration of the Orbits The equation of motion of a test particle in an axisymmetric gravitational potential can be obtained from the Lagrangian of the system £ (see Appendix A in Irrgang et al. [14]): £(R,Z, R,˙ ψ,˙ Z˙ )= (2) 0.5(R˙ 2 +(Rψ˙)2 + Z˙ 2) Φ(R,Z). − Introducing canonical moments

pR = ∂£/∂R˙ = R,˙ 2 pψ = ∂£/∂φ˙ = R ψ,˙ (3) pZ = ∂£/∂Z˙ = Z,˙

3 we obtain the Lagrange equations as a system of six first-order differential equations:

R˙ = pR, 2 ψ˙ = pψ/R , Z˙ = pZ , 2 3 (4) p˙R = ∂Φ(R,Z)/∂R + p /R , − ψ p˙ψ =0, p˙Z = ∂Φ(R,Z)/∂Z. − To integrate Eqs. (4), we used our own integrator that implements the fourth-order Runge–Kutta algorithm. The peculiar velocity of the Sun relative to the local standard of rest was considered −1 equal to (u⊙, v⊙,w⊙) = (11.1, 12.2, 7.3) (0.7, 0.5, 0.4) km s [17]. Here, we use heliocentric ± velocities in a moving Cartesian coordinate system with u velocity directed toward the galactic center, v in the direction of the Galaxy rotation, and w perpendicular to the plane of the Galaxy and directed to the north pole of the Galaxy. et the initial positions and spatial velocities of the test particle in the heliocentric coordi- nate system be (xo,yo, zo,uo, vo,wo). The initial positions (X,Y,Z) and velocities (U, V, W ) of the test particle in the Cartesian coordinates of the Galaxy are given by the formulas

X = R⊙ xo,Y = yo,Z = zo + h⊙, − R = √X2 + Y 2, U = uo + u⊙, (5) V = vo + v⊙ + V⊙, W = wo + w⊙, where R⊙ and V⊙ are the galactocentric distance and linear velocity of rotation of the local standard of rest around the center of the Galaxy, and h⊙ = 16 pc [18] is the elevation of the Sun above the plane of the Galaxy. In this study, we calculate the following orbital parameters of globular clusters: (1) the initial distance of the GC from the center of the Galaxy dGC ; (2) radial velocity Π; (3) circular velocity Θ; (4) total 3D velocity Vtot; (5) apocentric distance (apo) of the orbit; (6) pericentric distance (peri) of the orbit; (7) eccentricity (ecc) of the orbit; (8) angular momentum components; (9) the angle of orbital inclination θ; (10) orbital period Tr; and (11) total energy E. The formulas for calculating all of the listed orbital parameters are given in [7]. The uncertainties of the orbital parameters were calculated by the Monte Carlo method using 100 iterations considering the uncertainties in the initial GC coordinates and velocities, as well as errors in the peculiar velocity of the Sun.

3 DATA

For the previously examined 152 globular clusters [7] with the data mainly from Vasiliev’s catalog [3], we took only the new values of mean proper motions and their uncertainties from the new catalog by Vasiliev and Baumgardt [8] obtained from the Gaia EDR3 catalog data. All other astrometric data (distances, radial velocities, coordinates) remained the same. Although the new catalog of Vasiliev and Baumgardt [8] also contains new, more

4 Figure 2: Comparison of the GC proper motions (by α, mua and δ, mud) and their uncer- tainties (Emua and Emud, respectively) from Vasiliev’s catalog [3] (Gaia DR2, horizontal axis) and Vasiliev and Baumgardt’s catalog [8] (Gaia EDR3, vertical axis). Each panel has a coincidence line. accurate mean values of trigonometric parallaxes, their uncertainty remains rather large as compared to the distances found from the horizontal giant branch [19] in Vasiliev’s catalog [3]. In Fig. 2, we give a comparison of the mean proper motions from these two catalogs obtained from the Gaia DR2 and Gaia EDR3 measurements. As follows from the figure, the new proper motion values for a number of GCs differ markedly from the old values. At the same time, the accuracy of measuring the new proper motions has doubled on average.

4 RESULTS

Table 1 shows the orbital parameters of 152 GCs listed in Section 2.2, which are calculated for the new mean proper motions from EDR3 [8]. The values of the parameters obtained from the integration of the orbits 5 Gyr back are given for each GC. The columns show the initial GC distance from the center of the Galaxy dGC; radial velocity Π; circular velocity Θ; total 3D velocity Vtot; apocentric distance (apo) of the orbit; pericentric distance (peri) of the orbit; eccentricity (ecc) of the orbit; orbital inclination angle θ; orbital period Tr; Z component of the angular momentum LZ ; total energy E; and subsystem in the Galaxy to which the object is assigned. The objects with the greatest changes in the orbital properties are marked with an asterisk.

5 Figure 3: Comparison of the GC orbital parameters (apo, peri, ecc, Lz,lz/ecc,E,Vtot,θ,Tr) obtained using Vasiliev’s catalog (2019) [3] with mean proper motions from Gaia DR2 (hori- zontal axis) and Vasiliev and Baumgardt’s catalog (2021) [8] with mean proper motions from Gaia EDR3 (vertical axis). Each panel has a diagonal coincidence line.

6 Figure 4: Orbits of very distant GCs. Blue color shows GC orbits with proper motions from Gaia DR2, red color from Gaia EDR3. The beginning of the orbit is marked with a blue circle.

7 Figure 5: Strongly radially elongated GC orbits. Blue color shows GC orbits with proper motions from Gaia DR2, red color from Gaia EDR3. The beginning of the orbit is marked with a blue circle.

8 Figure 6: Two-dimensional diagrams (a) LZ E, (b) LZ /ecc E, (c) LZ /ecc apo, and − − − (d) Tr E. Different symbols indicate the belonging of the GC to different subsystems of the Galaxy:− red circles—disk (D), black triangles—bulge (B), blue stars—Gaia- Enceladus (GE), orange squares—Helmi stream (H99), green crosses—Sequoia galaxy (Seq), purple crosses—Sagittarius dwarf galaxy (Sgr), yellow squares—unassociated high energy group (HE), purple open circles—unassociated low energy group (LE).

9 The column shows the belonging of the clusters to a subsystem of the Galaxy. The following designations of subsystems are adopted, similar to those in [5]: D is disk; B is bulge; GE is the Sausage galaxy, or Gaia–Enceladus; H99 is the Helmi stream; Seq is the Sequoia galaxy; Sgr is the Sagittarius dwarf galaxy; HE is the unassociated high energy group; and LE is the unassociated low energy group. The GCs were divided into subsystems of the bulge (B), thick disk (D), and halo in accordance with the algorithm we proposed [4]. The GC classification by halo subsystems (Seq, Sqr, GE, H99, HE, LE) was proposed by Massari et al. [5]. In [7], we modified the classification of Massari et al. in accordance with the orbital features of the GCs. Twenty-seven objects were modified. The analysis of the new orbital parameters kept this classification in force. The GC orbital parameters calculated using the Gaia EDR3 mean proper motions were compared with the similar parameters [7] calculated from the Gaia DR2 data, which is shown in Fig. 3. As can be seen from the figures, a significant difference is observed for a number of GCs. We were able to identify 22 most prominent representatives. As the analysis showed, the greatest change in the orbital parameters was experienced by very distant GCs, the measurement of proper motions associated with the greatest difficul- ties. Due to the increased accuracy of the data from the Gaia EDR3 catalog in comparison with the data from Gaia DR2, the proper motion values for distant objects have changed greatly. These objects are E1, Eridanus, Pyxis, Palomar 3, Palomar 4, and Crater belonging to the HE subsystem, and NGC 2419 and Whiting 1 belonging to Sqr. The orbits of these GCs in two projections (X,Y ) and (R,Z) were plotted from the EDR3 and DR2 data are shown in Fig. 4 in red and blue, respectively. As can be seen from the figures, the greatest change in the orbit affected the most distant object E1. Another class of objects that have undergone significant changes in orbital motion are GCs with highly elongated radial orbits. We have separately identified 10 most prominent representatives: NGC 362, NGC 1851, NGC 1904, NGC 4147, Palomar 14, NGC 6229, Palomar 15, NGC 6981, NGC 7006, and NGC 7492. They all belong to the GE subsystem. The orbits of these globular clusters are shown in Fig. 5. As can be seen from the figure, the orbits of three GCs underwent the most significant changes: Palomar 14, which is also among the most distant objects, Palomar 15, and NGC 6981. It should be noted that the clusters E1, Eridanus, Pyxis, Palomar 3, Palomar 4, Crater, and Palomar 14 gave the largest deviations from the coincidence line in Fig. 3. Four other GCs whose orbits have changed not so much but still noticeably are NGC 5946 and FSR 1735 of the LE subsystem, ESO 280–06 (GE), and the disk object NGC 6569. Thus, the most distant objects and objects with orbits strongly elongated in the radial direction have undergone the greatest change in the orbital properties. All 22 GCs with significantly changed orbital properties are marked by an asterisk in the last column of Table 1. The orbits of the other GCs have changed very insignificantly, so the catalog of orbits presented in [7] can be used to study their dynamics. Figure 6 shows two-dimensional diagrams (a) LZ E, (b) LZ /ecc E, (c) LZ /ecc apo, − − − and (d) Tr E. Diagrams (a), (b), and (c) are interesting in that they clearly show the fragmentation− of the GC distribution over the subsystems of the Galaxy. Diagram (b) with the LZ /ecc values plotted along the horizontal axis instead of LZ in comparison with diagram (a) allows for a finer structuring of the distribution of the thick disk GCs (D). This is due to the fact that disk objects have relatively small values of eccentricity, which allows “spreading” them along the abscissa axis as a result of division by ecc. The fine structure of the disk object distribution is also clearly visible in diagram (c). Apparently, further study

10 of the structural distribution of GCs is of interest from the point of view of a more subtle classification of GCs. The Tr E diagram (d) is interesting in that it represents an unambiguous relationship − between the period and the total energy of objects in the Galaxy set only by the gravitational potential of the Galaxy. This dependence can be fairly accurately fitted by a hyperbolic function. Thus, for example, knowing the total energy of a GC, one can immediately estimate the period of the orbit without integrating it. Conversely, knowing the period of the orbit, one can estimate the total energy E of a GC.

5 CONCLUSIONS

The emergence of increasingly more accurate astrometric data on the coordinates and spatial velocities of globular clusters makes it possible to study their motion in three-dimensional space by integrating the orbits in the gravitational potential of the Galaxy. Thanks to the Gaia DR2 data [1–3] on the proper motions of almost all globular clusters known to date, it became possible to study their kinematics and dynamics and classify GCs according to the subsystems of the Milky Way in order to identify objects that formed directly in the Galaxy or were brought from outside as a result of accretion from other (dwarf) galaxies around the Milky Way. The creation of the catalog of orbits and their parameters for more than 150 GCs [7] with known data on the 6d phase space required for the integration of the orbits provides highly informative material for further research. The recent appearance of a new, more accurate version of the catalog of proper motions posed the task of specifying the orbital motion of the GCs, which was the subject of this study. As a result of using new, more accurate proper motions determined from the Gaia EDR3 data, we were able to identify 22 GCs whose orbital motion underwent a significant change. Those are NGC 362, Whiting 1, E1, Eridanus, NGC 1851, NGC 1904, NGC 2419, Pyxis, Palomar 3, Palomar 4, Crater, NGC 4147, NGC 5946, Palomar 14, NGC 6229, FSR 1735, Palomar 15, ESO 280– 06, NGC 6569, NGC 6981, NGC 7006, and NGC 7492. The major part of this list are very distant GCs, as well as GCs with orbits strongly elongated toward the center of the Galaxy, belonging to the Gaia-Enceladus subsystem. Thus, the main result of this study is the creation of a new catalog of orbital parameters of 152 GCs with proper motions from Gaia EDR3, indicating objects with significantly changed orbital properties in comparison with the catalog based on the proper motions from Gaia DR2.

ACKNOWLEDGMENTS The authors are grateful to the anonymous reviewer for comments that have helped improve the article.

REFERENCES 1. A. Helmi, F. van Leeuwen, P. J. McMillan, D. Massari, et al., Astron. Astrophys. 616, A12 (2018). 2. H. Baumgardt, M. Hilker, A. Sollima, and A. Bellini, Mon. Not. R. Astron. Soc. 482, 5138 (2019). 3. E. Vasiliev, Mon. Not. R. Astron. Soc. 484, 2832 (2019).

11 4. A. T. Bajkova, G. Carraro, V. I. Korchagin, N. O. Budanova, and V. V. Bobylev, Astrophys. J. 895, 69 (2020). 5. D. Massari, H. H. Koppelman and A. Helmi, Astron. Astrophys. 630, L4 (2019). 6. G. C. Myeong, E. Vasiliev, G. Iorio, N. W. Evans, and V. Belokurov, Mon. Not. R. Astron. Soc. 488, 1235 (2019). 7. A. T. Bajkova and V.V. Bobylev, Res. Astron. Astrophys. 21, 173 (2021). 8. E. Vasiliev and H. Baumgardt, arXiv: 2102.09568 [astro-ph.GA] (2021). 9. A. T. Bajkova and V. V. Bobylev, Astron. Lett. 42, 567 (2016). 10. A. T. Bajkova and V. V. Bobylev, Open Astron. 26, 72 (2017). 11. M. Miyamoto and R. Nagai, Publ. Astron. Soc. Jpn. 27, 533 (1975). 12. J. F. Navarro, C. S. Frenk, and S. D. M. White, Astrophys. J. 490, 493 (1997). 13. P. Bhattacharjee, S. Chaudhury, and S. Kundu, Astrophys. J. 785, 63 (2014). 14. A. Irrgang, B. Wilcox, E. Tucker, and L. Schiefelbein, Astron. Astrophys. 549, A137 (2013). 15. H. H. Koppelman and A. Helmi, arXiv: 2006.16283 [astro-ph.GA] (2020). 16. W. Wang, J. Han, M. Cautun, Z. Li, and M. Ishigaki, Sci. China Phys. Mech. Astron. 63, 109801 (2020). 17. R. Sch¨onrich, J. Binney, and W. Dehnen, Mon. Not. R. Astron. Soc. 403, 1829 (2010). 18. V. V. Bobylev and A. T. Bajkova, Astron. Lett. 42, 1 (2016). 19. W. Harris, arXiv: 1012.3224 [astro-ph.GA] (2010).

12 Table 1. Orbital properties of GCs Name dGC Π Θ Vtot apo peri ecc incl. Tr LZ E Gal. [kpc] [km/s] [km/s] [km/s] [kpc] [kpc] θ [Gyr] [kpc [km2 Sub- [deg] km/s] /s2 syst +6 +4 +4 +0.1 +0.22 +0.02 +1 +3 +34 − +1237 NGC 104 7.6 6−5 191−4 197−4 7.7−0.1 5.52−0.19 0.16−0.01 28−1 116−3 1325−36 126360−1071 D +1 − +17 +9 +0.3 +0.45 +0.07 +4 +5 − +142 − +1654 NGC 288 12.2 4−2 42−13 66−10 12.4−0.4 1.33−0.53 0.81−0.06 121−8 142−5 349−105 116316−1780 GE +5 − +7 +5 +0.5 +0.22 +0.00 +18 +5 − +48 − +1964 NGC362 9.5 126−9 2−11 144−8 11.7−0.2 0.08−0.00 0.99−0.04 93−10 126−3 12−79 121469−1664 GE * − +11 +13 +16 +17.0 +1.86 +0.05 +3 +339 +305 − +4454 Whiting 1 34.7 232−16 85−15 247−10 75.4−9.0 21.56−1.78 0.56−0.03 74−2 1328−177 1927−362 39308−3011 Sgr * − +5 − +7 +7 +0.8 +0.35 +0.01 +7 +10 − +95 − +1908 NGC 1261 18.2 98−8 21−6 121−5 21.2−0.6 0.81−0.14 0.93−0.03 120−11 246−9 273−82 91128−1335 GE +5 +2 +2 +0.5 +0.47 +0.02 +1 +10 +69 − +946 Pal 1 17.4 43−6 215−2 221−2 19.2−0.6 14.83−0.44 0.13−0.02 15−0 356−10 3677−82 77542−1095 D − +58 − +52 +78 +64.9 +63.43 +0.00 +22 +1993 − +4263 − +8306 E 1 124.7 16−36 8−56 63−0 134.5−24.9 8.03−0.00 0.89−0.49 101−32 2280−150 706−4646 28995−453 HE * − +18 +18 +12 +20.3 +5.66 +0.03 +7 +524 +1356 − +1835 Eridanus 95.2 74−14 10−12 166−19 176.7−27.8 16.77−4.38 0.83−0.06 84−13 3348−641 753−874 23513−2954 HE * − +3 +9 +4 +1.7 +0.54 +0.02 +66 +26 +320 − +1598 Pal 2 35.3 107−4 13−13 108−2 40.9−1.8 0.84−0.46 0.96−0.03 24−21 506−24 467−446 63898−1704 GE +2 − +4 +4 +0.4 +0.23 +0.00 +7 +7 − +66 − +1069 NGC 1851 16.9 104−3 5−4 132−3 20.1−0.4 0.14−0.00 0.99−0.03 98−7 228−4 76−60 94253−1078 GE * +4 +5 +4 +0.2 +0.25 +0.01 +16 +8 +98 − +1108 NGC 1904 19.0 45−4 11−6 47−3 19.7−0.6 0.35−0.12 0.97−0.03 62−14 218−10 192−115 96229−974 GE * − +7 − +6 +7 +0.4 +0.34 +0.01 +5 +6 − +94 − +1300 NGC 2298 16.0 92−6 31−6 124−6 18.0−0.4 1.25−0.15 0.87−0.03 117−5 208−6 494−95 98729−1171 GE − +6 +13 +14 +3.5 +9.62 +0.07 +8 +219 +1125 − +1537 NGC 2419 90.2 7−5 59−13 80−10 91.9−3.2 19.60−5.54 0.65−0.12 44−6 1600−815 4937−1132 35478−1190 Sgr * − +4 − +11 +4 +59.9 +1.53 +0.12 +3 +1247 − +479 − +2139 Pyxis 41.5 246−4 34−10 301−6 252.7−43.8 41.69−20.48 0.72−0.00 100−3 5084−1393 1382−458 18116−1970 HE * − +2 +4 +1 +0.5 +0.09 +0.01 +2 +6 +34 − +1885 NGC 2808 11.3 157−1 41−4 165−1 14.4−0.5 1.01−0.07 0.87−0.02 10−1 158−6 460−30 111826−1764 GE +12 +8 +9 +1.3 +0.30 +0.04 +1 +14 +107 − +3113 13 E 3 9.3 44−11 252−9 275−9 13.1−1.1 9.18−0.31 0.18−0.04 29−1 224−12 2244−112 97762−2858 D − +15 +27 +22 +59.4 +14.11 +0.12 +8 +1259 +2029 − +4004 Pal 3 95.9 146−20 58−30 169−16 144.0−22.6 66.53−15.05 0.37−0.03 73−7 3602−681 4236−2215 22836−2698 HE * − +8 − +6 +7 +2.0 +0.17 +0.02 +1 +25 − +83 − +2504 NGC 3201 9.1 114−10 301−5 356−6 26.4−1.8 8.39−0.23 0.52−0.03 152−1 376−26 2727−70 75366−2517 Seq +19 − +27 +17 +0.0 +9.33 +0.03 +4 +0 − +1107 − +1573 Pal 4 111.4 2−21 15−19 49−3 116.4−9.4 4.61−2.03 0.92−0.14 105−24 1870−620 615−807 32274−650 HE * − +76 − +64 +101 +426.9 +84.04 +0.33 +28 +1823 − +6352 − +17069 Crater 144.8 89−54 25−117 107−15 147.7−71.0 71.90−9.28 0.35−0.11 99−19 3806−3363 2469−11393 22149−2215 HE * +6 − +12 +4 +1.1 +0.55 +0.00 +15 +15 − +125 − +1755 NGC 4147 21.5 47−5 0−13 136−3 26.4−1.1 0.39−0.00 0.97−0.04 91−12 314−14 4−130 81056−1876 GE * +7 +7 +7 +0.3 +0.24 +0.03 +1 +3 +61 − +2139 NGC 4372 7.3 17−8 133−7 149−7 7.3−0.1 3.00−0.24 0.42−0.03 28−2 98−3 965−54 139619−1768 D − +3 +8 +5 +2.2 +0.51 +0.02 +4 +34 +167 − +2121 Rup 106 18.5 243−5 91−10 261−3 38.0−2.1 4.65−0.36 0.78−0.02 46−3 498−32 1627−203 64947−2229 H99 − +9 +8 +4 +1.7 +0.29 +0.02 +2 +28 +95 − +2039 NGC 4590 10.3 169−10 294−10 339−5 30.0−1.5 8.89−0.28 0.54−0.01 41−1 430−22 2454−99 70313−1905 H99 +8 +9 +9 +0.3 +0.14 +0.04 +10 +3 +65 − +2052 NGC 4833 7.2 105−10 40−11 120−11 8.1−0.3 0.74−0.20 0.83−0.02 37−6 86−4 288−83 144343−2144 GE − +5 +4 +4 +0.9 +0.51 +0.02 +1 +16 +29 − +1805 NGC 5024 18.5 95−4 143−6 186−6 22.4−1.0 9.11−0.61 0.42−0.01 74−1 336−19 810−39 79888−2220 H99 − +4 +6 +5 +0.9 +0.97 +0.02 +1 +18 +43 − +2416 NGC 5053 17.9 91−3 137−6 168−6 18.0−0.7 10.87−0.63 0.25−0.04 76−1 304−15 747−39 84546−2020 H99 − +4 − +4 +6 +0.0 +0.16 +0.01 +3 +4 − +31 − +1693 NGC 5139 6.6 70−4 72−5 128−4 7.4−0.3 1.13−0.07 0.74−0.04 137−4 80−1 463−34 147822−1521 Seq − +4 +6 +4 +0.7 +0.48 +0.01 +1 +13 +44 − +2147 NGC 5272 12.2 39−4 142−5 199−4 15.9−0.6 5.14−0.21 0.51−0.03 57−1 210−7 987−39 98373−2008 H99 − +2 − +8 +1 +0.6 +0.20 +0.01 +4 +8 − +69 − +2188 NGC 5286 8.9 219−2 43−8 223−1 13.7−0.7 0.80−0.12 0.89−0.03 124−5 152−7 372−68 113576−2745 H99 +13 − +15 +8 +5.3 +0.66 +0.01 +2 +87 − +91 − +3099 NGC 5466 16.4 169−17 137−16 313−10 51.3−5.3 5.76−0.62 0.80−0.02 108−1 712−89 795−96 54156−3610 GE − +6 +10 +5 +0.9 +0.36 +0.01 +6 +14 +88 − +2025 NGC 5634 21.1 47−8 34−12 63−2 21.6−1.0 2.05−0.23 0.83−0.03 72−4 256−11 303−104 89241−2042 GE − +6 − +11 +7 +5.4 +11.27 +0.08 +4 +28 − +279 − +2109 NGC 5694 29.3 182−5 45−11 254−7 71.5−4.8 2.81−2.36 0.92−0.20 133−7 1012−91 1058−296 44810−2055 GE − +3 − +8 +2 +1.6 +0.52 +0.01 +2 +23 − +118 − +1994 IC 4499 15.6 243−2 73−8 261−2 29.7−1.8 6.38−0.20 0.65−0.03 113−2 402−25 1042−116 72691−2350 Seq − +9 +12 +10 +3.2 +1.76 +0.05 +3 +63 +297 − +2892 NGC 5824 25.7 41−11 109−12 216−8 37.6−2.2 14.26−1.73 0.45−0.04 58−2 602−46 2464−298 59518−2423 H99 − +1 +22 +22 +1.1 +2.65 +0.08 +3 +42 +230 − +4776 Pal 5 18.4 53−3 161−19 170−17 18.9−0.6 10.77−1.74 0.27−0.09 66−3 310−26 1262−175 83186−2994 H99 +18 +15 +14 +0.5 +0.43 +0.06 +4 +7 +83 − +3454 NGC 5897 7.3 86−15 96−16 158−12 8.7−0.3 1.89−0.35 0.64−0.05 61−3 106−5 359−78 131869−2289 GE − +14 +10 +11 +2.5 +0.40 +0.01 +2 +33 +32 − +4305 NGC 5904 6.3 291−10 126−8 365−13 23.4−2.6 2.27−0.08 0.82−0.03 72−2 288−34 401−41 85416−4892 GE Name dGC Π Θ Vtot apo peri ecc incl. Tr LZ E Galactic [kpc] [km/s] [km/s] [km/s] [kpc] [kpc] θ [Gyr] [kpc [km2 Sub- [deg] km/s] /s2 system − +15 +5 +6 +0.3 +0.28 +0.05 +1 +5 +62 − +3031 NGC 5927 4.7 39−15 233−8 236−8 5.2−0.3 4.17−0.29 0.11−0.03 9−1 82−4 1077−61 148646−2848 D +13 +8 +8 +0.3 +0.19 +0.01 +4 +3 +49 − +2872 NGC 5946 5.8 36−9 25−7 115−4 5.9−0.2 0.35−0.05 0.89−0.05 76−4 66−4 145−42 158142−2154 LE * − +22 +17 +17 +3.0 +0.60 +0.08 +1 +40 +238 − +5016 ESO 224-8 12.6 44−22 257−19 261−17 16.8−2.4 11.84−1.30 0.17−0.04 7−0 290−40 3226−333 85573−6103 D +15 +7 +14 +0.1 +0.11 +0.02 +10 +2 +30 − +2093 NGC 5986 4.7 61−12 23−9 66−10 5.5−0.6 0.16−0.05 0.94−0.04 65−6 56−4 94−39 168587−2777 LE +22 +9 +7 +0.5 +0.37 +0.06 +2 +6 +62 − +3132 FSR 1716 4.8 87−28 228−14 286−12 7.2−0.7 3.96−0.38 0.29−0.07 33−2 108−6 1089−83 135629−4361 D +11 − +18 +11 +9.8 +2.00 +0.00 +0 +218 − +907 − +1412 Pal 14 71.4 123−11 6−6 177−12 134.2−12.9 0.73−0.02 0.99−0.03 134−84 2200−263 273−282 29451−2059 GE * +14 +7 +7 +0.2 +0.15 +0.04 +2 +3 +39 − +2788 BH 184 4.4 41−17 121−8 156−7 4.7−0.2 1.69−0.15 0.47−0.03 36−2 58−2 532−37 168541−2317 D +8 +13 +8 +0.0 +0.38 +0.00 +4 +3 +29 − +2815 NGC 6093 3.7 33−9 16−11 71−5 4.8−0.7 0.06−0.00 0.98−0.17 83−6 44−2 25−17 176940−1576 LE − +2 +11 +4 +0.1 +0.10 +0.01 +76 +2 +69 − +1144 NGC 6121 6.3 52−2 9−11 54−2 6.5−0.1 0.12−0.03 0.96−0.03 21−31 68−1 58−70 159029−910 LE − +18 − +3 +3 +3.7 +0.51 +0.02 +1 +61 − +163 − +2609 NGC 6101 11.1 12−18 312−2 369−4 43.7−3.6 10.85−0.51 0.60−0.01 143−1 652−60 3217−152 57030−2832 Seq − +56 − +34 +2 +0.2 +0.11 +0.06 +4 +11 − +38 − +2589 NGC 6144 2.7 70−54 197−14 213−4 3.3−0.1 2.13−0.20 0.21−0.02 114−4 40−10 240−37 172490−1903 Seq − +11 +6 +7 +0.3 +0.20 +0.03 +3 +3 +31 − +4002 NGC 6139 3.5 1−19 74−7 151−6 3.6−0.1 1.01−0.08 0.56−0.05 61−3 50−2 244−25 177317−1972 LE − +38 +8 +6 +0.3 +0.22 +0.08 +4 +5 +48 − +3297 Terzan 3 2.5 60−36 205−16 234−7 3.2−0.1 2.20−0.29 0.18−0.05 42−4 44−3 439−49 175727−2401 D − +3 +10 +8 +0.2 +0.18 +0.06 +2 +3 +32 − +2606 NGC 6171 3.5 4−2 77−8 101−7 3.8−0.2 0.61−0.14 0.72−0.07 52−2 44−2 189−27 179010−2445 B − +13 − +6 +3 +0.1 +0.01 +0.02 +5 +2 − +7 − +2802 ESO 452-11 2.1 26−6 14−9 112−8 2.9−0.2 0.06−0.03 0.96−0.00 101−6 26−1 17−11 202137−2352 B +3 − +4 +3 +0.2 +0.11 +0.01 +3 +4 − +29 − +1377 NGC 6205 8.6 21−4 26−4 87−3 8.6−0.2 1.01−0.07 0.79−0.02 105−2 100−1 185−30 134382−1006 GE +6 +2 +7 +1.0 +0.29 +0.01 +8 +14 +49 +1263 14 − NGC 6229 29.9 30−8 10−3 58−7 31.0−0.8 0.64−0.20 0.96−0.02 66−6 374−10 231−73 74500−1091 GE * − +5 +5 +4 +0.2 +0.13 +0.02 +1 +4 +30 − +1652 NGC 6218 4.8 9−4 134−6 157−5 5.0−0.2 2.25−0.16 0.38−0.03 37−1 64−1 578−38 158304−2303 D − +10 +13 +10 +0.4 +0.19 +0.07 +3 +3 +53 − +3898 FSR 1735 4.3 80−12 20−8 174−5 4.8−0.2 0.43−0.19 0.84−0.07 82−5 58−5 83−35 167696−4200 LE * +4 +17 +15 +0.7 +0.32 +0.02 +6 +11 +110 − +5819 NGC 6235 4.0 159−3 194−21 254−16 6.1−0.8 2.70−0.40 0.39−0.02 53−4 82−10 561−141 145991−7193 D − +3 +6 +4 +0.2 +0.13 +0.03 +2 +1 +26 − +1403 NGC 6254 4.8 88−3 134−8 167−5 5.2−0.2 2.13−0.16 0.42−0.03 36−1 78−3 604−41 157521−2009 D − +9 +23 +6 +0.6 +0.14 +0.07 +10 +5 +56 − +6324 NGC 6256 2.9 166−8 34−24 194−4 4.2−0.4 0.19−0.13 0.91−0.07 76−9 44−2 94−64 182703−3401 LE +8 +12 +8 +4.5 +1.37 +0.01 +15 +72 +414 − +2569 Pal 15 38.2 155−8 4−9 162−7 54.5−2.9 1.32−0.21 0.95−0.04 85−18 726−45 119−329 53297−1733 GE * +9 +9 +6 +0.2 +0.12 +0.03 +4 +3 +28 − +4879 NGC 6266 2.0 41−14 123−9 146−6 2.5−0.4 0.60−0.11 0.61−0.06 32−2 34−5 217−37 205550−6500 B − +88 − +108 +5 +0.5 +0.21 +0.02 +11 +6 − +77 − +5314 NGC 6273 1.6 98−97 239−41 315−5 3.8−0.2 1.00−0.08 0.59−0.04 109−10 48−2 144−96 173042−2523 LE +2 − +13 +6 +0.7 +0.16 +0.05 +8 +8 − +93 − +5199 NGC 6284 7.3 14−2 3−14 113−6 7.5−0.6 0.72−0.23 0.82−0.02 91−7 90−6 19−94 142286−5012 GE − +96 − +13 +3 +0.5 +0.10 +0.02 +2 +7 − +26 − +4804 NGC 6287 2.0 302−72 64−18 319−3 5.3−0.3 0.76−0.06 0.75−0.03 95−2 64−3 59−28 158899−2838 LE − +7 − +12 +9 +0.5 +0.13 +0.02 +7 +5 − +29 − +7479 NGC 6293 1.8 152−7 80−17 232−4 3.6−0.3 0.17−0.04 0.91−0.05 131−11 38−3 93−55 191506−3379 B +5 +5 +4 +0.3 +0.20 +0.02 +1 +4 +56 − +5448 NGC 6304 2.5 79−6 190−6 218−5 3.3−0.3 1.79−0.22 0.29−0.01 20−1 52−4 472−55 183230−5796 D +5 +13 +8 +0.4 +0.14 +0.13 +8 +5 +45 − +7404 NGC 6316 2.4 102−4 51−18 144−7 3.0−0.4 0.40−0.23 0.76−0.04 41−4 36−6 106−50 197198−9153 B +4 +4 +8 +0.2 +0.16 +0.02 +4 +3 +35 − +1383 NGC 6341 9.8 50−4 14−5 108−7 10.6−0.3 0.44−0.09 0.92−0.03 78−4 124−4 121−39 125452−1633 GE − +31 − +131 +23 +0.5 +0.13 +0.22 +14 +11 − +78 − +9843 NGC 6325 1.3 80−50 178−59 209−23 1.3−0.1 1.06−0.31 0.11−0.00 114−17 18−3 105−86 213001−4890 B − +146 +8 +3 +0.5 +0.16 +0.03 +4 +6 +56 − +3881 NGC 6333 1.8 88−95 347−42 364−4 6.5−0.3 0.97−0.14 0.74−0.03 59−4 74−2 327−56 151332−2911 LE − +75 +8 +4 +0.2 +0.14 +0.13 +3 +7 +19 − +3950 NGC 6342 1.6 25−65 164−42 169−3 1.7−0.1 0.89−0.17 0.31−0.08 64−3 24−2 117−17 206944−1304 B +6 +16 +11 +0.7 +0.57 +0.08 +5 +11 +136 − +5232 NGC 6356 7.2 48−5 105−19 156−9 7.9−0.5 2.37−0.53 0.54−0.07 42−3 102−6 701−140 136904−4155 D − +7 − +51 +5 +0.8 +0.09 +0.12 +6 +10 − +48 − +11298 NGC 6355 1.2 207−9 106−28 274−6 2.2−0.5 0.64−0.11 0.55−0.09 106−7 28−5 91−56 199376−9929 B +11 +5 +4 +0.3 +0.14 +0.03 +1 +4 +50 − +3332 NGC 6352 3.6 43−10 226−7 230−5 4.1−0.3 3.17−0.16 0.13−0.03 12−1 68−5 792−48 163943−3174 D − +6 − +9 +6 +1.0 +0.45 +0.03 +2 +11 − +141 − +2458 IC 1257 17.6 48−6 37−10 63−3 18.1−0.8 1.24−0.32 0.87−0.04 158−4 206−10 600−162 99053−2292 GE Name dGC Π Θ Vtot apo peri ecc incl. Tr LZ E Galactic [kpc] [km/s] [km/s] [km/s] [kpc] [kpc] θ [Gyr] [kpc [km2 Sub- [deg] km/s] /s2 system − +30 − +22 +3 +0.4 +0.04 +0.07 +4 +5 − +13 − +13782 Terzan 2 1.0 120−17 47−32 137−2 1.2−0.3 0.09−0.02 0.86−0.13 160−18 14−4 44−13 242209−14365 B +3 +3 +3 +0.2 +0.09 +0.02 +1 +3 +28 − +1599 NGC 6366 5.3 94−2 134−4 175−3 5.8−0.2 2.20−0.11 0.45−0.01 32−1 74−1 697−31 153394−1663 D +9 +11 +7 +0.4 +0.06 +0.04 +4 +4 +23 − +11974 Terzan 4 1.2 20−16 67−9 118−6 1.3−0.3 0.20−0.03 0.73−0.09 54−4 14−4 82−21 235193−15449 B +31 − +25 +12 +0.7 +0.12 +0.23 +1 +6 − +8 − +22805 BH 229 0.5 5−32 54−5 293−14 0.8−0.1 0.28−0.10 0.49−0.09 100−5 10−1 21−10 249619−1714 B +26 − +6 +6 +1.9 +0.40 +0.02 +1 +24 − +116 − +6250 FSR 1758 3.7 63−27 341−4 401−5 13.8−1.4 3.66−0.33 0.58−0.01 147−1 174−18 1254−131 108059−5485 Seq +14 +9 +7 +0.2 +0.23 +0.03 +2 +5 +52 − +2703 NGC 6362 5.2 18−16 124−7 160−5 5.3−0.1 2.46−0.17 0.37−0.03 45−3 70−1 583−35 153483−1632 D +20 − +72 +11 +0.2 +0.06 +0.14 +8 +4 − +61 − +12174 Liller 1 0.8 97−26 55−17 115−16 0.8−0.0 0.09−0.07 0.81−0.07 155−89 8−0 41−23 262426−2514 B − +7 − +11 +10 +0.4 +0.21 +0.01 +4 +6 − +39 − +7157 NGC 6380 3.1 59−8 29−10 67−8 3.4−0.4 0.16−0.03 0.91−0.09 168−8 38−3 89−47 195003−5562 B − +2 +9 +8 +0.3 +0.07 +0.03 +3 +4 +26 − +6942 Terzan 1 1.6 74−4 65−10 99−6 1.8−0.3 0.21−0.05 0.78−0.04 5−1 22−5 106−28 224589−9700 B − +63 +25 +7 +0.5 +0.43 +0.14 +4 +11 +62 − +5667 Pismis 26 1.4 105−46 204−37 302−7 3.0−0.2 0.92−0.28 0.54−0.16 41−2 42−2 271−50 188443−2060 LE − +12 − +14 +7 +0.2 +0.22 +0.03 +5 +4 − +49 − +3550 NGC 6388 3.0 65−17 93−10 115−5 3.5−0.3 0.62−0.11 0.70−0.08 148−7 44−2 255−45 190244−2702 Seq − +15 +5 +8 +0.1 +0.12 +0.01 +7 +3 +19 − +2654 NGC 6402 4.0 20−16 49−7 56−5 4.8−0.4 0.29−0.02 0.88−0.04 46−5 52−3 159−25 176490−1937 LE − +22 − +3 +5 +0.6 +0.46 +0.04 +1 +12 − +116 − +8004 NGC 6401 2.5 30−16 255−3 301−4 4.5−0.6 2.37−0.45 0.31−0.03 144−1 62−9 598−116 162266−8586 Seq +4 +7 +6 +0.1 +0.20 +0.03 +2 +4 +41 − +1350 NGC 6397 6.3 36−5 127−7 178−6 6.5−0.1 2.76−0.20 0.41−0.03 43−2 84−1 793−42 144589−1516 D − +1 +8 +4 +0.4 +0.02 +0.02 +4 +4 +20 − +4283 Pal 6 2.5 191−3 22−11 245−4 4.5−0.6 0.13−0.06 0.95−0.02 83−3 44−4 55−29 179517−7078 LE − +13 +13 +14 +0.9 +0.67 +0.04 +3 +17 +204 − +3272 NGC 6426 14.3 111−12 92−13 147−14 16.6−0.8 3.17−0.55 0.68−0.05 26−3 200−12 1204−193 100803−2975 H99 +161 +59 +9 +1.4 +0.15 +0.01 +7 +15 +67 +11951 15 − − Djorg 1 1.2 255−65 311−34 402−7 5.9−1.7 0.77−0.07 0.77−0.07 24−4 66−16 346−80 162360−17508 GE +5 +8 +6 +0.4 +0.07 +0.02 +9 +6 +27 − +9677 Terzan 5 1.5 76−5 50−11 96−7 1.7−0.3 0.14−0.03 0.84−0.04 40−6 18−4 75−26 228141−9909 B +10 − +30 +8 +0.3 +0.07 +0.10 +18 +4 − +38 − +6898 NGC 6440 1.3 82−21 41−29 100−7 1.4−0.0 0.16−0.09 0.80−0.06 116−20 14−0 46−44 232585−857 B +9 +14 +15 +0.6 +0.21 +0.07 +5 +7 +69 − +7841 NGC 6441 3.6 16−8 67−15 72−14 3.6−0.4 0.75−0.21 0.66−0.06 22−3 42−4 230−63 186246−6993 LE − +3 − +14 +5 +0.4 +0.07 +0.03 +3 +7 − +26 − +10098 Terzan 6 1.5 137−3 51−16 147−3 1.9−0.4 0.15−0.04 0.85−0.05 170−7 22−4 77−28 221047−11486 B − +6 +13 +8 +0.5 +0.19 +0.05 +4 +6 +37 − +6446 NGC 6453 3.4 105−5 39−14 197−8 3.9−0.7 0.99−0.14 0.59−0.07 78−4 54−8 132−51 172359−9017 LE − +32 +16 +16 +1.5 +0.38 +0.05 +2 +18 +129 − +7076 NGC 6496 4.0 35−34 322−26 330−22 9.2−1.4 3.73−0.35 0.42−0.06 32−2 120−16 1118−144 125956−7948 D − +9 +15 +4 +0.3 +0.04 +0.03 +7 +3 +14 − +9150 Terzan 9 1.3 53−6 15−9 82−3 1.4−0.4 0.05−0.02 0.93−0.08 78−11 16−5 19−11 235578−16419 B +5 +3 +2 +0.3 +0.14 +0.03 +1 +5 +43 − +4864 Djorg 2 2.0 162−3 159−6 232−3 3.2−0.4 0.91−0.18 0.56−0.02 12−1 42−4 323−58 191864−7214 B +8 +9 +5 +0.1 +0.14 +0.02 +5 +3 +32 − +2478 NGC 6517 4.0 47−13 42−6 73−4 4.5−0.3 0.31−0.04 0.87−0.06 52−7 50−2 161−25 179254−3018 LE +8 +27 +8 +0.8 +0.14 +0.02 +3 +10 +24 − +7702 Terzan 10 2.2 229−13 92−17 338−9 5.8−1.0 0.68−0.12 0.79−0.04 71−5 74−11 204−25 157214−10685 GE +21 +25 +13 +0.4 +0.18 +0.13 +12 +9 +41 − +19266 NGC 6522 0.8 34−13 91−42 211−9 1.2−0.2 0.23−0.13 0.67−0.10 63−7 16−5 58−27 238928−11639 B +7 − +8 +3 +0.2 +0.09 +0.04 +1 +2 − +26 − +2543 NGC 6535 4.0 92−8 83−7 131−3 4.6−0.2 1.00−0.09 0.64−0.02 160−1 56−2 320−28 173165−1988 Seq − +177 +64 +2 +0.5 +0.18 +0.14 +4 +5 +12 − +12950 NGC 6528 0.7 196−58 111−31 229−2 1.1−0.5 0.25−0.06 0.61−0.39 71−3 14−4 50−15 241754−12284 B − +15 +5 +9 +0.2 +0.23 +0.04 +2 +6 +26 − +3585 NGC 6539 3.1 2−18 118−7 208−6 3.4−0.1 1.86−0.19 0.29−0.04 56−2 56−8 347−28 174408−2680 D +2 +5 +5 +0.2 +0.12 +0.03 +1 +2 +33 − +3306 NGC 6540 3.0 13−2 148−6 159−6 3.1−0.3 1.60−0.18 0.32−0.03 21−1 48−4 450−49 187451−5125 D +2 +12 +6 +0.1 +0.15 +0.01 +4 +4 +67 − +1500 NGC 6544 5.3 6−2 6−7 91−4 5.7−0.3 0.06−0.03 0.98−0.05 86−8 52−1 30−37 166552−1861 GE +23 +22 +6 +0.4 +0.17 +0.06 +4 +4 +22 − +3383 NGC 6541 2.3 124−43 192−16 253−4 3.8−0.4 1.25−0.10 0.50−0.08 40−3 50−4 333−20 175234−3409 LE +7 +16 +10 +0.9 +0.56 +0.04 +11 +12 +216 − +3465 ESO 280-06 13.8 34−6 27−13 86−6 14.2−0.9 1.00−0.36 0.87−0.06 67−12 164−11 346−178 110196−3298 GE * +8 +1 +1 +0.2 +0.27 +0.03 +1 +5 +67 − +4706 NGC 6553 2.4 46−6 246−2 250−1 3.3−0.3 2.27−0.33 0.19−0.02 7−1 52−3 589−80 179761−6218 D +2 +9 +5 +0.6 +0.12 +0.10 +8 +6 +39 − +10492 NGC 6558 1.2 187−1 93−9 210−4 1.7−0.4 0.28−0.06 0.72−0.14 63−9 20−4 88−30 217022−9416 B − +15 +7 +5 +0.3 +0.11 +0.02 +1 +4 +40 − +2348 Pal 7 3.9 77−9 267−6 279−5 6.0−0.4 3.52−0.17 0.26−0.02 11−0 86−4 1034−59 147446−3470 D Name dGC Π Θ Vtot apo peri ecc incl. Tr LZ E Gal. [kpc] [km/s] [km/s] [km/s] [kpc] [kpc] θ [Gyr] [kpc [km2 Sub- [deg] km/s] /s2 syst − +3 +6 +4 +0.3 +0.11 +0.03 +1 +4 +40 − +3407 Terzan 12 3.6 97−3 165−7 213−5 4.4−0.3 2.09−0.14 0.35−0.01 29−2 60−2 599−38 169045−3215 D − +2 +24 +23 +0.6 +0.52 +0.09 +6 +10 +133 − +9717 NGC 6569 2.8 40−2 179−19 185−18 3.0−0.4 1.92−0.44 0.22−0.06 26−5 56−8 451−101 181599−7717 D * +9 +3 +5 +0.3 +0.31 +0.06 +1 +5 +69 − +6566 ESO 456-78 2.0 71−7 198−5 251−6 2.9−0.3 1.43−0.30 0.34−0.05 34−2 52−8 371−63 186882−7183 D +16 +19 +13 +2.1 +0.51 +0.05 +6 +27 +141 − +5083 NGC 6584 6.8 198−17 100−26 324−15 18.0−2.1 1.68−0.56 0.83−0.04 51−4 212−27 565−175 98062−6165 GE − +44 +8 +7 +0.2 +0.14 +0.06 +2 +2 +17 − +7818 NGC 6624 1.2 29−20 59−15 137−4 1.6−0.2 0.13−0.06 0.85−0.12 73−4 22−5 36−13 226289−3866 B − +3 +9 +6 +0.3 +0.09 +0.07 +4 +4 +30 − +4073 NGC 6626 3.0 27−3 57−9 113−6 3.1−0.2 0.45−0.12 0.75−0.05 60−4 42−5 169−29 193005−3459 B +4 +10 +4 +0.4 +0.05 +0.02 +13 +6 +13 − +7283 NGC 6638 2.0 68−8 14−17 74−6 2.4−0.2 0.05−0.02 0.96−0.05 80−7 20−0 22−27 212090−2914 B +40 +4 +7 +0.2 +0.17 +0.05 +6 +2 +30 − +4822 NGC6637 1.6 35−83 90−42 126−4 2.3−0.3 0.09−0.06 0.93−0.15 77−6 22−1 40−20 212857−1774 B +5 +22 +5 +0.2 +0.07 +0.03 +65 +3 +40 − +3709 NGC 6642 1.7 112−13 25−38 126−8 2.2−0.1 0.08−0.04 0.93−0.05 46−19 24−2 36−54 215381−1783 B − +4 +11 +7 +0.3 +0.16 +0.03 +8 +6 +35 − +6685 NGC 6652 2.5 55−1 30−16 184−6 4.2−0.2 0.08−0.07 0.96−0.06 75−3 38−2 46−28 183873−2374 B +2 +1 +5 +0.3 +0.11 +0.00 +2 +4 +31 − +1910 NGC 6656 5.2 176−1 200−1 302−4 9.8−0.3 3.05−0.09 0.53−0.01 33−2 126−5 1041−33 125541−1690 D − +13 +14 +15 +0.4 +0.44 +0.04 +3 +6 +103 − +5561 Pal 8 5.3 22−16 118−13 125−13 5.6−0.6 1.79−0.26 0.52−0.09 24−2 72−6 601−89 159674−4578 D +35 +113 +8 +0.6 +0.32 +0.09 +9 +5 +51 − +4669 NGC 6681 2.0 219−120 57−50 287−5 4.5−0.4 0.67−0.20 0.74−0.12 84−7 52−2 37−41 168029−2227 LE +3 +13 +4 +0.2 +0.10 +0.02 +4 +2 +53 − +3354 NGC 6712 3.6 145−2 25−10 208−6 5.5−0.4 0.18−0.08 0.94−0.04 79−6 58−5 92−38 168520−3335 GE +5 +14 +9 +10.6 +1.02 +0.04 +3 +189 +244 − +4900 NGC 6715 18.6 231−4 51−13 313−7 53.9−6.8 14.66−0.92 0.57−0.03 80−3 862−118 886−233 49410−3976 Sgr − +14 +5 +6 +0.2 +0.21 +0.01 +3 +5 +33 − +4456 NGC 6717 2.5 11−17 115−9 118−7 3.1−0.5 0.65−0.06 0.65−0.10 32−4 34−1 249−32 195877−3703 B +12 +334 +4 +0.2 +0.18 +0.03 +8 +4 +66 +3304 16 − − − NGC 6723 2.6 101−197 179−17 209−4 3.1−0.2 1.84−0.12 0.26−0.03 90−7 40−1 2−75 175214−2456 B − +12 +8 +9 +0.3 +0.17 +0.04 +0 +4 +45 − +3062 NGC 6749 5.0 23−14 110−8 112−7 5.1−0.2 1.55−0.15 0.53−0.03 3−0 62−1 555−41 167074−2247 D − +3 +5 +5 +0.2 +0.21 +0.01 +1 +4 +47 − +1997 NGC 6752 5.5 24−3 179−3 190−3 5.7−0.2 3.57−0.15 0.23−0.02 24−1 82−2 932−38 147118−1841 D +10 +6 +5 +0.2 +0.19 +0.03 +0 +3 +52 − +2626 NGC 6760 5.0 91−10 147−6 173−5 5.6−0.2 2.17−0.18 0.44−0.03 6−0 72−3 725−50 158822−2401 D +1 − +6 +3 +0.5 +0.15 +0.01 +3 +6 − +57 − +2614 NGC 6779 9.3 154−1 14−4 184−3 12.5−0.7 0.25−0.06 0.96−0.02 100−4 134−8 129−40 119887−3009 GE +6 +14 +9 +6.5 +0.75 +0.03 +3 +109 +180 − +4381 Terzan 7 15.3 259−6 32−15 319−8 42.3−4.7 12.73−0.68 0.54−0.03 85−2 656−75 422−200 56985−3760 Sgr − +10 +8 +9 +0.3 +0.29 +0.03 +0 +5 +69 − +2591 Pal 10 6.6 64−10 187−8 198−8 7.2−0.2 4.00−0.25 0.28−0.02 7−0 100−3 1240−60 137907−2050 D +6 +18 +8 +9.4 +0.89 +0.04 +2 +169 +327 − +3483 Arp 2 21.2 242−8 61−11 306−7 61.3−7.0 17.54−0.77 0.55−0.03 79−3 1026−125 1128−213 45162−3081 Sgr − +3 +11 +3 +0.3 +0.15 +0.04 +4 +3 +41 − +2721 NGC 6809 4.1 199−4 75−13 220−2 5.7−0.3 1.18−0.14 0.66−0.04 68−3 76−3 262−46 154418−2294 LE +7 +12 +9 +9.7 +0.88 +0.03 +3 +174 +171 − +3726 Terzan 8 19.1 269−6 41−17 317−7 60.0−6.9 16.12−0.76 0.58−0.04 83−2 982−121 646−267 46155−3177 Sgr − +15 +9 +11 +0.4 +0.37 +0.06 +2 +7 +81 − +2555 Pal 11 8.1 17−19 138−12 140−12 8.2−0.3 3.47−0.45 0.40−0.04 27−2 110−5 1012−107 132025−2704 D +5 +3 +2 +0.2 +0.13 +0.02 +0 +3 +28 − +1077 NGC 6838 7.0 38−5 204−2 211−2 7.3−0.1 5.00−0.11 0.18−0.01 12−1 110−1 1422−25 132364−941 D − +8 +11 +8 +0.8 +0.47 +0.03 +20 +10 +136 − +2440 NGC 6864 14.6 98−7 21−13 112−8 16.5−0.7 0.59−0.23 0.93−0.05 56−13 186−9 238−147 103497−2223 GE − +14 +20 +12 +5.4 +0.74 +0.02 +3 +83 +228 − +4391 NGC 6934 12.7 290−13 105−22 332−12 41.4−5.2 2.57−0.50 0.88−0.03 23−1 528−76 1224−267 62807−4984 GE − +11 +15 +7 +1.2 +0.10 +0.02 +29 +17 +141 − +2531 NGC 6981 12.8 158−9 2−11 232−7 22.5−0.8 0.38−0.23 0.97−0.01 79−27 254−9 15−103 89148−1655 GE * − +5 − +7 +4 +3.1 +0.67 +0.02 +11 +52 − +241 − +1759 NGC 7006 38.5 144−4 20−7 167−6 56.5−3.2 1.72−0.48 0.94−0.02 125−10 758−54 725−249 52150−1956 GE * +5 +6 +6 +0.4 +0.29 +0.03 +2 +4 +70 − +1919 NGC 7078 10.6 6−7 119−6 123−6 10.6−0.3 3.60−0.26 0.49−0.02 28−1 142−6 1128−69 119827−1789 D +5 − +8 +9 +1.2 +0.04 +0.03 +9 +16 − +61 − +3033 NGC 7089 10.4 168−5 15−5 240−6 18.5−0.9 0.55−0.24 0.94−0.00 116−13 208−11 120−41 98441−2478 GE − +9 − +12 +7 +0.4 +0.24 +0.04 +3 +5 − +54 − +2437 NGC 7099 7.2 34−8 55−10 127−6 8.2−0.2 0.98−0.20 0.79−0.05 119−5 94−3 233−45 137334−1730 GE +20 +17 +14 +18.2 +0.72 +0.05 +1 +297 +144 − +5008 Pal 12 15.7 143−28 304−16 354−14 69.9−14.3 15.49−0.55 0.64−0.06 67−2 1140−313 2142−145 42546−5202 Sgr +5 − +10 +7 +8.3 +0.93 +0.01 +4 +164 − +238 − +2142 Pal 13 27.0 264−5 92−11 293−6 90.9−7.2 8.31−0.64 0.83−0.01 120−4 1418−138 1876−258 37614−2097 GE − +18 − +6 +11 +3.3 +1.20 +0.06 +2 +29 − +59 − +2636 NGC 7492 25.4 91−13 6−5 112−14 28.3−2.6 3.34−1.05 0.79−0.06 92−3 354−22 57−45 76660−2436 GE *