<<

Mon. Not. R. Astron. Soc. 000, 1–19 (201x) Printed 24 May 2021 (MN LATEX style file v2.2)

Accurate distances to Galactic globular clusters through a combination of Gaia EDR3, HST and literature data

H. Baumgardt1?, E. Vasiliev2,3 1 School of Mathematics and Physics, The University of Queensland, St. Lucia, QLD 4072, Australia 2 Institute of , University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK 3 Lebedev Physical Institute, Leninsky prospekt 53, 119991 Moscow, Russia

Accepted 2021 xx xx. Received 2021 xx xx; in original form 2021 xx xx

ABSTRACT We have derived accurate distances to Galactic globular clusters by combining data from the Gaia Early Data Release 3 (EDR3) with distances based on Hubble Space (HST ) data and literature based distances. We determine distances either directly from the Gaia EDR3 parallaxes, or kinematically by combining line-of-sight profiles with Gaia EDR3 and HST based velocity dispersion profiles. We furthermore calculate cluster distances from fitting nearby sub- dwarfs, whose absolute we determine from their Gaia EDR3 parallaxes, to main-sequences. We finally use HST based stellar number counts to determine distances. We find good agreement in the average distances derived from the different methods down to a level of about 2%. Combining all available data, we are able to derive distances to 162 Galactic globular clusters, with the distances to about 20 nearby globular clusters determined with an accuracy of 1% or better. We finally discuss the implications of our distances for the value of the local Hubble constant. Key words: globular clusters: general – : distances

1 INTRODUCTION et al. 2020), or by using variable stars that follow known re- lations between their periods and absolute luminosities like Galactic globular clusters constitute an important rung on RR Lyrae stars (e.g Bono, Caputo & Di Criscienzo 2007; the extragalactic distance ladder. They are nearby enough to Hernitschek et al. 2019), Type II Cepheids (Matsunaga et al. be resolved into individual stars, making them ideal objects 2006) or Mira type variables (Feast, Whitelock & Menzies to calibrate the brightnesses of physically interesting stars 2002). In order to avoid circularity, the absolute luminosi- like RR Lyrae or Type II Cepheids. In addition they are also ties of these stars need to be determined independently from massive enough to contain statistically significant samples of globular cluster distances by using for example theoreti- arXiv:2105.09526v2 [astro-ph.GA] 21 May 2021 these stars. Hence globular clusters are useful to determine cal models (e.g Catelan, Pritzl & Smith 2004) or Hippar- the slopes and zero-points of RR Lyrae period- cos or Gaia parallaxes (Fernley et al. 1998; Neeley et al. (P/L) relations (e.g. Bono, Caputo & Di Criscienzo 2007; 2019; Ripepi et al. 2019). Accurate distances have also been Dambis et al. 2014) as well as a possible depen- obtained for globular clusters by using eclipsing binaries dence of the zero points (e.g Sollima, Cacciari & Valenti (Kaluzny et al. 2007; Thompson et al. 2020), however the 2006). Globular clusters can also be used as calibrators for faintness and scarcity of suitable binaries means that obser- other distance methods, like the tip of the branch vations have so far been limited to a few globular clusters. distance method (TRGB), which allows to determine dis- Finally it is possible to determine distances by comparing tances to external without having to rely on P/L the magnitudes of main-sequence stars with stars of similar relations of variable stars (e.g Cerny et al. 2020; Freedman metallicity in the solar neighborhood, the so-called et al. 2020; Soltis, Casertano & Riess 2021). method (e.g Reid & Gizis 1998; Cohen & Sarajedini 2012) or Distances to globular clusters are determined either kinematically by comparing line-of-sight and proper motion through fits of their color- diagrams (CMDs) with velocity dispersion profiles in globular clusters (e.g. McNa- theoretical isochrones (e.g Ferraro et al. 1999; Dotter et al. mara, Harrison & Baumgardt 2004; van de Ven et al. 2006; 2010; Gontcharov, Mosenkov & Khovritchev 2019; Valcin Watkins et al. 2015b). The latter method has the advantage that the derived distance is not influenced by the reddening of the cluster. ? E-mail: [email protected]

© 201x RAS 2 Baumgardt & Vasiliev

Typical uncertainties in the zero points of the P/L re- In addition, parallaxes are not influenced by the reddening lations of RR Lyrae stars are thought to be of order 0.05 of the clusters. In this paper, we take the cluster parallaxes mag (Bhardwaj 2020) and other methods like CMD fit- from Vasiliev & Baumgardt (2021) (hereafter VB21). VB21 ting have similar uncertainties. In addition, the reddening determined mean parallaxes for 170 globular and outer halo of many clusters presents an additional challenge for the de- clusters by averaging the cluster parallaxes of individ- termination of accurate distances since it can be variable ual member stars from the Gaia EDR3 catalogue. Cluster even across small, arcminute size fields (Bonatto, Campos members were selected based on the Gaia EDR3 proper & Kepler 2013; Pallanca et al. 2019). Furthermore there is motions and parallaxes. VB21 also applied multi-gaussian evidence for non-standard reddening laws in the directions mixture modeling to classify stars into cluster members and of several globular clusters like for example M4 (Dixon & background stars and determined the mean cluster param- Longmore 1993; Hendricks et al. 2012). eters and their errors over multiple realizations of statisti- It is therefore important to use independent methods to cally created member catalogues. In order to account for verify ine distances to globular clusters, especially methods possible magnitude, color and position dependent biases in which are not effected by the reddening of stars. In this paper the Gaia catalogue, VB21 applied the parallax corrections we use data from the Gaia EDR3 catalogue (Gaia Collabo- of Lindegren et al. (2020) to the individual stellar paral- ration et al. 2016, 2020) to determine distances to Galactic laxes. However when testing the derived cluster parallaxes globular clusters. In addition to using the Gaia EDR3 par- against the literature distances that we derive further be- allaxes directly, we also determine moving group distances low, VB21 found that even after applying the Lindegren et and kinematic distances derived by comparing proper mo- al. corrections, there is still a mean offset in the Gaia paral- tion velocity dispersion profiles with line-of-sight velocity laxes. In particular, they found that the parallax corrections dispersion ones. We finally use the Gaia EDR3 parallaxes of suggested by Lindegren et al. (2020) might have been over- nearby subdwarfs as well as (HST) correcting the Gaia EDR3 parallaxes by ∆$ ∼ 0.007 mas. star counts together with kinematic information to deter- VB21 also found evidence for spatially correlated small scale mine distances. systematic errors of order $ ∼ 0.01 mas. We therefore sub- Our paper is organised as follows: In sec. 2 we present tract ∆$ = 0.007 mas from the derived mean parallaxes our derivation of cluster distances using the methods men- to correct for the parallax bias. The small-scale correlated tioned above. In sec. 3 we describe our survey of literature errors were already taken into account by the parallax av- distances. We compare the distances that we derive from the eraging procedure of VB21. We list the median distances different methods and derive the average distance to each D = 1/$ for clusters with $/σ$ > 10 in Table 2 to allow a globular cluster in sec. 4. We finally draw our conclusions in comparison of the Gaia EDR3 parallax distances with the sec. 5. other distances that we derive. When calculating mean clus- ter distances we use the data for all clusters and the parallax values directly as will be described further below. 2 ANALYSIS 2.3 Kinematic distances 2.1 Cluster sample and selection of member stars For clusters with accurately measured line-of-sight and We take our target list of globular clusters from Baumgardt proper motion velocity dispersion profiles one can determine et al. (2019b). To this sample we add six additional Milky cluster distances kinematically by varying the cluster dis- Way globular clusters that have been found in recent years: tance until the velocity dispersions are the same or a best VVV-CL001 (Minniti et al. 2011; Fern´andez-Trincado et al. match to a theoretical model of the cluster is achieved (e.g. 2021), BH 140 and FSR 1758 (Cantat-Gaudin et al. 2018), H´enault-Brunetet al. 2019). The advantage of such kine- Sagittarius II (Laevens et al. 2015; Mutlu-Pakdil et al. 2018), matic distances is that, like parallaxes, the kinematic dis- RLGC 1 and RLGC 2 (Ryu & Lee 2018), and tance method is a direct method which does not rely on (Longeard et al. 2019). The status of Sagittarius II is still other, more nearby methods in the distance ladder. Simi- debated, while Mutlu-Pakdil et al. (2018) argue for it to be lar to parallax distances, kinematic distances are also not a based on its location in a size vs. luminosity affected by cluster reddening, allowing in principle to de- plane, Longeard et al. (2020) argue, based on a small spread rive accurate distances for highly reddened clusters. In or- in [Fe/H] that they find among the cluster stars, for it to der to calculate kinematic distances, one either needs to be a dwarf . We tentatively include the object in our know the anisotropy profile of the internal velocity disper- list of clusters. The other systems are most likely globular sion of a cluster, or assume that the cluster is isotropic. clusters based on their color-magnitude diagrams, kinemat- The latter is most often assumed since observed velocity ics and location in the . Together with the 158 dispersion profiles usually show that globular clusters are GCs studied in Baumgardt et al. (2019b), we therefore have isotropic, at least in their inner parts (van Leeuwen et al. a sample of 162 globular clusters. 2000; Watkins et al. 2015a; Raso et al. 2020; Cohen et al. 2021), N-body simulations of star clusters also show that most globular clusters should have isotropic velocity disper- 2.2 Cluster parallax distances sion profiles (Baumgardt & Makino 2003; L¨utzgendorfet al. Determining distances to globular clusters via the parallaxes 2011; Tiongco, Vesperini & Varri 2016). of individual stars has the advantage that the distances are We take the line-of-sight velocity dispersion profiles for determined directly, without having to rely on another dis- the kinematic distance fitting from Baumgardt & Hilker tance method as an intermediate step in the distance ladder. (2018), Baumgardt et al. (2019a) and Baumgardt et al.

© 201x RAS, MNRAS 000, 1–19 Accurate distances to Galactic globular clusters 3

Figure 1. Illustration of the kinematic distance determination for the globular clusters NGC 6624 (left panel) and NGC 6656 (middle panel). Shown are the χ2 values from the fit of our N-body models to the velocity dispersion profiles as a function of distance for the HST proper motions (red circles) and Gaia EDR3 proper motions (blue triangles). Solid lines show a quadratic fit to the χ2 values of each data set and the dashed lines and shaded areas mark the best-fitting distances and their 1σ error. The literature distances are D = 8020 pc (NGC 6624) and D = 3330 pc (NGC 6656) and are in agreement with the kinematic ones. The right panel compare the error weighted distance differences from Gaia and HST data for clusters which have proper motion velocity dispersion profiles from both satellites. The resulting distribution is compatible with a normal distribution (shown by a blue solid line).

(2019b). Baumgardt & Hilker (2018) calculated line-of-sight Table 1. Kinematic distances based on HST proper motion ve- velocity dispersion profiles by combining literature veloci- locity dispersion profiles. The second last panel gives the kine- ties with line-of-sight velocities derived from archival spec- matic distance derived by the authors of the original HST data tra from the ESO and Keck data archives. Baumgardt et al. set, the last column gives our distances for the same data set. (2019a) and Baumgardt et al. (2019b) added line-of-sight Lit. Dist. Our Dist. Cluster HST Data set velocities from Gaia DR2 and the Anglo-Australian Obser- [kpc] [kpc] vatory (AAO) data archive to these profiles. In addition we NGC 104 Watkins et al. (2015a) 4.45 ± 0.50 4.545 ± 0.047 use the line-of-sight velocity dispersion profiles published by Heyl et al. (2017) 4.29 ± 0.47 4.347 ± 0.236 Kamann et al. (2018) based on MUSE data. We take the NGC 288 Watkins et al. (2015a) 9.98 ± 0.37 9.098 ± 0.291 proper motion dispersion profiles either from VB21 based on NGC 362 Watkins et al. (2015a) 9.37 ± 0.18 9.202 ± 0.280 Gaia EDR3 data, or from published profiles based on multi- NGC 1261 Raso et al. (2020) − 16.775 ± 0.824 HST measurements. Table 1 lists the HST proper NGC 1851 Watkins et al. (2015a) 11.41 ± 0.20 11.440 ± 0.254 motion velocity dispersion profiles that we use in this pa- NGC 2808 Watkins et al. (2015a) 10.18 ± 0.12 9.837 ± 0.122 per together with the distances that we derive from these NGC 5139 Watkins et al. (2015a) 5.22 ± 0.05 5.264 ± 0.082 profiles. Unfortunately we could not use the recently pub- NGC 5904 Watkins et al. (2015a) 8.77 ± 0.15 7.456 ± 0.146 lished proper motion dispersion profiles for nine inner Milky NGC 6266 Watkins et al. (2015a) 5.67 ± 0.07 6.354 ± 0.128 Way globular clusters by Cohen et al. (2021) since no accu- McNamara et al. (2012) − 6.945 ± 0.264 rate line-of-sight velocity dispersion profiles are available for NGC 6341 Watkins et al. (2015a) 8.43 ± 0.34 8.231 ± 0.347 these clusters. NGC 6352 Libralato et al. (2019) − 6.260 ± 0.762 We determine a kinematic distance independently for NGC 6362 Watkins et al. (2015a) 7.34 ± 0.24 7.720 ± 0.315 each proper motion velocity dispersion profile that we have NGC 6388 Watkins et al. (2015a) 10.44 ± 0.12 10.894 ± 0.137 from either Gaia EDR3 or HST data. The best-fitting dis- NGC 6397 Watkins et al. (2015a) 2.54 ± 0.05 2.332 ± 0.057 tance is determined by fitting each cluster with the grid of Heyl et al. (2012) 2.20 ± 0.60 2.416 ± 0.062 N-body models calculated by Baumgardt (2017) and Baum- NGC 6441 Watkins et al. (2015a) 11.77 ± 0.20 12.059 ± 0.172 gardt & Hilker (2018). Their grid contains several thousand H¨aberle et al. (2021) 12.74 ± 0.16 12.364 ± 0.226 N-body models of star clusters, varying the size, initial den- NGC 6624 Watkins et al. (2015a) 6.69 ± 0.36 7.972 ± 0.277 sity profile, metallicity and stellar function of each clus- NGC 6656 Watkins et al. (2015a) 3.18 ± 0.07 3.161 ± 0.070 ter. We interpolate within this grid and determine for each NGC 6681 Watkins et al. (2015a) 9.33 ± 0.14 9.260 ± 0.165 cluster the N-body model that simultaneously provides the NGC 6715 Watkins et al. (2015a) 23.79 ± 0.33 25.019 ± 0.646 best fit to the internal mass function, velocity dispersion NGC 6752 Watkins et al. (2015a) 4.28 ± 0.03 4.005 ± 0.130 and surface density profile. More details about the N-body NGC 7078 Watkins et al. (2015a) 10.23 ± 0.13 10.375 ± 0.237 models can be found in Baumgardt (2017) and Baumgardt & Hilker (2018) and we refer the reader to these papers for a full description of the fitting procedure. full profile. In the N-body models we measure the line-of- We restrict the radial extent of the line-of-sight veloc- sight velocity dispersion profile for stars brighter than the ity dispersion profiles to the same range for which we have main-sequence turnoff. The magnitude limit for the proper proper motion dispersions in order to avoid a possible bias motion velocity dispersion profiles was varied for each data due to the N-body models not providing a match to the set independently so we match the magnitude limit of the

© 201x RAS, MNRAS 000, 1–19 4 Baumgardt & Vasiliev observed data. Hence, except for the nearest clusters like Our source for the globular cluster is the NGC 6121, we chose a magnitude limit equal to the main- compilation of HST photometry published by Sarajedini sequence turnoff for fits to the Gaia EDR3 proper motions, et al. (2007) based on observations made with the Ad- while we choose deeper limits for the HST data. The left and vanced Camera for Surveys (ACS) onboard HST. Their sur- middle panels of Fig. 1 show the resulting fits to two clus- vey contains deep photometry in the ACS/WFC F606W and ters that have both Gaia and HST data and Table 1 gives F814W bands for 67 globular clusters. In addition to the the derived distances from the HST data together with the photometry for 67 globular clusters from Sarajedini et al. kinematic distances derived by the authors of the original (2007), we also use the ACS/WFC photometry published by papers. There is usually good agreement between the dis- Dotter, Sarajedini & Anderson (2011) for 6 globular clusters tances derived by us and the original kinematic distances. as well as the photometry for NGC 6528 from Lagioia et al. The only exceptions are NGC 5904 and NGC 6266. At least (2014) that was kindly provided to us by the authors. We fi- for NGC 5904, one the reason for different distances could nally use the photometry from Baumgardt et al. (2019b) for be the lack of a radial overlap between the line-of-sight and an additional 6 globular clusters (NGC 6325, NGC 6342, proper motion velocity dispersion profiles used by Watkins NGC 6355, NGC 6380, NGC 6401 and NGC 6558). We et al. (2015a), which makes the derived distance strongly skipped Pal 2 due to significant differential reddening and dependent on the dynamical model used for the cluster. E 3 since the cluster has such a low mass that the loca- We give the full set of distances including the Gaia ED3 tion of its cannot be accurately determined. kinematic distances in the Appendix. The right panel of This leaves us with a sample of 79 globular clusters with Fig. 1 shows the error weighted distribution of differences accurate, deep ACS/WFC photometry in the F606W and in the kinematic distances for the Gaia EDR3 and HST F814W bands. data. It can be seen that they roughly follow a normal dis- We dereddened the photometry of each globular cluster tribution, indicating good agreement between the HST and using the reddening values given by Dotter et al. (2010) Gaia distances. together with the coefficients from Sirianni et al. (2005). We then transformed the subdwarf photometry, from the Johnson-Cousins UBVRI system to the ACS/WFC filter 2.4 Subdwarf distances system using eqn. 12 of Sirianni et al. (2005) together with The main idea of our subdwarf distances is to make use the transformation coefficients given in Table 18 of their of the excellent accuracy of Gaia EDR3 parallaxes for paper. We then fitted isochrones (Bressan et al. nearby stars. As discussed in sec. 2.2, Gaia EDR3 parallaxes 2012) to the color-magnitude diagram of each cluster, and have small-scale, systematic uncertainties of ∼ 0.01 mas used the isochrone to select the cluster members. We then that can’t be removed through calibration of the parallaxes calculated the average color of the cluster stars as a function against objects with known parallaxes. This means that even of magnitude and define a main-sequence ridge line by cubic the distances to the nearest globular clusters cannot be de- spline interpolation between the data points. termined directly with an accuracy better than a few per- In order to compare the subdwarf photometry with the cent. The accuracy of parallax distances also quickly deterio- globular cluster photometry and derive the cluster distances, rates with increasing distance and drops below the accuracy we select for each globular cluster all subdwarfs with metal- of CMD fitting distances beyond distances of about 5 kpc. licities |[Fe/H]SD-[Fe/H]GC | <0.2. We took the metallici- In contrast, the distance to a nearby star at d = 100 pc ties of the subdwarfs from Casagrande et al. (2010) and has a relative uncertainty of only 0.1% using Gaia EDR3 the of the globular clusters from Carretta et al. parallaxes. (2009). In order to correct the colors of the subdwarfs to the Our basic approach for deriving subdwarf distances is color they would have at the metallicity of the globular clus- the same as the one used by Cohen & Sarajedini (2012), ter, we created a set of PARSEC isochrones equally spaced except that we replace the Hipparcos parallaxes by Gaia in metallicity by ∆[Fe/H] = 0.5 and calculate the colors of EDR3 ones. We start using the compilation of precise zero-age main sequence stars as a function of their absolute Johnson-Cousins UBVRI photometry of nearby subdwarfs V -band luminosity. We then use this grid of isochrones and by Casagrande et al. (2010) and identify the counter-parts the absolute magnitudes of the subdwarfs which we calculate of these stars in the Gaia EDR3 catalogue. We then apply using their Gaia EDR3 parallaxes to correct the subdwarf the Lindegren et al. (2020) parallax corrections to the stars colors for the difference in metallicity. Due to the proximity as well as the additional shift of ∆$ = 0.007 mas found of the subdwarf metallicities to the metallicity of the clus- by VB21. Using only stars which have published V and I ters, the resulting shifts are always below 0.02 mag. band photometry by Casagrande et al. (2010), a reddening After transforming the subdwarf photometry to the E(B − V ) < 0.02 and Gaia EDR3 parallaxes with a relative ACS/WFC system and correcting the subdwarf metallici- precision $/$ > 20 leaves us with a sample of 206 stars. ties, we fitted the cluster main sequences in a F814W0 vs. Despite our more stringent limit on the parallax accuracy, (F606W-F814W)0 CMD with the subdwarfs. To this end, we our sample is almost a factor 10 larger than the one used vary the assumed cluster until the error- by Cohen & Sarajedini (2012). Thanks to the superior accu- weighted difference between the subdwarfs and the previ- racy of the Gaia EDR3 parallaxes, our sample also contains ously determined main-sequence ridgeline are minimal. Due about 20 stars with metallicities [Fe/H] < −2.0, while no ac- to the steepness of the cluster ridgelines and the accurate curate Hipparcos parallaxes were available for any of these Gaia parallax distances, this essentially results in minimiz- stars. We finally use the SIMBAD astronomical data base ing the error weighted color differences between the subd- to exclude known binaries from this sample, leaving us with warfs and the main sequence ridge lines. We exclude subd- a sample of 185 stars. warfs with M814 < 4 from the fits since these could already

© 201x RAS, MNRAS 000, 1–19 Accurate distances to Galactic globular clusters 5

Figure 2. Illustration of the subdwarf distance determination for four globular clusters with a range of metallicity and reddening values. Grey points mark stars considered to be background stars, black points are cluster members. The green line shows our fitted ridge line for each cluster. Subdwarfs used in the distance fitting are shown by red circles, subdwarfs not used are shown by blue circles. Photometric error bars are also shown. Note that the error in due to the Gaia EDR3 parallax error is shown but usually too small to be seen. have evolved away from the main sequence. We also exclude 2.5 distances subdwarfs with discrepant photometry since these could be undetected binaries. Fig. 2 shows examples of our subdwarf For a given velocity dispersion profile, the derived mass of fits for four globular clusters. The clusters shown are the a cluster increases (decreases) with increasing (decreasing) same as the ones depicted in Fig. 2 of Cohen & Sarajedini cluster distance. If the velocity dispersion profile is based (2012). We will derive an error bar for the subdwarf distance entirely on line-of-sight velocities, the total cluster mass moduli in sec. 3 when we compare the subdwarf distance changes linearly with distance, while for a cluster with a ve- moduli against literature data. locity dispersion profile based only on proper motions, the mass changes with the distance to the third power. For a cluster with measured line-of-sight and proper motion ve-

© 201x RAS, MNRAS 000, 1–19 6 Baumgardt & Vasiliev

Figure 3. Illustration of the fit of our N-body models to the globular cluster NGC 104. The left panel shows all fields in NGC 104 with available HST photometry. The different fields are labeled by the name of the Principal Investigator of the HST observations and the white circle marks the observed half-light radius of NGC 104. The middle panel shows the fit of a PARSEC isochrone (shown in red) to the combined photometry of the four HST/WFPC2 fields of Rhoads (HST Proposal ID: 9634) from the left panel. The parameters of the isochrone are given in the figure. Grey circles mark all stars in the field and black stars are the stars used for the determination of the function of NGC 104. The group of stars visible in the lower left part of the middle panel is the SMC. The right panel compares the derived mass functions as a function of radius against the mass function of the best-fitting N-body model (shown by solid lines). There is a clear change in the derived mass function slope from increasing towards higher in the centre to increasing towards lower masses in the outermost parts, indicating that NGC 104 is mass segregated. This trend is reproduced by the best-fitting N-body model. locities, the scaling will be in between these limits. Since measured stellar mass functions at different distances from the predicted number of main-sequence stars changes lin- the centre (right panel) for the globular cluster NGC 104. early with the cluster mass (for a given mass function), one Varying the cluster distance, we then determine the can use the observed number of cluster stars in a given mag- distance that gives the best match between the number of nitude interval and a given field, together with the measured main-sequence stars in the best-fitting N-body model and cluster kinematics and a theoretical model for the cluster, the observed number of main sequence stars in the different to determine the cluster distance. HST fields. We restrict ourselves to well observed clusters We use as source for the globular cluster photometry in which the errors of the total mass (based on the cluster the compilation of ACS/WFC F606W/F814W photome- kinematics) are less than 5%. try published by Sarajedini et al. (2007) as well the HST Fig. 4 depicts the ratio between the best-fitting cluster photometry that was derived in Baumgardt et al. (2019b), distances based on the star count method against the mean Baumgardt, Sollima & Hilker (2020) and Ebrahimi et al. cluster distances that we derive from the other methods. We (2020). We also use the photometry published by Kerber split the cluster sample into two groups, clusters with 10 or et al. (2018) for NGC 6626 as input photometry. We exclude more distance determinations from the other methods and NGC 5139 from this list due to the significant metallicity clusters with less than 10 measurements. We expect that the spread among the cluster stars. For each HST observation, distances of clusters in the first group are well determined we again fit PARSEC isochrones (Bressan et al. 2012) to the so that any deviation is mainly due to errors in the star cluster color-magnitude diagrams. To create the isochrones, count distances. It can be seen that the average distance we use the cluster ages derived by VandenBerg et al. (2013), ratio is well below unity. The reason is probably that the or, for clusters not studied by them, from available litera- N-body models that we use to fit the clusters do not con- ture sources, and take the cluster metallicities and redden- tain primordial binaries. Since the average mass of binaries ings from Harris (1996). From the isochrones we then derive is larger than that of single stars, real globular clusters con- individual stellar masses for the main-sequence stars in the tain fewer stellar systems than models with only single stars clusters. We fit the N-body models of Baumgardt (2017) and for the same total mass, leading to an underprediction of the Baumgardt & Hilker (2018) to the observed surface density, cluster distances with our method. The size of this underpre- velocity dispersion profiles and the observed mass function diction is also in rough agreement with the observed binary of main sequence stars in the HST fields and determine the fractions, which are around 10% (Sollima et al. 2007; Milone best-fitting N-body model from the fit. For each HST ob- et al. 2012; Giesers et al. 2019). Fig. 4 also indicates that the servation, we fit a power-law mass function N(m) ∼ mα to star count distances contain additional errors that are not the observed stellar mass distribution as well as the masses accounted for by the uncertainties in the cluster kinematics, of stars in the N-body models in the same field. We use the since even when applying a constant shift, the deviations mass function slopes α as fit parameters but not the absolute between the star count distances and the mean distances of number of stars. Fig. 3 shows as an example the distribution the other methods are larger than what can be accounted of HST fields with measured photometry (left panel), the for by the errors in either method. These additional errors derived color-magnitude diagram (middle panel), and the could arise due to for example mismatches between the cho-

© 201x RAS, MNRAS 000, 1–19 Accurate distances to Galactic globular clusters 7

(2018). Here we use the two most precisely determined dis- tances D = 4.62±0.28 kpc (NGC 3201) and D = 5.34±0.55 kpc (NGC 5139). For all other clusters the derived distances have too large error bars to be useful.

3 LITERATURE SURVEY OF GLOBULAR CLUSTER DISTANCES In addition to our own distance determinations, we also per- formed a literature search of globular cluster distances. Lim- iting our search to the last 20 to 25 years, we were able to find about 1300 distance determinations in total, with each globular cluster having between 1 to 35 individual measure- ments. Whenever a paper gave multiple measurements for the same cluster, we averaged these and took the scatter between the individual values as an indication of the un- certainty. When we had multiple distance determinations from the same research group which were based on the same method and similar input data, we included only the newest value since we expect the different distances to not be inde- pendent from each other and the newest measurement to be Figure 4. Ratio of the best-fitting distance based on star counts the most accurate one. When a paper gave both a distance to the average distance from the other methods as a function and a distance modulus to a cluster, we used the distance of the global mass function slope α of the clusters. The clus- modulus since we expect the errors to be Gaussian only in ter sample is split into clusters with 10 or more distance mea- surements (blue circles) and those with less than 10 individual distance modulus. The resulting list of distance moduli and measurements (red triangles). The dashed line shows the average distances can be found in the Appendix. DStarCount/DMean ratio for the former group which has more In order to calculate a mean distance modulus for each secure distance determinations. It can be seen that the average cluster, we de-reddened distance moduli using the reddening ratio is well below unity. values given in the papers, or, if no value was available, given in the 2010 edition of Harris (1996). We also transformed linear distances into distance moduli for those papers which sen mass functions of the N-body models and those of the did not give distance moduli. For distance moduli without real clusters or errors in the conversion from luminosity to an error bar, we assumed an error equal to the mean error of mass from the isochrones. We will fit for an additional shift the other distance determinations for the same cluster, with in the star count distances as well as additional errors in a minimum of 0.10 mag. A comparison of distance moduli sec. 4 when we compare all distances. for a few well observed clusters shows that even in clusters with low reddening, individual distance moduli show a scat- 2.6 Moving group distances ter of around 0.07 to 0.10 mag around the mean. This scat- ter is independent of the chosen method, with only eclips- Stars in star clusters move on very similar trajectories ing binary and RR Lyrae distances based on P/L through the Milky Way since the internal motion of stars relations showing smaller scatter. We therefore set the min- in the cluster is usually two orders of magnitudes smaller imum error of any measurement except for EB or infrared than the velocity with which the cluster moves around the RR Lyrae distances, for which we use the quoted errors, Galactic centre. As the distance and viewing angle to the to 0.07 mag. We neglected distances that deviate strongly stars changes along the orbit, the proper motion and line- from the other measurements. In total we had to exclude of-sight velocity of the stars will change as well and one about 25 measurements out of the 1300 measurements we can use this variation to measure the distance to the clus- found this way. Most of the excluded measurements were ter. This is the so-called moving group or convergent point for highly reddened clusters with E(B − V ) > 1.0 where the method (Brown 1950; de Bruijne 1999). To first order, the individual measurements also often show a larger scatter. change in proper motion µ due to these perspective effects This scatter probably reflects an uncertainty in the exact can be approximated by amount of reddening and the proper selection of cluster and v α µ = − Los mas yr−1 (1) background stars. DA We also found that the subdwarf distance moduli of Co- where vLos is the line-of-sight velocity of the cluster in hen & Sarajedini (2012) were systematically smaller than km/sec, α the distance from the cluster centre in the di- the other literature values for low-metallicity clusters with rection of motion in radians, D the distance of the cluster [F e/H] < −1.2. The average difference increased with de- from the in kpc, and A = 4.74 (Brown 1950; van de creasing metallicity and reached about 0.30 mag for the Ven et al. 2006). Using the above equation, VB21 deter- lowest-metallicity clusters. In order to correct this bias, we mined moving group distances to about 40 globular clusters fitted a linear relation between the difference in distance based on Gaia EDR3 proper motions and the average line- modulus and metallicity to the data and shifted the Cohen of-sight velocities of the clusters from Baumgardt & Hilker & Sarajedini (2012) distance moduli upwards to bring them

© 201x RAS, MNRAS 000, 1–19 8 Baumgardt & Vasiliev

+0. 011 0.4 0.4 ²CMD = 0. 023 0. 012 −

0.3 0.3

0.2 0.2

D 0.1 0.1 +0. 015 D

² = 0. 024 M RRL 0. 014 M C

− C

0.10 µ 0.0 µ 0.0 − 0.08 − L B R E L R R 0.06 µ

µ 0.1 0.1 R ² 0.04 0.2 0.2 0.02 +0. 010 ∆RRL = 0. 021 0. 010 − − 0.050 0.3 0.3

0.025 L

R 0.4 0.4

R 11 12 13 14 15 16 17 18 19 20 11 12 13 14 15 16 17 18 19 20 0.000 ∆ µCMD µCMD 0.025 +0. 019 0.4 ²EB = 0. 038 0. 018 − 0.10 0.3 0.08

B 0.06 E

² 0.2 0.04

0.02 D 0.1 ∆ 0. 002+0. 015 M EB = 0. 015 C − µ 0.050 0.0 − r e

0.025 h t o B

E 0.1 µ

∆ 0.000

0.025 0.2 +0. 011 ²Oth = 0. 012 0. 008 − 0.10 0.3

0.08

h 0.4 t 0.06 11 12 13 14 15 16 17 18 19 20 O ² 0.04 µCMD

0.02 +0. 009 ∆Oth = 0. 007 0. 009 − − 0.050

0.025 h t O

∆ 0.000

0.025 +0. 009 ²SD = 0. 077 0. 007 − 0.10

0.08

D 0.06 S ² 0.04

0.02 +0. 011 ∆SD = 0. 025 0. 011 − − 0.050

0.025 D S

∆ 0.000

0.025

0.02 0.04 0.06 0.08 0.10 0.02 0.04 0.06 0.08 0.10 0.02 0.04 0.06 0.08 0.10 0.02 0.04 0.06 0.08 0.10 0.02 0.04 0.06 0.08 0.10 0.025 0.000 0.025 0.050 0.025 0.000 0.025 0.050 0.025 0.000 0.025 0.050 0.025 0.000 0.025 0.050 ²CMD ²RRL ∆RRL ²EB ∆EB ²Oth ∆Oth ²SD ∆SD

Figure 5. Comparison of the distance moduli derived from isochrone fitting of CMDs (CMD), optical RR Lyrae P/L relations (RRL), eclipsing binaries and infrared RR Lyrae P/L relations (EB), and a combination of all other literature methods (OTH) and our subdwarf distance moduli (SD). For each of the methods shown we use Monte Carlo Markov chain (MCMC) sampling to determine a maximum likelihood solution, solving for a constant shift ∆ in distance modulus of each method against the CMD isochrone fitting distances as well as additional systematic errors  of each method. The RR Lyrae distance moduli are on average about ∆RRL = 0.021 mag smaller than the CMD fitting and our subdwarf distance moduli are smaller by about 0.025 mag. The MCMC sampling also indicates additional errors of order 0.02 mag for the CMD and RR Lyrae distance moduli and 0.04 mag for the eclipsing binary ones. It finally finds an error of 0.08 mag for our subdwarf distance moduli. The insets compare the distance moduli for individual clusters. Clusters with E(B − V ) < 0.40 that are used for the comparison are shown in blue, clusters with E(B − V ) > 0.40 are shown in grey. into agreement with the other literature data. We finally In order to assess the accuracy of the derived distances shifted the distances that Recio-Blanco et al. (2005) derived and the reliability of the quoted errors, we compare in Fig. 5 from CMD fitting down by 0.10 mag since we found a sys- the mean distance moduli calculated from various methods tematic bias of this size when comparing their distances with (isochrone fitting of CMDs, visible light RR Lyrae P/L rela- other literature distances. tions, eclipsing binaries and infrared RR Lyrae P/L relations

© 201x RAS, MNRAS 000, 1–19 Accurate distances to Galactic globular clusters 9 and a combination of all other literature methods) plus the 4 RESULTS distance moduli we derived from subdwarfs with each other. For each cluster we take a weighted average of all individ- 4.1 Calculation of final distances ual measurements of a given type. We split the RR Lyrae Fig. 6 compares the distances that we derive from the Gaia distances into distances derived from visible or infrared P/L EDR3 data (separated into parallax and kinematic dis- relations, since infrared P/L relations are usually thought tances), the HST kinematic distances and the star count to be more accurate (e.g. Bono et al. 2016). We also group distances with the mean literature distances determined in the infrared P/L distances together with the EB distances to the previous section. We again use MCMC sampling and de- have a larger sample of clusters with very accurate distances. termine offsets between the distances as well as additional For each cluster we calculate average distance moduli for unaccounted for errors. We restrict ourselves again to clus- each method separately and then use Monte Carlo Markov ters with E(B-V)< 0.4 mag for which the distances should chain (MCMC) sampling and maximum likelihood optimi- be least influenced by reddening uncertainties. sation to determine possible shifts ∆ between the CMD dis- We find a constant shift of the Gaia parallax distances tance moduli and the other distance moduli, as well as ad- of ∆$ = 0.007 mas, confirming the results of VB21. There ditional systematic errors  that could still be present in the is no evidence for a significant shift of the CMD distances data. We use only clusters with E(B − V ) < 0.4 mag for against the other methods. However, given that the error bar the comparison since more strongly reddened clusters show on ∆CMD is about 0.04, the RR Lyrae distances would also larger deviations between the individual measurements, and be in statistical agreement with the distances that we de- would therefore require a separate treatment. We compare termined from the Gaia EDR3 data. The MCMC sampling all distance moduli against the CMD fitting ones since these finds ∆DGaia = −0.016±0.020, implying that the Gaia kine- are available for the largest number of clusters. matic distances are in statistical agreement with the other It can be seen that the RR Lyrae distance moduli are methods. However the HST kinematic distances are smaller smaller by ∆RRL = −0.021 mag compared to the CMD fit- by about 3.0%. There is also some evidence for significant, ting ones, which is significant at the 2σ level. Our subdwarf additional unaccounted for errors in the HST kinematic dis- distance moduli are also smaller, while the other methods tances. We therefore add an error equal to 0.017 times the show no statistically significant offset to the CMD distances. distance in quadrature to the formal distance error of the Since, without independent information, it is not possible to HST distances for each cluster. We do not apply a shift determine which of these distance scales is closer to the true to the HST kinematic distances since it is first not clear distances, we do not apply shifts to any individual method which method gives the correct distance, and also because and perform a straight averaging of the individual measure- we found the HST and Gaia kinematic distances to be in ments instead. Our MCMC sampling also finds evidence for agreement with each other, meaning that the error might additional systematic errors of  ≈ 0.023 in the CMD fitting well be with the CMD distances. The MCMC analysis finally and RR Lyrae distance moduli and additional systematic shows that the star count distances need to be increased by errors of EB ≈ 0.038 mag in the eclipsing binary/IR RR a factor 1/0.93 = 1.075 and that their uncertainties have Lyrae distance moduli. The MCMC sampling finally shows an additional systematic contribution of 4.4% of the cluster that our subdwarf distance moduli have errors of about distances. SD = 0.077 mag, which we use when calculating the mean After increasing the star count distances and adding distance moduli. additional errors to the HST kinematic and star count dis- Adding the above systematic errors in quadrature to tances, we determine the final distance for each cluster by the individual errors for the CMD, RR Lyrae and eclipsing minimizing the combined likelihood of all measurements ac- binary distances, we then calculate a mean literature dis- cording to: tance modulus and its formal error for each cluster from the mean distance moduli of each individual method. We also 1 2 2 1 $G − 1 X (Di− ) calculated a reduced χ2 value of all distance determinations ln L = − − r 2 2 2 σ2 according to $ i i 2 1 X (µj − 5 log + 5) − (3) 2 1 X 2 2 2 χ = (< µ > −µ ) /σ (2) 2 σj r N − 1 Lit i i j i Here $G and $ are the cluster parallaxes and their 1σ where < µLit > and µi are the average distance modulus errors, Di and σi are the cluster distances and associated and the individual distance moduli respectively and σi is 1σ errors of the kinematic, star count and moving group the error of the individual measurements. For clusters with distances. µj and σj are the distance moduli and error bars 2 χr > 1, i.e. a larger than expected scatter of the individual that we obtain from the averaging of the literature data measurements, we increase the final distance error by the and our subdwarf fits. < D > is the mean cluster distance 2 square root of χr. Table 2 gives the average distance and its that we want to determine. We use the Gaia parallaxes here 1σ upper and lower error that we obtain after averaging the instead of the distances that can be calculated from them literature distances for each cluster in this way. For easier since errors on the parallax distance are Gaussian only in comparison with the other methods, we give the literature parallax space. For the same reason we use distance moduli data in linear distances, however when calculating a final for the literature and subdwarf distances. We calculate the value for the distance we use the distance modulus as ex- mean distance from the point where ln L has a maximum plained below. Plots depicting the individual measurements and calculate the associated upper and lower distance errors for each cluster can be found in the Appendix. from the condition that ∆ ln L = 1.0. The resulting mean

© 201x RAS, MNRAS 000, 1–19 10 Baumgardt & Vasiliev

+0. 036 0.20 0.20 ∆CMD = 0. 003 0. 040 −

0.15 0.15

0.10 0.10 1 1 − − 0.05 0.05 D ² = 0. 010+0. 001 D M

0. 001 M C

− C D D 0.00 0.00 / /

0.0120 a T i S a G H , , n 0.05 n 0.05 i i ² 0.0105 k k D D 0.0090 0.10 0.10 ∆ 0. 007+0. 002 0.0075 = 0. 002 − 0.015 0.15 0.15

0.012 0.20 0.20 0.009 11 12 13 14 15 16 17 18 19 20 11 12 13 14 15 16 17 18 19 20 ∆ 0.006 µCMD µCMD

0.003 +0. 010 ²Gaia = 0. 009 0. 006 − 0.060 0.10 0.045 a i a

G 0.05

² 0.030 1

0.015 − 0.00

+0. 019 D ∆DGaia = 0. 016 0. 021 − − M 0.025 C

D 0.05 / C a

i 0.000 S a , n G

i 0.10 k

D 0.025 D ∆

0.050 0.15 +0. 010 ²HST = 0. 017 0. 009 − 0.060 0.20

0.045

T 0.25

S 11 12 13 14 15 16 17 18 19 20 H

² 0.030 µSC

0.015 +0. 018 ∆DHST = 0. 030 0. 018 − − 0.025

T 0.000 S H

D 0.025 ∆

0.050 +0. 008 ²SC = 0. 044 0. 007 − 0.060

0.045 C S

² 0.030

0.015 +0. 020 ∆DSC = 0. 070 0. 021 − −

0.050 C S

D 0.075 ∆

0.100

0.05 0.00 0.05 0.10 0.0030.0060.0090.0120.015 0.015 0.030 0.045 0.060 0.050 0.025 0.000 0.025 0.015 0.030 0.045 0.060 0.050 0.025 0.000 0.025 0.015 0.030 0.045 0.060 0.100 0.075 0.050 0.0075 0.0090 0.0105 0.0120 ∆CMD ² ∆ ²Gaia ∆DGaia ²HST ∆DHST ²SC ∆DSC

Figure 6. Comparison of the CMD fitting distances with the Gaia parallax and kinematic distances and the HST kinematic distances. We again use MCMC sampling and solve for constant scale factors ∆D in the distance scales of the various methods as well as additional systematic errors . ∆DGaia and ∆DHST are relative shifts in the kinematic distances of the Gaia and HST kinematic distances and ∆$ is a shift in the Gaia parallaxes. We obtain a significant shift in the Gaia parallaxes of ∆$ ≈ 0.007 mas, in agreement with VB21. The HST kinematic distances are on average also smaller than the literature distances by about 3.0%, while the Gaia kinematic distance shift ∆DGaia is compatible with zero. The HST kinematic distances also show evidence of additional relative distance errors of about 1.7%. The inset compares the kinematic and star count distances with the distances from isochrone fitting of the cluster CMDs. distances along with the individual values from the various ing values E(B − V ) < 0.3 we achieve relative accuracies of methods are given in Table 2. All data has been transformed about 1%. For larger reddening values E(B −V ) > 0.3 there to linear distances to make the different measurements easier is a continuous rise of the distance errors and we achieve comparable with each other. only 20% accuracy for the most highly reddened clusters. Fig.7 depicts the relative distance accuracy that we This rise could partly be driven by the fact that heavily achieve by combining all data as a function of the cluster reddened clusters have often only few individual distance reddening. It can be seen that for clusters with low redden- determinations.

© 201x RAS, MNRAS 000, 1–19 Accurate distances to Galactic globular clusters 11

an averaging of literature values (8.80 ± 0.11 kpc) and our own kinematic distance determinations (see Fig. 8).

4.2.3 ω Cen There is also good agreement in our distance determina- tions for ω Cen. The literature distances lead to an average distance of D = 5.47 ± 0.06 kpc (see Fig. 8). The Gaia kinematic distance is in good agreement with the literature distance, however the HST kinematic distance (5.26 ± 0.12 kpc) is about 200 pc shorter. One possible reason for the mismatch could be the intrinsic flattening of ω Cen. Mackey & Gilmore (2004) find an ellipticity of  = 0.17 for ω Cen based on its projected isophotes. The true flattening is likely even larger, with the exact value depending on the cluster inclination. van de Ven et al. (2006) found through axisym- metric Schwarzschild modeling that the resulting flattening of the velocity ellipsoid can decrease the kinematic cluster distance to ω Cen by several hundred pc if the flattening is not taken into account in the modeling. Since the N-body models that we use to derive the kinematic distances are

Figure 7. Final distance error σD/D as a function of the cluster spherically symmetric, there is a chance that our kinematic reddening E(B − V ). Clusters with reddening values E(B − V ) < distances underestimate the true distance to ω Cen. This 0.20 have an average distance error of about 1%. More reddened effect is much less likely for most other clusters which have clusters show a continuous increase of the distance error with much smaller relaxation times and should therefore be closer reddening. The location of three of the clusters discussed in the to being spherically symmetric. This is indeed also seen in text is marked in the plot. observations (e.g. White & Shawl 1987). We therefore regard the literature distance as more reliable for ω Cen. The Gaia EDR3 parallaxes after application of the systematic paral- 4.2 Individual clusters lax offset also favor a longer distance, however the error bar 4.2.1 47 Tuc is too large to be decide between the two possibilities. We derive a distance of D = 4.52 ± 0.03 kpc to 47 Tuc (NGC 104). For 47 Tuc, both literature distances and kine- 4.2.4 NGC 6121 matic distances have small formal errors and are fully con- We derive a distance of D = 1.851 ± 0.015 kpc to M4 sistent with each other (see Fig. 8). Our mean distance also (NGC 6121). This distance is slightly larger than the dis- agrees very well with the value of D = 4.53 ± 0.06 kpc that tance of D = 1.82 ± 0.04 kpc found by Kaluzny et al. (2013) Ma´ızApell´aniz,Pantaleoni Gonz´alez& Barb´a(2021) deter- based on three eclipsing binary stars as well as recent re- mined from the Gaia EDR3 parallaxes, correcting for the sults from RR Lyrae stars (e.g Braga et al. 2015; Neeley small scale angular covariances in the Gaia data by com- et al. 2019; Bhardwaj et al. 2020b) (see Fig. 8). Neverthe- paring the parallaxes of 47 Tuc stars with those of back- less their distances are compatible with our distance within ground SMC stars. It also agrees very well with the distance the error bars. The true distance to NGC 6121 is therefore of D = 4.45 ± 0.12 kpc that Chen et al. (2018) derived with likely somewhere in the range 1.83 to 1.85 kpc, making M4 the same method from Gaia DR2 data as well as the dis- another cluster whose distance is determined with an accu- tance of D = 4.53 ± 0.05 kpc that Thompson et al. (2020) racy of about 1%. found from the analysis of two detached eclipsing binaries in the cluster. The distance to 47 Tuc therefore seems to be established with an accuracy of better than 1%. 4.2.5 NGC 6397 and NGC 6656 NGC 6397 and NGC 6656 (M 22) are among the closest globular clusters to the Sun. Their small distances together 4.2.2 NGC 362 with their low reddening make them ideal targets for glob- We correct the Gaia EDR3 parallaxes in the same way done ular cluster studies, so a large amount of observational data by Ma´ızApell´aniz,Pantaleoni Gonz´alez& Barb´a(2021) for exists for both clusters. For NGC 6397 we find a total of 27 NGC 104 and Chen et al. (2018) for NGC 104 and NGC 362. individual distance determinations in the literature, from We again use SMC field stars in the direction of NGC 362 which we derive a mean cluster distance of 2.521 ± 0.025 as reference, assuming a distance of D = 62.1 ± 1.9 kpc kpc. Despite a relative distance error of only about 1%f or as distance to the SMC (Cioni et al. 2000; Graczyk et al. the literature distance and similarly small errors for most 2014). The resulting cluster parallax is $ = 109.9 ± 3.7µas, of the other methods, most distances are in good statis- +0.32 corresponding to a distance of 9.10−0.30 kpc. This distance tical agreement with each other, with the exception of the is in agreement with the earlier value of Chen et al. (2018) HST kinematic distances that are too short by about 100 pc. (D = 8.54 ± 0.48 kpc) as well as the distance we derive from Taking the average over all methods, we derive a distance

© 201x RAS, MNRAS 000, 1–19 12 Baumgardt & Vasiliev of 2.488 ± 0.019 kpc for NGC 6397, making this cluster the in the literature down to a level of about 2%. There is a second closest cluster to the Sun. There is a similar good possibility that our HST kinematic distances could slightly agreement in the individual distances values for NGC 6656, underestimate the distances to globular clusters, however for which we derive a mean distance of D = 3.307 ± 0.037 the difference that we see could also signify a problem in kpc. the isochrone fitting distances. We also find some evidence that isochrone based distance moduli are larger than RR Lyrae based ones by about 0.02 mag. 4.3 Absolute luminosity of the TRGB and the Averaging over the various distance determinations, we value of H0 are able to determine distances to a number of nearby glob- Globular clusters can be used to determine the absolute lu- ular clusters with an accuracy of 1%, making these clus- minosity of the tip of the red giant branch (TRGB), which ters valuable objects for the establishment of a cosmic dis- in turn can be used to measure the distance to nearby galax- tance ladder. In particular, our results for the distances to ies. Using Gaia EDR3 parallaxes, Soltis, Casertano & Riess 47 Tuc and ω Cen argue for an absolute TRGB magnitude (2021) recently derived a distance of 5.24 ± 0.11 kpc to of MI,T RGB = −4.05 leading to a value of the local Hubble ω Cen. Using this distance, they derived an absolute I-band constant that is in agreement with the expected value based on Planck data. They however do not remove the tension be- magnitude of the TRGB of MI,T RGB = −3.97 ± 0.06, from which they deduced a value of the local Hubble constant of tween the Cepheid based value of H0 and the Planck data, which is currently significant at about the 4σ level (Riess H0 = 71.2 ± 2.0 km/sec. In contrast, Freedman et al. (2020) used stars in the LMC to derive an an absolute TRGB mag- et al. 2019). Given that we find that the different literature distances to globular clusters are consistent down to a level nitude of MI,T RGB = −4.05 ± 0.06, using eclipsing binaries in 47 Tuc and the SMC to calibrate the LMC distance. of about 1-2%, it is also unlikely that our results would lead The ω Cen distance of Soltis, Casertano & Riess (2021) to a significant revision of the distance modulus to nearby was based on a direct averaging of the Gaia EDR3 paral- galaxies like the LMC, and therefore a reduction of the ten- laxes of individual member stars, applying only the Linde- sion in H0. gren et al. (2020) parallax corrections. Their parallax value Future releases of the Gaia catalogue will further in- did not take systematic biases in the Gaia parallaxes or crease the sample of globular clusters with highly accurate small scale correlated errors into account. Accounting for distances by reducing the random and systematic errors in both, we derived a parallax of $ = 182.3±9.5µas for ω Cen the parallaxes and proper motions of stars. There is cur- (Vasiliev & Baumgardt 2021), corresponding to a distance rently also still a substantial uncertainty in the distances of D = 5.48 ± 0.24 kpc, slightly larger than Soltis, Casertano highly reddened clusters, where individual distances can de- & Riess (2021) and also with a larger formal error than viate from each other by up to a factor of two. At least for found by them. Combining this data with the other dis- the more nearby clusters, Gaia parallaxes and proper mo- tances, we then derive a distance of D = 5.43 ± 0.05 to ω tion velocity dispersion profiles based on future Gaia data Cen. A similar analysis as the one done by Soltis, Caser- releases should bring a significant improvement to the dis- tano & Riess (2021) leads to an absolute TRGB magnitude tances to these clusters. of MI,T RGB = −4.06 ± 0.06, confirming the value found by Freedman et al. (2020). In addition, our results also confirm their adopted distance to NGC 104. The resulting value of ACKNOWLEDGMENTS the local Hubble constant of H0 = 69.4 ± 2.0 km/sec would be in better agreement with the expected value based on EV acknowledges support from STFC via the Consolidated the Planck data of 67.4 ± 0.5 km/sec (Verde, Treu & Riess grant to the Institute of Astronomy. We thank Domenico 2019). Nardiello for providing us with the HST photometry for NGC 6626. This work presents results from the European Space Agency (ESA) space mission Gaia . Gaia data are 5 CONCLUSIONS being processed by the Gaia Data Processing and Anal- ysis Consortium (DPAC). Funding for the DPAC is pro- We have derived mean distances to globular clusters using a vided by national institutions, in particular the institutions combination of our own measurements based on Gaia EDR3 participating in the Gaia MultiLateral Agreement (MLA). data and published literature distances. We derived our own This work is also based on observations made with the distances using six different methods: Gaia ED3 parallaxes, NASA/ESA Hubble Space Telescope, obtained from the kinematic distances using proper motion velocity dispersion data archive at the Space Telescope Science Institute. STScI profiles based on Gaia EDR3 proper motions, fitting nearby is operated by the Association of Universities for Research subdwarfs to the globular cluster main sequences where the in Astronomy, Inc. under NASA contract NAS 5-26555. distances and absolute luminosities of the subdwarfs are cal- culated from their Gaia parallaxes and moving group dis- tances based on Gaia ED3 proper motions. In addition, we also derive kinematic distances from HST proper motion DATA AVAILABILITY velocity dispersion profiles and distances using HST star counts in combination with the cluster kinematics. The distances and the fit results of our N-body Apart from a bias in the Gaia EDR3 parallaxes, we models to Galactic globular clusters using these dis- find good internal agreement among the distances calculated tances can be obtained from the following webpage: with the different methods and also with published distances https://people.smp.uq.edu.au/HolgerBaumgardt/globular/

© 201x RAS, MNRAS 000, 1–19 Accurate distances to Galactic globular clusters 13

REFERENCES Hempel M., Monachesi A., Arias J. I., G´omezF. A., 2019, ApJ, 870, L24 Abbas M. A. et al., 2015, AJ, 149, 40 Barbuy B., Bica E., Ortolani S., 1998, A&A, 333, 117 Ahumada J. A., Arellano Ferro A., Bustos Fierro I., L´azaro Barbuy B., Bica E., Ortolani S., Bonatto C., 2006, A&A, C., Yepez M. A., Schroeder K. P., Calder´onJ., 2021, arXiv 449, 1019 e-prints, arXiv:2104.05830 Barbuy B. et al., 2021, arXiv e-prints, arXiv:2102.12674 Alcaino G., Liller W., Alvarado F., Kravtsov V., Ipatov A., Barbuy B., Ortolani S., Bica E., 1997, A&A Supl. Ser., 122, Samus N., 1997a, AJ, 114, 2638 483 Alcaino G., Liller W., Alvarado F., Kravtsov V., Ipatov A., Barbuy B., Ortolani S., Bica E., Desidera S., 1999, A&A, Samus N., Smirnov O., 1997b, AJ, 114, 1067 348, 783 Alcaino G., Liller W., Alvarado F., Kravtsov V., Ipatov A., Barbuy B., Zoccali M., Ortolani S., Minniti D., Hill V., Samus N., Smirnov O., 1998a, AJ, 116, 2415 Renzini A., Bica E., G´omezA., 2007, AJ, 134, 1613 Alcaino G., Liller W., Alvarado F., Kravtsov V., Ipatov A., Barker H., Paust N. E. Q., 2018, PASP, 130, 034204 Samus N., Smirnov O., 1998b, AJ, 115, 1492 Baumgardt H., 2017, MNRAS, 464, 2174 Alca´ınoG., Liller W., Alvarado F., Mironov A., Ipatov A., Baumgardt H. et al., 2019a, MNRAS, 488, 5340 Piskunov A., Samus N., Smirnov O., 1999, A&A Supl. Baumgardt H., Hilker M., 2018, MNRAS, 478, 1520 Ser., 136, 461 Baumgardt H., Hilker M., Sollima A., Bellini A., 2019b, Alonso A., Salaris M., Martinez-Roger C., Straniero O., MNRAS, 482, 5138 Arribas S., 1997, A&A, 323, 374 Baumgardt H., Makino J., 2003, MNRAS, 340, 227 Alonso-Garc´ıaJ., D´ek´any I., Catelan M., Contreras Ramos Baumgardt H., Sollima A., Hilker M., 2020, PASA, 37, e046 R., Gran F., Amigo P., Leyton P., Minniti D., 2015, AJ, Beaulieu S. F., Gilmore G., Elson R. A. W., Johnson R. A., 149, 99 Santiago B., Sigurdsson S., Tanvir N., 2001, AJ, 121, 2618 Alves D. R., Bond H. E., Onken C., 2001, AJ, 121, 318 Beccari G., Dalessandro E., Lanzoni B., Ferraro F. R., Sol- An D. et al., 2009, ApJ, 700, 523 lima A., Bellazzini M., Miocchi P., 2013, ApJ, 776, 60 Anguiano B. et al., 2015, MNRAS, 451, 1229 Bedin L. R., Piotto G., Zoccali M., Stetson P. B., Saviane Anthony-Twarog B. J., Twarog B. A., 2000, AJ, 120, 3111 I., Cassisi S., Bono G., 2000, A&A, 363, 159 Arellano Ferro A., Ahumada J. A., Calder´onJ. H., Kains Bedin L. R., Salaris M., Piotto G., Anderson J., King I. R., N., 2014, Rev. Mexicana Astron. Astrofis., 50, 307 Cassisi S., 2009, ApJ, 697, 965 Arellano Ferro A., Ar´evalo M. J., L´azaro C., Rey M., Bellazzini M., Ferraro F. R., Buonanno R., 1999, MNRAS, Bramich D. M., Giridhar S., 2004, Rev. Mexicana Astron. 304, 633 Astrofis., 40, 209 Bellazzini M., Fusi Pecci F., Montegriffo P., Messineo M., Arellano Ferro A. et al., 2013a, MNRAS, 434, 1220 Monaco L., Rood R. T., 2002, AJ, 123, 2541 Arellano Ferro A., Bramich D. M., Giridhar S., Figuera Belokurov V., Irwin M. J., Koposov S. E., Evans N. W., Jaimes R., Kains N., Kuppuswamy K., 2013b, Acta As- Gonzalez-Solares E., Metcalfe N., Shanks T., 2014, MN- tronomica, 63, 429 RAS, 441, 2124 Arellano Ferro A., Bustos Fierro I. H., Calder´onJ. H., Ahu- Benedict G. F. et al., 2011, AJ, 142, 187 mada J. A., 2019, Rev. Mexicana Astron. Astrofis., 55, Bergbusch P. A., Stetson P. B., 2009, AJ, 138, 1455 337 Bhardwaj A., 2020, Journal of Astrophysics and Astron- Arellano Ferro A., Figuera Jaimes R., Giridhar S., Bramich omy, 41, 23 D. M., Hern´andez Santisteban J. V., Kuppuswamy K., Bhardwaj A., Macri L. M., Rejkuba M., Kanbur S. M., 2011, MNRAS, 416, 2265 Ngeow C.-C., Singh H. P., 2017, AJ, 153, 154 Arellano Ferro A., Garc´ıaLugo G., Rosenzweig P., 2006, Bhardwaj A., Rejkuba M., de Grijs R., Herczeg G. J., Singh Rev. Mexicana Astron. Astrofis., 42, 75 H. P., Kanbur S., Ngeow C.-C., 2020a, AJ, 160, 220 Arellano Ferro A., Giridhar S., Rojas L´opez V., Figuera Bhardwaj A. et al., 2020b, arXiv e-prints, arXiv:2012.13495 R., Bramich D. M., Rosenzweig P., 2008a, Rev. Mexicana Bica E., Ortolani S., Barbuy B., 1996, A&A Supl. Ser., 120, Astron. Astrofis., 44, 365 153 Arellano Ferro A., Luna A., Bramich D. M., Giridhar S., Bica E., Ortolani S., Barbuy B., 1999, A&A Supl. Ser., 136, Ahumada J. A., Muneer S., 2016, Ap&SS, 361, 175 363 Arellano Ferro A., Mancera Pi˜naP. E., Bramich D. M., Bonatto C., Bica E., 2008, A&A, 491, 767 Giridhar S., Ahumada J. A., Kains N., Kuppuswamy K., Bonatto C., Campos F., Kepler S. O., 2013, MNRAS, 435, 2015, MNRAS, 452, 727 263 Arellano Ferro A., Rojas Galindo F. C., Muneer S., Girid- Bonatto C., Chies-Santos A. L., 2020, MNRAS, 493, 2688 har S., 2018, Rev. Mexicana Astron. Astrofis., 54, 325 Bono G. et al., 2016, Mem. Soc. Astron. Italiana, 87, 358 Arellano Ferro A., Rojas L´opez V., Giridhar S., Bramich Bono G., Caputo F., Di Criscienzo M., 2007, A&A, 476, D. M., 2008b, MNRAS, 384, 1444 779 Arellano Ferro A., Yepez M. A., Muneer S., Bustos Fierro Bono G. et al., 2019, ApJ, 870, 115 I. H., Schr¨oderK. P., Giridhar S., Calder´onJ. H., 2020, Bono G. et al., 2008, ApJ, 686, L87 MNRAS, 499, 4026 Bono G. et al., 2010, ApJ, 708, L74 Armandroff T. E., 1988, AJ, 96, 588 Borissova J., Ivanov V. D., Stephens A. W., Catelan M., Balbinot E., Santiago B. X., Bica E., Bonatto C., 2009, Minniti D., Prieto G., 2007, A&A, 474, 121 MNRAS, 396, 1596 Borissova J., Markov H., Spassova N., 1997, A&A Supl. Barb´aR. H., Minniti D., Geisler D., Alonso-Garc´ıa J., Ser., 121, 499

© 201x RAS, MNRAS 000, 1–19 14 Baumgardt & Vasiliev

Braga V. F. et al., 2020, A&A, 644, A95 Cho D.-H., Lee S.-G., 2002, AJ, 124, 977 Braga V. F. et al., 2015, ApJ, 799, 165 Cho D.-H., Lee S.-G., Jeon Y.-B., Sim K. J., 2005, AJ, 129, Braga V. F. et al., 2016, AJ, 152, 170 1922 Bramich D. M., Figuera Jaimes R., Giridhar S., Arellano Chun S. H. et al., 2010, A&A, 518, A15 Ferro A., 2011, MNRAS, 413, 1275 Cioni M. R. L., van der Marel R. P., Loup C., Habing H. J., Bressan A., Marigo P., Girardi L., Salasnich B., Dal Cero 2000, A&A, 359, 601 C., Rubele S., Nanni A., 2012, MNRAS, 427, 127 Cohen R. E., Bellini A., Libralato M., Correnti M., Brown Brocato E., Castellani V., Piersimoni A., 1997, ApJ, 491, T. M., Kalirai J. S., 2021, AJ, 161, 41 789 Cohen R. E., Mauro F., Geisler D., Moni Bidin C., Dotter Brocato E., Castellani V., Raimondo G., Walker A. R., A., Bonatto C., 2014, AJ, 148, 18 1999, ApJ, 527, 230 Cohen R. E., Sarajedini A., 2012, MNRAS, 419, 342 Brocato E., Castellani V., Scotti G. A., Saviane I., Piotto Cohen R. E., Sarajedini A., Kinemuchi K., Leiton R., 2011, G., Ferraro F. R., 1998, A&A, 335, 929 ApJ, 727, 9 Brogaard K., VandenBerg D. A., Bedin L. R., Milone A. P., Cohn H. N., Lugger P. M., Grindlay J. E., Edmonds P. D., Thygesen A., Grundahl F., 2017, MNRAS, 468, 645 2002, ApJ, 571, 818 Brown A., 1950, ApJ, 112, 225 Contreras R., Catelan M., Smith H. A., Pritzl B. J., Brown T. M., Casertano S., Strader J., Riess A., Vanden- Borissova J., Kuehn C. A., 2010, AJ, 140, 1766 Berg D. A., Soderblom D. R., Kalirai J., Salinas R., 2018, Contreras Pe˜naC., Catelan M., Grundahl F., Stephens ApJ, 856, L6 A. W., Smith H. A., 2018, AJ, 155, 116 Cacciari C., Corwin T. M., Carney B. W., 2005, AJ, 129, Contreras Ramos R. et al., 2018, ApJ, 863, 78 267 Coppola G. et al., 2011, MNRAS, 416, 1056 Cadelano M., Saracino S., Dalessandro E., Ferraro F. R., Cornish A. S. M., Phelps R. L., Briley M. M., Friel E. D., Lanzoni B., Massari D., Pallanca C., Salaris M., 2020, 2006, AJ, 131, 2543 ApJ, 895, 54 Correnti M., Bellazzini M., Dalessandro E., Mucciarelli A., Campos F., Kepler S. O., Bonatto C., Ducati J. R., 2013, Monaco L., Catelan M., 2011, MNRAS, 417, 2411 MNRAS, 433, 243 Correnti M., Gennaro M., Kalirai J. S., Brown T. M., Cantat-Gaudin T. et al., 2018, A&A, 618, A93 Calamida A., 2016, ApJ, 823, 18 Caputo F., Castellani V., Marconi M., Ripepi V., 2000, Correnti M., Gennaro M., Kalirai J. S., Cohen R. E., Brown MNRAS, 316, 819 T. M., 2018, ApJ, 864, 147 Caputo F., degl’Innocenti S., Marconi M., 2002, in Astro- Cˆot´eP., Djorgovski S. G., Meylan G., Castro S., McCarthy nomical Society of the Pacific Conference Series, Vol. 265, J. K., 2002, ApJ, 574, 783 , A Unique Window into Astrophysics, Covino S., Ortolani S., 1997, A&A, 318, 40 van Leeuwen F., Hughes J. D., Piotto G., eds., p. 185 Da Costa G. S., 1995, PASP, 107, 937 Carballo-Bello J. A. et al., 2016, MNRAS, 462, 501 Dalessandro E. et al., 2018, ApJ, 859, 15 Carraro G., 2009, AJ, 137, 3809 Dalessandro E., Ferraro F. R., Massari D., Lanzoni B., Carraro G., Zinn R., Moni Bidin C., 2007, A&A, 466, 181 Miocchi P., Beccari G., 2015, ApJ, 810, 40 Carretta E., Bragaglia A., Gratton R., D’Orazi V., Lu- Dalessandro E., Lanzoni B., Ferraro F. R., Vespe F., Bel- catello S., 2009, A&A, 508, 695 lazzini M., Rood R. T., 2008, ApJ, 681, 311 Carretta E., Gratton R. G., Clementini G., Fusi Pecci F., Dalessandro E., Salaris M., Ferraro F. R., Cassisi S., Lan- 2000, ApJ, 533, 215 zoni B., Rood R. T., Fusi Pecci F., Sabbi E., 2011, MN- Casagrande L., Ram´ırezI., Mel´endezJ., Bessell M., As- RAS, 410, 694 plund M., 2010, A&A, 512, A54 Dalessandro E., Salaris M., Ferraro F. R., Mucciarelli A., Cassisi S., De Santis R., Piersimoni A. M., 2001, MNRAS, Cassisi S., 2013, MNRAS, 430, 459 326, 342 Dall’Ora M. et al., 2006, Mem. Soc. Astron. Italiana, 77, Cassisi S., Salaris M., Pietrinferni A., Piotto G., Milone 214 A. P., Bedin L. R., Anderson J., 2008, ApJ, 672, L115 Dall’Ora M. et al., 2008, Mem. Soc. Astron. Italiana, 79, Catelan M., Bellazzini M., Landsman W. B., Ferraro F. R., 355 Fusi Pecci F., Galleti S., 2001, AJ, 122, 3171 Dambis A. K. et al., 2014, MNRAS, 439, 3765 Catelan M., Borissova J., Ferraro F. R., Corwin T. M., Davidge T. J., 1995, AJ, 110, 1177 Smith H. A., Kurtev R., 2002, AJ, 124, 364 Davidge T. J., 1998, AJ, 116, 1744 Catelan M., Pritzl B. J., Smith H. A., 2004, ApJS, 154, 633 Davidge T. J., 2000, ApJS, 126, 105 Cerny W., Freedman W. L., Madore B. F., Ashmead F., Davidge T. J., Cote P., Harris W. E., 1996, ApJ, 468, 641 Hoyt T., Oakes E., Quang Hoang Tran N., Moss B., 2020, de Bruijne J. H. J., 1999, MNRAS, 306, 381 arXiv e-prints, arXiv:2012.09701 de la Fuente Marcos R., de la Fuente Marcos C., Moni Bidin Chaboyer B. et al., 2017, ApJ, 835, 152 C., Ortolani S., Carraro G., 2015, A&A, 581, A13 Chaboyer B., Sarajedini A., Armandroff T. E., 2000, AJ, de Marchi G., Leibundgut B., Paresce F., Pulone L., 1999, 120, 3102 A&A, 343, L9 Chen A. B.-C., Tsay W.-S., Tsai W.-S., Lu P. K., 2000, de Marchi G., Pulone L., Paresce F., 2006, A&A, 449, 161 AJ, 120, 2569 De Santis R., Cassisi S., 2002, MNRAS, 336, 276 Chen S., Richer H., Caiazzo I., Heyl J., 2018, ApJ, 867, 132 D´ek´any I., Kov´acsG., 2009, A&A, 507, 803 Chen Y., Girardi L., Bressan A., Marigo P., Barbieri M., Del Principe M., Piersimoni A. M., Bono G., Di Paola A., Kong X., 2014, MNRAS, 444, 2525 Dolci M., Marconi M., 2005, AJ, 129, 2714

© 201x RAS, MNRAS 000, 1–19 Accurate distances to Galactic globular clusters 15

Del Principe M. et al., 2006, Mem. Soc. Astron. Italiana, eds., Vol. 207, p. 138 77, 330 Froebrich D., Meusinger H., Scholz A., 2007, MNRAS, 377, Dell’Omodarme M., Valle G., Degl’Innocenti S., Prada Mo- L54 roni P. G., 2012, A&A, 540, A26 Froebrich D., Schmeja S., Samuel D., Lucas P. W., 2010, Denissenkov P. A., VandenBerg D. A., Kopacki G., Fergu- MNRAS, 409, 1281 son J. W., 2017, ApJ, 849, 159 Fu X., Bressan A., Marigo P., Girardi L., Montalb´anJ., Deras D., Arellano Ferro A., L´azaroC., Bustos Fierro I. H., Chen Y., Nanni A., 2018, MNRAS, 476, 496 Calder´onJ. H., Muneer S., Giridhar S., 2019, MNRAS, Fullton L. K., Carney B. W., Olszewski E. W., Zinn R., 486, 2791 Demarque P., Janes K. A., Da Costa G. S., Seitzer P., Deras D., Arellano Ferro A., L´azaroC., Bustos Fierro I. H., 1995, AJ, 110, 652 Calder´onJ. H., Muneer S., Giridhar S., 2020, MNRAS, Gaia Collaboration, Brown A. G. A., Vallenari A., Prusti 493, 1996 T., de Bruijne J. H. J., Babusiaux C., Biermann M., 2020, Deras D., Arellano Ferro A., Muneer S., Giridhar S., Michel arXiv e-prints, arXiv:2012.01533 R., 2018, Astronomische Nachrichten, 339, 603 Gaia Collaboration et al., 2016, A&A, 595, A1 Di Cecco A. et al., 2010, PASP, 122, 991 Gerashchenko A. N., 2007, Astronomy Reports, 51, 542 Di Cecco A. et al., 2015, AJ, 150, 51 Ghosh S. K. et al., 2020, arXiv e-prints, arXiv:2012.13525 di Criscienzo M., D’Antona F., Ventura P., 2010, A&A, Giesers B. et al., 2019, A&A, 632, A3 511, A70 Gontcharov G. A., Khovritchev M. Y., Mosenkov A. V., Di Criscienzo M. et al., 2011, AJ, 141, 81 2020, MNRAS, 497, 3674 Di Criscienzo M., Marconi M., Caputo F., 2004, ApJ, 612, Gontcharov G. A., Mosenkov A. V., Khovritchev M. Y., 1092 2019, MNRAS, 483, 4949 Dixon R. I., Longmore A. J., 1993, MNRAS, 265, 395 Graczyk D. et al., 2014, ApJ, 780, 59 Dotter A., Milone A. P., Conroy C., Marino A. F., Saraje- Gratton R. G., Bragaglia A., Carretta E., Clementini G., dini A., 2018, ApJ, 865, L10 Desidera S., Grundahl F., Lucatello S., 2003, A&A, 408, Dotter A., Sarajedini A., Anderson J., 2011, ApJ, 738, 74 529 Dotter A. et al., 2010, ApJ, 708, 698 Grillmair C. J., Smith G. H., 2001, AJ, 122, 3231 Dotter A., Sarajedini A., Yang S.-C., 2008, AJ, 136, 1407 Grundahl F., Stetson P. B., Andersen M. I., 2002, A&A, Ebrahimi H., Sollima A., Haghi H., Baumgardt H., Hilker 395, 481 M., 2020, MNRAS, 494, 4226 Guarnieri M. D., Ortolani S., Montegriffo P., Renzini A., Fahlman G. G., Douglas K. A., Thompson I. B., 1995, AJ, Barbuy B., Bica E., Moneti A., 1998, A&A, 331, 70 110, 2189 Guarnieri M. D., Renzini A., Ortolani S., 1997, ApJ, 477, Faria D., Feltzing S., 2002, in Astronomical Society of the L21 Pacific Conference Series, Vol. 274, Observed HR Dia- H¨aberle M. et al., 2021, arXiv e-prints, arXiv:2102.07782 grams and , Lejeune T., Fernandes J., Halford M., Zaritsky D., 2015, ApJ, 815, 86 eds., p. 373 Hamanowicz A. et al., 2016, Acta Astronomica, 66, 197 Feast M., Whitelock P., Menzies J., 2002, MNRAS, 329, Hamren K. M., Smith G. H., Guhathakurta P., Dolphin L7 A. E., Weisz D. R., Rajan A., Grillmair C. J., 2013, AJ, Fekadu N., Sandquist E. L., Bolte M., 2007, ApJ, 663, 277 146, 116 Feltzing S., Johnson R. A., 2002, A&A, 385, 67 Hansen B. M. S. et al., 2007, ApJ, 671, 380 Ferguson P. S., Strigari L. E., 2020, MNRAS, 495, 4124 Hansen B. M. S. et al., 2004, ApJS, 155, 551 Fern´andez-Trincado J. G. et al., 2021, arXiv e-prints, Hargis J. R., Sandquist E. L., Bolte M., 2004, ApJ, 608, arXiv:2102.01088 243 Fernley J., Barnes T. G., Skillen I., Hawley S. L., Hanley Harris W. E., 1996, AJ, 112, 1487 C. J., Evans D. W., Solano E., Garrido R., 1998, A&A, Harris W. E., Phelps R. L., Madore B. F., Pevunova O., 330, 515 Skiff, Brian A. Crute C., Wilson B., Archinal B. A., 1997, Ferraro F. R., Messineo M., Fusi Pecci F., de Palo M. A., AJ, 113, 688 Straniero O., Chieffi A., Limongi M., 1999, AJ, 118, 1738 Hatzidimitriou D., Antoniou V., Papadakis I., Kaltsa M., Ferraro F. R. et al., 2021, Nature Astronomy, 5, 311 Papadaki C., Papamastorakis I., Croke B. F. W., 2004, Feuillet D. K., Paust N. E. Q., Chaboyer B., 2014, PASP, MNRAS, 348, 1157 126, 733 Hatzidimitriou D., Papadakis I., Croke B. F. W., Papamas- Figuera Jaimes R., Arellano Ferro A., Bramich D. M., torakis I., Paleologou E. V., Xanthopoulos E., Haerendel Giridhar S., Kuppuswamy K., 2013, A&A, 556, A20 G., 1999, AJ, 117, 3059 Fitzgerald M. T., Criss J., Lukaszewicz T., Frew D. J., Hazen M. L., 1996, AJ, 111, 1184 Catelan M., Woodward S., Danaia L., McKinnon D. H., Heasley J. N., Janes K. A., Zinn R., Demarque P., Da Costa 2012, PASA, 29, 72 G. S., Christian C. A., 2000, AJ, 120, 879 Fraga L., Kunder A., Tokovinin A., 2013, AJ, 145, 165 Heitsch F., Richtler T., 1999, A&A, 347, 455 Frank M. J., Hilker M., Baumgardt H., Cˆot´eP., Grebel H´enault-BrunetV., Gieles M., Sollima A., Watkins L. L., E. K., Haghi H., K¨upper A. H. W., Djorgovski S. G., Zocchi A., Claydon I., Pancino E., Baumgardt H., 2019, 2012, MNRAS, 423, 2917 MNRAS, 483, 1400 Freedman W. L. et al., 2020, ApJ, 891, 57 Hendricks B., Stetson P. B., VandenBerg D. A., Dall’Ora Freyhammer L. M., Otzen Petersen J., 2002, in Extragalac- M., 2012, AJ, 144, 25 tic Star Clusters, Geisler D. P., Grebel E. K., Minniti D., Hernitschek N. et al., 2019, ApJ, 871, 49

© 201x RAS, MNRAS 000, 1–19 16 Baumgardt & Vasiliev

Heyl J., Caiazzo I., Richer H., Anderson J., Kalirai J., Kunder A., Stetson P. B., Catelan M., Walker A. R., Amigo Parada J., 2017, ApJ, 850, 186 P., 2013c, AJ, 145, 33 Heyl J. S. et al., 2012, ApJ, 761, 51 Kunder A. M., Butler E., 2020, AJ, 160, 241 Hilker M., 2006, A&A, 448, 171 K¨upper A. H. W., Balbinot E., Bonaca A., Johnston K. V., Howland R., Sarajedini A., Tiede G. P., Gokas T., Djagalov Hogg D. W., Kroupa P., Santiago B. X., 2015, ApJ, 803, R., Martins D. H., 2003, AJ, 125, 801 80 Hughes J., Wallerstein G., Covarrubias R., Hays N., 2007, Laevens B. P. M. et al., 2015, ApJ, 813, 44 AJ, 134, 229 Laevens B. P. M. et al., 2014, ApJ, 786, L3 Ivanov V. D., Borissova J., 2002, A&A, 390, 937 Lagioia E. P. et al., 2014, ApJ, 782, 50 Ivanov V. D., Borissova J., Alonso-Herrero A., Russeva T., Lata S. et al., 2019, AJ, 158, 51 2000, AJ, 119, 2274 Layden A. C., Bowes B. T., Welch D. L., Webb T. M. A., Jeon Y.-B., Lee M. G., Kim S.-L., Lee H., 2003, AJ, 125, 2003, AJ, 126, 255 3165 Layden A. C., Ritter L. A., Welch D. L., Webb T. M. A., Jeon Y.-B., Lee M. G., Kim S.-L., Lee H., 2004, AJ, 128, 1999, AJ, 117, 1313 287 Layden A. C., Sarajedini A., 2000, AJ, 119, 1760 Jimenez R., Padoan P., 1998, ApJ, 498, 704 Layden A. C., Sarajedini A., 2003, AJ, 125, 208 Joo S.-J. et al., 2019, ApJ, 875, 120 Layden A. C., Sarajedini A., von Hippel T., Cool A. M., Jordi K. et al., 2009, AJ, 137, 4586 2005, ApJ, 632, 266 Jurcsik J. et al., 2017, MNRAS, 468, 1317 L´azaro C., Arellano Ferro A., Ar´evalo M. J., Bramich Kains N., Bramich D. M., Arellano Ferro A., Figuera D. M., Giridhar S., Poretti E., 2006, MNRAS, 372, 69 Jaimes R., 2015, A&A, 582, A119 Lee D.-J. et al., 2016, Journal of Korean Astronomical So- Kains N. et al., 2013, A&A, 555, A36 ciety, 49, 295 Kains N., Bramich D. M., Figuera Jaimes R., Arellano Lee J.-W., 2004, Journal of Astronomy and Space Sciences, Ferro A., Giridhar S., Kuppuswamy K., 2012, A&A, 548, 21, 167 A92 Lee J.-W., Carney B. W., 2002, AJ, 123, 3305 Kaisler D., Harris W. E., McLaughlin D. E., 1997, PASP, Lee J.-W., Carney B. W., 2006, AJ, 132, 2171 109, 920 Lee J.-W., Carney B. W., Fullton L. K., Stetson P. B., Kaluzny J., Olech A., Stanek K. Z., 2001, AJ, 121, 1533 2001, AJ, 122, 3136 Kaluzny J., Olech A., Thompson I., Pych W., Krzeminski Lee J.-W., L´opez-Morales M., Hong K., Kang Y.-W., Pohl W., Schwarzenberg-Czerny A., 2000, A&A Supl. Ser., 143, B. L., Walker A., 2014, ApJS, 210, 6 215 Lewis M. S., Liu W. M., Paust N. E. Q., Chaboyer B., 2006, Kaluzny J., Olech A., Thompson I. B., Pych W., AJ, 131, 2538 Krzemi´nskiW., Schwarzenberg-Czerny A., 2004, A&A, Li Z., Deng Y., 2018, Ap&SS, 363, 97 424, 1101 Li Z.-M., Mao C.-Y., Luo Q.-P., Fan Z., Zhao W.-C., Chen Kaluzny J., Rucinski S. M., Thompson I. B., Pych W., L., Li R.-X., Guo J.-P., 2017, Research in Astronomy and Krzeminski W., 2007, AJ, 133, 2457 Astrophysics, 17, 071 Kaluzny J., Thompson I. B., Dotter A., Rozyczka M., Pych Libralato M., Bellini A., Piotto G., Nardiello D., van der W., Rucinski S. M., Burley G. S., 2014, Acta Astronomica, Marel R. P., Anderson J., Bedin L. R., Vesperini E., 2019, 64, 11 ApJ, 873, 109 Kaluzny J., Thompson I. B., Dotter A., Rozyczka M., Lindegren L. et al., 2020, arXiv e-prints, arXiv:2012.01742 Schwarzenberg-Czerny A., Burley G. S., Mazur B., Rucin- Longeard N. et al., 2020, arXiv e-prints, arXiv:2005.05976 ski S. M., 2015, AJ, 150, 155 Longeard N., Martin N., Ibata R. A., Collins M. L. M., Kaluzny J. et al., 2013, AJ, 145, 43 Laevens B. P. M., Bell E., Mackey D., 2019, MNRAS, Kamann S. et al., 2018, MNRAS, 473, 5591 490, 1498 Kerber L. O. et al., 2019, MNRAS, 484, 5530 Longmore A. J. et al., 2011, MNRAS, 416, 465 Kerber L. O., Nardiello D., Ortolani S., Barbuy B., Bica L¨utzgendorfN., Kissler-Patig M., Noyola E., Jalali B., de E., Cassisi S., Libralato M., Vieira R. G., 2018, ApJ, 853, Zeeuw P. T., Gebhardt K., Baumgardt H., 2011, A&A, 15 533, A36 Kim J. W. et al., 2006, A&A, 459, 499 Mackey A. D., Gilmore G. F., 2004, MNRAS, 355, 504 Koch A., McWilliam A., 2014, A&A, 565, A23 Ma´ızApell´anizJ., Pantaleoni Gonz´alezM., Barb´aR. H., Kopacki G., 2015, Acta Astronomica, 65, 81 2021, arXiv e-prints, arXiv:2101.10206 Kraft R. P., Ivans I. I., 2003, PASP, 115, 143 Marconi G., Andreuzzi G., Pulone L., Cassisi S., Testa V., Kravtsov V., Ipatov A., Samus N., Smirnov O., Alcaino G., Buonanno R., 2001, A&A, 380, 478 Liller W., Alvarado F., 1997, A&A Supl. Ser., 125, 1 Marconi M., Caputo F., Di Criscienzo M., Castellani M., Kumar R., Pradhan A. C., Parthasarathy M., Ojha D. K., 2003, ApJ, 596, 299 Mohapatra A., Murthy J., Cassisi S., 2020, arXiv e-prints, Marconi M., Degl’Innocenti S., 2007, A&A, 474, 557 arXiv:2012.07318 Martinazzi E., Kepler S. O., Costa J. E. S., Pieres A., Bon- Kunder A., Chaboyer B., 2009, AJ, 137, 4478 atto C., Bica E., Fraga L., 2015, MNRAS, 447, 2235 Kunder A., Salaris M., Cassisi S., De Propris R., Walker Martinazzi E., Pieres A., Kepler S. O., Costa J. E. S., Bon- A., Stetson P. B., Catelan M., Amigo P., 2013a, AJ, 145, atto C., Bica E., 2014, MNRAS, 442, 3105 25 Mart´ınez-Delgado D., Zinn R., Carrera R., Gallart C., Kunder A. et al., 2013b, AJ, 146, 119 2002, ApJ, 573, L19

© 201x RAS, MNRAS 000, 1–19 Accurate distances to Galactic globular clusters 17

Massari D. et al., 2016, A&A, 586, A51 Ortolani S., Barbuy B., Bica E., 1999, A&A Supl. Ser., 136, Matsunaga N. et al., 2006, MNRAS, 370, 1979 237 Matsunaga N., IRSF/SIRIUS Team, 2007, in Astronomical Ortolani S., Barbuy B., Bica E., Zoccali M., Renzini A., Society of the Pacific Conference Series, Vol. 378, Why 2007, A&A, 470, 1043 Galaxies Care About AGB Stars: Their Importance as Ortolani S., Barbuy B., Momany Y., Saviane I., Bica E., Actors and Probes, Kerschbaum F., Charbonnel C., Wing Jilkova L., Salerno G. M., Jungwiert B., 2011, ApJ, 737, R. F., eds., p. 86 31 Mazur B., Krzemi´nskiW., Thompson I. B., 2003, MNRAS, Ortolani S., Bica E., Barbuy B., 1995, A&A, 296, 680 340, 1205 Ortolani S., Bica E., Barbuy B., 1997a, MNRAS, 284, 692 McDonald I. et al., 2011, ApJS, 193, 23 Ortolani S., Bica E., Barbuy B., 1997b, A&A Supl. Ser., McDonald I., van Loon J. T., Decin L., Boyer M. L., Dupree 126, 253 A. K., Evans A., Gehrz R. D., Woodward C. E., 2009, Ortolani S., Bica E., Barbuy B., 1997c, A&A, 326, 614 MNRAS, 394, 831 Ortolani S., Bica E., Barbuy B., 1998, A&A Supl. Ser., 127, McNamara B. J., Harrison T. E., Baumgardt H., 2004, 471 ApJ, 602, 264 Ortolani S., Bica E., Barbuy B., 2000, A&A, 361, L57 McNamara B. J., Harrison T. E., Baumgardt H., Khalaj Ortolani S., Bica E., Barbuy B., 2001, A&A, 374, 564 P., 2012, ApJ, 745, 175 Ortolani S., Bica E., Barbuy B., 2003, A&A, 402, 565 McNamara D. H., 2011, AJ, 142, 110 Ortolani S., Bica E., Barbuy B., 2006, ApJ, 646, L115 Melbourne J., Sarajedini A., Layden A., Martins D. H., Ortolani S. et al., 2019a, A&A, 627, A145 2000, AJ, 120, 3127 Ortolani S., Nardiello D., P´erez-VillegasA., Bica E., Bar- Miglio A. et al., 2016, MNRAS, 461, 760 buy B., 2019b, A&A, 622, A94 Milone A. P., 2015, MNRAS, 446, 1672 Pallanca C., Ferraro F. R., Lanzoni B., Saracino S., Raso Milone A. P., Piotto G., Bedin L. R., Cassisi S., Anderson S., Focardi P., 2019, ApJ, 882, 159 J., Marino A. F., Pietrinferni A., Aparicio A., 2012, A&A, Pallanca C. et al., 2021, arXiv e-prints, arXiv:2104.09362 537, A77 Paltrinieri B., Ferraro F. R., Paresce F., De Marchi G., Minniti D. et al., 2011, A&A, 527, A81 2001, AJ, 121, 3114 Minniti D. et al., 2017, ApJ, 838, L14 Paust N. E. Q. et al., 2009, AJ, 137, 246 Mochejska B. J., Kaluzny J., Thompson I., 2000, Acta As- Paust N. E. Q., Chaboyer B., Sarajedini A., 2007, AJ, 133, tronomica, 50, 105 2787 Paust N. E. Q. et al., 2010, AJ, 139, 476 Momany Y. et al., 2003, A&A, 402, 607 Piersimoni A. M., Bono G., Ripepi V., 2002, AJ, 124, 1528 Monaco L., Bellazzini M., Ferraro F. R., Pancino E., 2004a, Piotto G. et al., 2012, ApJ, 760, 39 MNRAS, 353, 874 Piotto G., Zoccali M., 1999, A&A, 345, 485 Monaco L., Pancino E., Ferraro F. R., Bellazzini M., 2004b, Pollard D. L., Sandquist E. L., Hargis J. R., Bolte M., 2005, MNRAS, 349, 1278 ApJ, 628, 729 Moni Bidin C. et al., 2021, arXiv e-prints, arXiv:2103.14806 Pont F., Mayor M., Turon C., Vandenberg D. A., 1998, Monty S. et al., 2018, ApJ, 865, 160 A&A, 329, 87 Moretti A. et al., 2009, A&A, 493, 539 Price-Whelan A. M., Mateu C., Iorio G., Pearson S., Musella I. et al., 2018, MNRAS, 473, 3062 Bonaca A., Belokurov V., 2019, AJ, 158, 223 Mutlu-Pakdil B. et al., 2018, ApJ, 863, 25 Pritzl B. J., Gehrman T. C., Salinas R., Catelan M., Smith Navarrete C., Catelan M., Contreras Ramos R., Alonso- H. A., Borissova J., 2019, PASP, 131, 054202 Garc´ıaJ., Gran F., D´ek´any I., Minniti D., 2017, A&A, Pritzl B. J., Smith H. A., Catelan M., Sweigart A. V., 2001, 604, A120 AJ, 122, 2600 Neeley J. R. et al., 2017, ApJ, 841, 84 Pritzl B. J., Smith H. A., Catelan M., Sweigart A. V., 2002, Neeley J. R. et al., 2019, MNRAS, 490, 4254 AJ, 124, 949 Neely R. K., Sarajedini A., Martins D. H., 2000, AJ, 119, Pritzl B. J., Smith H. A., Stetson P. B., Catelan M., 1793 Sweigart A. V., Layden A. C., Rich R. M., 2003, AJ, 126, Nemec J. M., 2004, AJ, 127, 2185 1381 O’Connell J. E., Johnson C. I., Pilachowski C. A., Burks Pulone L., De Marchi G., Covino S., Paresce F., 2003, G., 2011, PASP, 123, 1139 A&A, 399, 121 Olech A., Kaluzny J., Thompson I. B., Pych W., Pych W., Kaluzny J., Krzeminski W., Schwarzenberg- Krzeminski W., Schwarzenberg-Czerny A., 1999, AJ, 118, Czerny A., Thompson I. B., 2001, A&A, 367, 148 442 Raso S. et al., 2020, ApJ, 895, 15 Olech A., Kaluzny J., Thompson I. B., Pych W., Recio-Blanco A. et al., 2005, A&A, 432, 851 Krzemi´nski W., Schwarzenberg-Czerny A., 2001, MN- Reid I. N., Gizis J. E., 1998, AJ, 116, 2929 RAS, 321, 421 Renzini A. et al., 1996, ApJ, 465, L23 Oliveira R. A. P. et al., 2020, ApJ, 891, 37 Rich R. M., Ortolani S., Bica E., Barbuy B., 1998, AJ, 116, O’Malley E. M., Gilligan C., Chaboyer B., 2017, ApJ, 838, 1295 162 Richer H. B. et al., 2008, AJ, 135, 2141 Origlia L. et al., 2019, ApJ, 871, 114 Richer H. B. et al., 2013, ApJ, 778, 104 Ortolani S., Barbuy B., Bica E., 1996, A&A, 308, 733 Richtler T., Grebel E. K., Seggewiss W., 1994, A&A, 290, Ortolani S., Barbuy B., Bica E., 1997, A&A, 319, 850 412

© 201x RAS, MNRAS 000, 1–19 18 Baumgardt & Vasiliev

Richtler T., Grebel E. K., Subramaniam A., Sagar R., 1998, Sollima A., Cacciari C., Valenti E., 2006, MNRAS, 372, A&A Supl. Ser., 127, 167 1675 Riess A. G., Casertano S., Yuan W., Macri L. M., Scolnic Sollima A., Ferraro F. R., Origlia L., Pancino E., Bellazzini D., 2019, ApJ, 876, 85 M., 2004, A&A, 420, 173 Ripepi V. et al., 2007, ApJ, 667, L61 Sollima A., Mart´ınez-Delgado D., Valls-Gabaud D., Ripepi V., Molinaro R., Musella I., Marconi M., Leccia S., Pe˜narrubia J., 2011, ApJ, 726, 47 Eyer L., 2019, A&A, 625, A14 Soltis J., Casertano S., Riess A. G., 2021, ApJ, 908, L5 Rood R. T. et al., 1999, ApJ, 523, 752 Souza S. O., Kerber L. O., Barbuy B., P´erez-VillegasA., Rosenberg A., Piotto G., Saviane I., Aparicio A., 2000, Oliveira R. A. P., Nardiello D., 2020, ApJ, 890, 38 A&A Supl. Ser., 144, 5 Stenning D. C., Wagner-Kaiser R., Robinson E., van Dyk Rosenberg A., Saviane I., Piotto G., Aparicio A., Zaggia D. A., von Hippel T., Sarajedini A., Stein N., 2016, ApJ, S. R., 1998, AJ, 115, 648 826, 41 Rosino L., Ortolani S., Barbuy B., Bica E., 1997, MNRAS, Stetson P. B., Catelan M., Smith H. A., 2005, PASP, 117, 289, 745 1325 Ruelas-Mayorga A., S´anchez L. J., 2008, in Revista Mex- Strickler R. R., Cool A. M., Anderson J., Cohn H. N., Lug- icana de Astronomia y Astrofisica Conference Series, ger P. M., Serenelli A. M., 2009, ApJ, 699, 40 Vol. 34, Revista Mexicana de Astronomia y Astrofisica Sz´ekely P., Kiss L. L., Jackson R., Derekas A., Cs´akB., Conference Series, pp. 137–138 Szatm´aryK., 2007, A&A, 463, 589 Ruelas-Mayorga A., S´anchez L. J., Bernal-Herrera C. A., Tailo M. et al., 2017, MNRAS, 465, 1046 Nigoche-Netro A., Echevarr´ıaJ., Garc´ıaA. M., 2016, Rev. Tavarez M., Friel E. D., 1995, AJ, 110, 223 Mexicana Astron. Astrofis., 52, 297 Terndrup D. M., Popowski P., Gould A., Rich R. M., Sadler Ruelas-Mayorga A., S´anchez L. J., Herrera G., Nigoche- E. M., 1998, AJ, 115, 1476 Netro A., 2010, Rev. Mexicana Astron. Astrofis., 46, 3 Testa V., Chieffi A., Limongi M., Andreuzzi G., Marconi Ryu J., Lee M. G., 2018, ApJ, 863, L38 G., 2004, A&A, 421, 603 Saad S. M., Lee S.-G., 2001, Journal of Korean Astronom- Thompson I. B., Kaluzny J., Pych W., Burley G., ical Society, 34, 99 Krzeminski W., Paczy´nskiB., Persson S. E., Preston Sagar R., Subramaniam A., Richtler T., Grebel E. K., 1999, G. W., 2001, AJ, 121, 3089 A&A Supl. Ser., 135, 391 Thompson I. B. et al., 2020, MNRAS, 492, 4254 Salaris M., Held E. V., Ortolani S., Gullieuszik M., Mo- Tiongco M. A., Vesperini E., Varri A. L., 2016, MNRAS, many Y., 2007, A&A, 476, 243 455, 3693 Sandquist E. L., Bolte M., Langer G. E., Hesser J. E., de Tsapras Y. et al., 2017, MNRAS, 465, 2489 Oliveira C. M., 1999, ApJ, 518, 262 Valcheva A. T., Ovcharov E. P., Lalova A. D., Nedialkov P. L., Ivanov V. D., Carraro G., 2015, MNRAS, 446, 730 Sandquist E. L., Gordon M., Levine D., Bolte M., 2010, Valcin D., Bernal J. L., Jimenez R., Verde L., Wandelt AJ, 139, 2374 B. D., 2020, Journal of Cosmology and Astroparticle Saracino S. et al., 2016, ApJ, 832, 48 Physics, 2020, 002 Saracino S. et al., 2019, ApJ, 874, 86 Valenti E., Bellazzini M., Cacciari C., 2003, in Astronomi- Saracino S. et al., 2015, ApJ, 806, 152 cal Society of the Pacific Conference Series, Vol. 296, New Sarajedini A., 2004, AJ, 128, 1228 Horizons in Globular Cluster Astronomy, Piotto G., Mey- Sarajedini A. et al., 2007, AJ, 133, 1658 lan G., Djorgovski S. G., Riello M., eds., p. 404 Sarajedini A., Forrester W. L., 1995, AJ, 109, 1112 Valenti E., Ferraro F. R., Origlia L., 2004, MNRAS, 351, Sarajedini A., Geisler D., 1996, AJ, 112, 2013 1204 Sarajedini A., Layden A. C., 1995, AJ, 109, 1086 Valenti E., Ferraro F. R., Origlia L., 2007, AJ, 133, 1287 Saviane I., Rosenberg A., Piotto G., Aparicio A., 2000, Valenti E., Ferraro F. R., Origlia L., 2010, MNRAS, 402, A&A, 355, 966 1729 Sharina M. E., Ryabova M. V., Maricheva M. I., Gorban Valenti E., Origlia L., Ferraro F. R., 2005, MNRAS, 361, A. S., 2018, Astronomy Reports, 62, 733 272 Shipp N., Price-Whelan A. M., Tavangar K., Mateu C., van de Ven G., van den Bosch R. C. E., Verolme E. K., de Drlica-Wagner A., 2020, AJ, 160, 244 Zeeuw P. T., 2006, A&A, 445, 513 Siegel M. H. et al., 2007, ApJ, 667, L57 van Leeuwen F., Le Poole R. S., Reijns R. A., Freeman Siegel M. H., Majewski S. R., Cudworth K. M., Takamiya K. C., de Zeeuw P. T., 2000, A&A, 360, 472 M., 2001, AJ, 121, 935 VandenBerg D. A., Bond H. E., Nelan E. P., Nissen P. E., Siegel M. H. et al., 2011, ApJ, 743, 20 Schaefer G. H., Harmer D., 2014, ApJ, 792, 110 Simpson J. D., 2018, MNRAS, 477, 4565 VandenBerg D. A., Brogaard K., Leaman R., Casagrande Simpson J. D., De Silva G., Martell S. L., Navin C. A., L., 2013, ApJ, 775, 134 Zucker D. B., 2017, MNRAS, 472, 2856 VandenBerg D. A., Denissenkov P. A., 2018, ApJ, 862, 72 Simpson J. D., Martell S. L., 2019, MNRAS, 490, 741 VandenBerg D. A., Denissenkov P. A., Catelan M., 2016, Sirianni M. et al., 2005, PASP, 117, 1049 ApJ, 827, 2 Sollima A., Beccari G., Ferraro F. R., Fusi Pecci F., Sara- VandenBerg D. A., Richard O., Michaud G., Richer J., jedini A., 2007, MNRAS, 380, 781 2002, ApJ, 571, 487 Sollima A., Cacciari C., Bellazzini M., Colucci S., 2010, Vargas Alvarez´ C. A., Sandquist E. L., 2007, AJ, 134, 825 MNRAS, 406, 329 Vasiliev E., Baumgardt H., 2021, ArXiv e-prints

© 201x RAS, MNRAS 000, 1–19 Accurate distances to Galactic globular clusters 19

Verde L., Treu T., Riess A. G., 2019, Nature Astronomy, APPENDIX A: COMPARISON OF DISTANCE 3, 891 DETERMINATIONS FOR GLOBULAR Vivas A. K., Mart´ınez-V´azquezC., Walker A. R., 2020, CLUSTERS ApJS, 247, 35 Figs. 8 to 29 depict the individual distances determinations von Braun K., Mateo M., 2001, AJ, 121, 1522 to globular clusters used in this work. Only clusters with von Braun K., Mateo M., Chiboucas K., Athey A., Hurley- more than 5 measurements are shown. Keller D., 2002, AJ, 124, 2067 Wagner-Kaiser R. et al., 2017, MNRAS, 468, 1038 Walker A. R. et al., 2017, AJ, 154, 8 Watkins L. L., van der Marel R. P., Bellini A., Anderson APPENDIX B: LITERATURE DISTANCES J., 2015a, ApJ, 803, 29 USED IN THIS WORK Watkins L. L., van der Marel R. P., Bellini A., Anderson J., 2015b, ApJ, 812, 149 Weisz D. R. et al., 2016, ApJ, 822, 32 Weldrake D. T. F., Sackett P. D., Bridges T. J., 2007, AJ, 133, 1447 Weldrake D. T. F., Sackett P. D., Bridges T. J., Freeman K. C., 2004, AJ, 128, 736 White R. E., Shawl S. J., 1987, ApJ, 317, 246 Woodley K. A. et al., 2012, AJ, 143, 50 Xu X. et al., 2021, AJ, 161, 12 Yepez M. A., Arellano Ferro A., Deras D., 2020, MNRAS, 494, 3212 Yepez M. A., Arellano Ferro A., Muneer S., Giridhar S., 2018, Rev. Mexicana Astron. Astrofis., 54, 15 Yepez M. A., Arellano Ferro A., Schr¨oderK. P., Muneer S., Giridhar S., Allen C., 2019, New Astronomy, 71, 1 Yim H.-S., Byun Y.-I., Sohn Y.-J., Chun M.-S., 2000, AJ, 120, 872 Zinn R., Barnes S., 1996, AJ, 112, 1054 Zinn R., Barnes S., 1998, AJ, 116, 1736 Zoccali M., Piotto G., 2000, A&A, 358, 943 Zoccali M. et al., 2001, ApJ, 553, 733 Zorotovic M. et al., 2010, AJ, 139, 357

© 201x RAS, MNRAS 000, 1–19 20 Baumgardt & Vasiliev

Table 2. Derived distances of the studied globular clusters. The final column lists the number of independent distance determinations used to calculate the mean distance. The Gaia EDR3 parallax distances give the mean and 1σ uncertainty of the distance. We have applied shifts to the star count distances and Gaia parallaxes to bring all distances to a common scale and also have added systematic errors as described in the text. GEDR3 parallax dist. GEDR3 kin. dist. HST kin. dist. Subdwarf dist. Star Count dist. Lit. dist. Mean distance Name N [kpc] [kpc] [kpc] [kpc] [kpc] [kpc] [kpc] Tot +0.682 +0.682 2MASS-GC01 - - - - - 3.373−0.567 3.373−0.567 1 +0.456 +0.456 2MASS-GC02 - - - - - 5.503−0.421 5.503−0.421 2 +3.444 +3.444 AM 1 - - - - - 118.905−3.347 118.905−3.347 2 +0.951 +0.951 AM 4 - - - - - 29.013−0.920 29.013−0.920 2 +1.058 +0.346 +0.346 Arp 2 - - - 28.184−1.019 - 28.721−0.342 28.726−0.342 11 +0.258 +0.258 BH 140 4.808−0.233 - - - - - 4.808−0.233 1 +0.279 +0.265 BH 261 - - - - - 6.183−0.267 6.115−0.253 4 +4.334 +4.334 Crater - - - - - 147.231−4.210 147.231−4.210 3 +0.676 +0.671 Djor 1 - - - - - 9.854−0.632 9.879−0.628 4 +0.179 +0.178 Djor 2 - - - - - 8.758−0.176 8.764−0.174 5 +0.765 +0.268 +0.254 E 3 7.326−0.633 - - - - 7.940−0.259 7.876−0.245 3 +0.656 +0.656 ESO 280 - - - - - 20.941−0.636 20.945−0.636 3 +0.208 +0.202 ESO 452 - - - - - 7.440−0.203 7.389−0.196 4 +2.937 +2.936 Eridanus - - - - - 84.723−2.839 84.684−2.838 1 +0.275 +0.270 FSR 1716 - - - - - 7.321−0.265 7.431−0.260 4 +0.543 +0.543 FSR 1735 - - - - - 9.082−0.512 9.082−0.512 4 +0.832 +0.764 FSR 1758 - - - - - 11.482−0.776 11.085−0.710 2 +0.145 +0.144 HP 1 - - - - - 6.944−0.142 6.995−0.141 10 +1.474 +1.469 IC 1257 - - - - - 26.632−1.397 26.587−1.392 2 +0.491 +0.345 +0.263 IC 1276 5.023−0.411 - - - - 4.159−0.318 4.554−0.243 3 +0.652 +0.254 +0.253 IC 4499 - - - 17.378−0.629 - 18.880−0.250 18.891−0.250 11 +1.672 +1.672 Laevens 3 - - - - - 61.773−1.628 61.767−1.628 3 +0.353 +0.353 - - - - - 8.061−0.338 8.061−0.338 5 +0.368 +0.165 +0.163 Lynga 7 - - - 7.798−0.351 - 7.867−0.161 7.899−0.159 8 +0.533 +0.523 Mercer 5 - - - - - 5.495−0.486 5.466−0.476 1 +0.189 +0.165 +0.040 +0.031 NGC 104 4.367−0.174 4.533 ± 0.067 4.522 ± 0.085 4.406−0.159 4.779 ± 0.197 4.512−0.039 4.521−0.031 33 +0.731 +0.350 +0.096 +0.089 NGC 288 7.692−0.615 9.814 ± 0.576 9.098 ± 0.348 9.333−0.338 8.798 ± 0.446 8.983−0.095 8.988−0.088 23 +0.317 +0.330 +0.114 +0.096 NGC 362 9.099−0.296 8.267 ± 0.646 9.202 ± 0.321 8.790−0.318 8.707 ± 0.374 8.770−0.112 8.829−0.096 21 +0.611 +0.205 +0.192 NGC 1261 - - 16.775 ± 0.872 16.293−0.589 16.680 ± 0.726 16.353−0.202 16.400−0.190 15 +0.462 +0.156 +0.134 NGC 1851 - - 11.440 ± 0.320 12.303−0.445 12.376 ± 0.528 12.017−0.154 11.951−0.133 18 +0.182 +0.181 NGC 1904 - - - - - 13.080−0.179 13.078−0.179 13 +0.471 +0.175 +0.170 NGC 2298 - - - 10.000−0.450 7.471 ± 1.208 9.890−0.172 9.828−0.167 10 +2.437 +2.437 NGC 2419 - - - - - 88.471−2.371 88.471−2.371 6 +0.435 +0.141 +0.112 NGC 2808 - 9.688 ± 0.428 9.837 ± 0.233 10.280−0.417 10.603 ± 0.494 10.139−0.139 10.060−0.111 20 +0.239 +0.172 +0.046 +0.043 NGC 3201 4.819−0.217 4.745 ± 0.176 - 4.571−0.165 4.416 ± 0.202 4.749−0.046 4.737−0.042 29 +0.674 +0.214 +0.214 NGC 4147 - - - 17.947−0.649 - 18.510−0.212 18.535−0.212 16 +0.425 +0.385 +0.214 NGC 4372 5.688−0.370 5.933 ± 0.423 - - 4.593 ± 0.614 5.959−0.362 5.713−0.207 5 +0.388 +0.101 +0.100 NGC 4590 - - - 10.328−0.374 10.396 ± 0.841 10.409−0.100 10.404−0.099 24 +0.490 +0.246 +0.091 +0.084 NGC 4833 6.557−0.426 5.822 ± 0.360 - 6.546−0.237 6.453 ± 0.395 6.519−0.089 6.480−0.083 12 +0.696 +0.189 +0.185 NGC 5024 - 17.313 ± 1.353 - 18.535−0.670 18.803 ± 1.446 18.518−0.187 18.498−0.183 20 +0.677 +0.235 +0.235 NGC 5053 - - - 18.030−0.652 - 17.515−0.232 17.537−0.232 20 +0.302 +0.056 +0.047 NGC 5139 5.485−0.272 5.359 ± 0.141 5.264 ± 0.121 - - 5.468−0.055 5.426−0.047 31 +0.362 +0.085 +0.082 NGC 5272 - 10.116 ± 0.384 - 9.638−0.349 10.770 ± 0.610 10.167−0.084 10.175−0.081 38 +0.408 +0.149 +0.145 NGC 5286 - 11.181 ± 0.689 - 10.864−0.393 - 11.071−0.147 11.096−0.143 13 +0.592 +0.164 +0.164 NGC 5466 - - - 15.776−0.571 - 16.106−0.162 16.120−0.162 21 +0.630 +0.628 NGC 5634 - - - - - 25.990−0.615 25.959−0.613 4 +0.746 +0.745 NGC 5694 - - - - - 34.834−0.730 34.840−0.730 6 © 201x RAS, MNRAS 000, 1–19 Accurate distances to Galactic globular clusters 21

Table 2 – continued GEDR3 parallax dist. GEDR3 kin. dist. HST kin. dist. Subdwarf dist. Star Count dist. Lit. dist. Mean distance Name N [kpc] [kpc] [kpc] [kpc] [kpc] [kpc] [kpc] Tot +0.605 +0.604 NGC 5824 - - - - - 31.754−0.594 31.713−0.593 5 +0.464 +0.246 +0.238 NGC 5897 - - - 12.359−0.447 12.252 ± 1.141 12.607−0.241 12.549−0.233 8 +0.677 +0.283 +0.066 +0.060 NGC 5904 7.651−0.575 7.467 ± 0.357 7.456 ± 0.201 7.551−0.273 7.721 ± 0.350 7.471−0.065 7.479−0.060 38 +0.900 +0.318 +0.118 +0.111 NGC 5927 8.606−0.744 8.209 ± 0.647 - 8.472−0.306 8.757 ± 0.371 8.215−0.116 8.270−0.109 14 +0.589 +0.529 NGC 5946 - - - - - 9.554−0.555 9.642−0.496 4 +0.393 +0.137 +0.132 NGC 5986 - 10.269 ± 0.668 - 10.471−0.379 10.885 ± 0.837 10.549−0.135 10.540−0.130 14 +0.389 +0.120 +0.116 NGC 6093 - - - 10.375−0.375 10.193 ± 0.489 10.342−0.118 10.339−0.115 20 +0.537 +0.188 +0.187 NGC 6101 - - - 14.322−0.518 - 14.454−0.185 14.449−0.184 13 +0.035 +0.071 +0.020 +0.015 NGC 6121 1.830−0.034 1.878 ± 0.033 - 1.888−0.068 2.016 ± 0.090 1.839−0.020 1.851−0.016 23 +0.488 +0.463 NGC 6139 - - - - - 10.046−0.465 10.035−0.441 6 +0.866 +0.319 +0.129 +0.127 NGC 6144 8.292−0.716 - - 8.511−0.308 - 8.147−0.127 8.151−0.125 8 +0.411 +0.254 +0.081 +0.077 NGC 6171 5.464−0.357 6.017 ± 0.407 - 5.998−0.244 5.479 ± 0.407 5.629−0.080 5.631−0.076 18 +0.822 +0.277 +0.079 +0.076 NGC 6205 8.621−0.690 6.906 ± 0.336 - 7.379−0.267 - 7.427−0.078 7.419−0.075 25 +0.282 +0.200 +0.052 +0.049 NGC 6218 5.068−0.254 4.632 ± 0.194 - 5.321−0.192 5.352 ± 0.265 5.136−0.052 5.109−0.048 24 +0.475 +0.475 NGC 6229 - - - - - 30.102−0.468 30.106−0.467 7 +0.395 +0.387 NGC 6235 - - - - - 11.896−0.383 11.937−0.374 5 +0.412 +0.235 +0.070 +0.064 NGC 6254 5.394−0.358 4.976 ± 0.199 - 4.989−0.225 5.346 ± 0.310 5.051−0.069 5.067−0.063 19 +0.650 +0.326 +0.299 NGC 6256 - - - 7.516−0.598 7.680 ± 0.804 7.204−0.312 7.242−0.288 9 +0.426 +0.172 +0.105 NGC 6266 5.764−0.371 6.395 ± 0.327 6.502 ± 0.163 - 6.956 ± 0.325 6.249−0.167 6.412−0.104 13 +0.683 +0.203 +0.165 NGC 6273 7.657−0.580 7.658 ± 0.424 - - 8.463 ± 0.536 8.527−0.198 8.343−0.163 10 +0.435 +0.427 NGC 6284 - - - - - 14.309−0.422 14.208−0.415 6 +0.721 +0.427 +0.376 NGC 6287 7.184−0.601 - - - - 8.143−0.406 7.929−0.356 6 +0.297 +0.282 NGC 6293 - - - - 9.273 ± 1.131 9.209−0.288 9.192−0.274 7 +0.504 +0.214 +0.161 +0.150 NGC 6304 6.373−0.435 7.304 ± 0.684 - 5.702−0.206 - 6.059−0.157 6.152−0.146 13 +0.499 +0.393 NGC 6316 - 9.631 ± 0.901 - - 9.131 ± 1.785 11.792−0.479 11.152−0.382 7 +0.646 +0.795 +0.369 +0.330 NGC 6325 6.627−0.540 - - 8.241−0.725 - 7.755−0.352 7.533−0.314 7 +0.775 +0.147 +0.144 NGC 6333 8.052−0.650 - - - - 8.310−0.144 8.300−0.142 8 +0.333 +0.075 +0.071 NGC 6341 - 8.627 ± 0.473 8.231 ± 0.374 8.872−0.321 8.188 ± 0.345 8.511−0.074 8.501−0.070 35 +0.787 +0.302 +0.244 +0.233 NGC 6342 7.716−0.654 - - 8.054−0.291 - 8.043−0.237 8.013−0.226 6 +0.378 +0.214 +0.077 +0.073 NGC 6352 5.583−0.333 - 6.260 ± 0.816 5.702−0.206 5.564 ± 0.295 5.534−0.076 5.543−0.072 16 +0.707 +0.318 +0.259 +0.224 NGC 6355 7.236−0.591 - - 8.472−0.306 9.444 ± 0.449 8.527−0.251 8.655−0.220 8 +0.973 +0.946 NGC 6356 - - - - - 15.900−0.917 15.656−0.890 4 +0.731 +0.287 +0.071 +0.067 NGC 6362 8.026−0.618 7.717 ± 0.440 7.720 ± 0.341 7.656−0.277 6.849 ± 0.326 7.677−0.070 7.649−0.066 28 +0.181 +0.167 +0.055 +0.051 NGC 6366 3.643−0.165 3.404 ± 0.256 - 3.548−0.160 3.861 ± 0.297 3.407−0.054 3.444−0.050 14 +0.358 +0.312 +0.306 NGC 6380 - - - 9.550−0.345 - 9.532−0.302 9.607−0.296 4 +0.404 +0.280 +0.162 NGC 6388 - - 10.894 ± 0.230 10.765−0.389 11.196 ± 0.466 11.545−0.273 11.171−0.161 15 +0.061 +0.090 +0.024 +0.019 NGC 6397 2.458−0.058 2.467 ± 0.056 2.371 ± 0.051 2.410−0.087 2.531 ± 0.107 2.512−0.024 2.482−0.019 29 +0.781 +0.308 +0.316 +0.238 NGC 6401 7.283−0.643 - - 8.204−0.297 8.448 ± 0.376 7.910−0.304 8.064−0.234 7 +0.847 +0.267 +0.255 NGC 6402 8.482−0.706 - - - - 9.204−0.259 9.144−0.248 6 +1.022 +0.356 +0.355 NGC 6426 - - - 21.677−0.976 - 20.701−0.350 20.710−0.349 8 +0.742 +0.281 +0.248 NGC 6440 7.283−0.617 7.394 ± 0.776 - - - 8.461−0.272 8.248−0.241 7 +0.245 +0.163 NGC 6441 - - 12.190 ± 0.244 - 13.095 ± 0.674 13.176−0.240 12.728−0.162 16 +0.238 +0.220 NGC 6453 - - - - 11.149 ± 0.523 9.804−0.232 10.070−0.216 8 +0.345 +0.161 +0.153 NGC 6496 - 9.823 ± 0.612 - 9.204−0.333 9.326 ± 0.988 9.647−0.159 9.641−0.151 11 +0.717 +0.578 NGC 6517 - 10.202 ± 1.704 - - - 8.913−0.664 9.227−0.538 4 +0.221 +0.211 NGC 6522 - 8.120 ± 0.929 - - - 7.158−0.214 7.295−0.205 8 +0.244 +0.239 NGC 6528 - - - - - 7.791−0.237 7.829−0.232 8

© 201x RAS, MNRAS 000, 1–19 22 Baumgardt & Vasiliev

Table 2 – continued GEDR3 parallax dist. GEDR3 kin. dist. HST kin. dist. Subdwarf dist. Star Count dist. Lit. dist. Mean distance Name N [kpc] [kpc] [kpc] [kpc] [kpc] [kpc] [kpc] Tot +0.669 +0.274 +0.127 +0.124 NGC 6535 6.570−0.556 - - 6.486−0.263 - 6.353−0.125 6.363−0.122 8 +0.866 +0.609 +0.395 NGC 6539 8.292−0.716 8.686 ± 0.746 - - 8.694 ± 1.140 7.565−0.563 8.165−0.379 5 +0.301 +0.279 NGC 6540 - - - - - 5.897−0.286 5.909−0.265 4 +0.648 +0.274 +0.113 +0.102 NGC 6541 7.429−0.552 7.056 ± 0.324 - 7.311−0.264 8.493 ± 0.416 7.617−0.111 7.609−0.101 11 +0.074 +0.113 +0.059 NGC 6544 2.585−0.070 2.516 ± 0.239 - - - 2.589−0.109 2.582−0.057 6 +0.370 +0.141 +0.128 NGC 6553 5.488−0.326 6.211 ± 0.457 - - - 5.219−0.138 5.332−0.125 12 +0.298 +0.306 +0.294 NGC 6558 - - - 7.943−0.287 - 7.495−0.294 7.474−0.282 6 +0.275 +0.261 NGC 6569 - - - - 10.961 ± 1.031 10.529−0.268 10.534−0.255 9 +0.475 +0.177 +0.176 NGC 6584 - - - 12.647−0.457 - 13.602−0.174 13.611−0.174 13 +0.286 +0.119 +0.108 NGC 6624 - 8.027 ± 0.530 7.972 ± 0.308 7.621−0.276 - 8.017−0.117 8.019−0.107 15 +0.325 +0.114 +0.099 NGC 6626 5.297−0.289 5.734 ± 0.306 - - 5.571 ± 0.403 5.311−0.111 5.368−0.098 10 +0.345 +0.107 +0.106 NGC 6637 - 9.960 ± 1.149 - 9.204−0.333 9.139 ± 1.054 8.880−0.106 8.900−0.104 17 +0.363 +0.347 NGC 6638 - - - - - 9.786−0.350 9.775−0.334 5 +0.302 +0.209 +0.204 NGC 6642 - - - 8.054−0.291 - 8.009−0.204 8.049−0.198 7 +0.357 +0.141 +0.139 NGC 6652 - - - 9.506−0.344 - 9.467−0.138 9.464−0.137 13 +0.119 +0.127 +0.049 +0.037 NGC 6656 3.368−0.111 3.181 ± 0.123 3.161 ± 0.088 3.373−0.122 3.556 ± 0.149 3.327−0.049 3.303−0.037 14 +0.342 +0.130 +0.107 NGC 6681 - 9.722 ± 0.578 9.260 ± 0.228 9.120−0.330 9.634 ± 0.414 9.354−0.128 9.362−0.106 15 +0.676 +0.294 +0.240 NGC 6712 7.402−0.571 7.463 ± 0.546 - - - 7.355−0.282 7.382−0.233 9 +0.383 +0.328 NGC 6715 - - 25.019 ± 0.829 - 25.386 ± 1.185 26.644−0.378 26.283−0.325 17 +0.135 +0.133 NGC 6717 - - - - - 7.464−0.133 7.524−0.131 10 +0.829 +0.318 +0.103 +0.100 NGC 6723 8.237−0.690 8.708 ± 0.586 - 8.472−0.306 8.691 ± 0.601 8.241−0.102 8.267−0.099 18 +0.779 +0.230 +0.218 NGC 6749 7.849−0.650 - - - - 7.561−0.223 7.591−0.212 5 +0.171 +0.149 +0.050 +0.041 NGC 6752 4.092−0.158 4.036 ± 0.114 4.005 ± 0.147 3.981−0.144 3.917 ± 0.167 4.176−0.050 4.125−0.041 18 +0.839 +0.600 +0.441 NGC 6760 8.244−0.697 9.322 ± 0.900 - - - 8.110−0.559 8.411−0.418 4 +0.381 +0.145 +0.144 NGC 6779 - - - 10.139−0.367 - 10.404−0.143 10.430−0.142 12 +0.285 +0.195 +0.055 +0.052 NGC 6809 5.020−0.256 5.201 ± 0.246 - 5.200−0.188 5.223 ± 0.303 5.370−0.054 5.348−0.051 27 +0.190 +0.151 +0.053 +0.050 NGC 6838 4.160−0.174 4.154 ± 0.237 - 4.036−0.146 - 3.977−0.053 4.001−0.050 15 +0.459 +0.457 NGC 6864 - - - - - 20.549−0.449 20.517−0.448 5 +0.555 +0.175 +0.173 NGC 6934 - 16.718 ± 1.382 - 14.791−0.535 - 15.704−0.173 15.716−0.171 19 +0.603 +0.185 +0.185 NGC 6981 - - - 16.069−0.581 - 16.672−0.183 16.661−0.183 15 +1.474 +0.565 +0.565 NGC 7006 - - - 39.264−1.420 - 39.319−0.557 39.318−0.557 9 +0.398 +0.104 +0.096 NGC 7078 - - 10.375 ± 0.295 10.617−0.384 10.769 ± 0.452 10.740−0.103 10.709−0.095 28 +0.419 +0.119 +0.115 NGC 7089 - 11.940 ± 0.703 - 11.169−0.404 12.267 ± 0.543 11.647−0.117 11.693−0.114 21 +0.753 +0.324 +0.094 +0.090 NGC 7099 7.981−0.633 8.682 ± 0.496 - 8.630−0.312 7.959 ± 0.435 8.480−0.093 8.458−0.089 19 +0.581 +0.579 NGC 7492 - - - - - 24.434−0.567 24.390−0.566 4 +0.547 +0.329 +0.328 Pal 1 - - - 10.520−0.520 - 11.189−0.320 11.176−0.319 4 +1.321 +1.317 Pal 2 - - - - - 26.158−1.258 26.174−1.253 2 +3.288 +3.288 Pal 3 - - - - - 94.842−3.178 94.842−3.178 2 +2.601 +2.601 Pal 4 - - - - - 101.391−2.536 101.391−2.536 2 +0.521 +0.520 Pal 5 - - - - - 21.928−0.509 21.941−0.508 6 +0.472 +0.463 Pal 6 - - - - - 6.887−0.442 7.047−0.433 6 +0.722 +0.652 Pal 8 - - - - - 11.695−0.680 11.316−0.611 4 +1.621 +1.292 Pal 10 - - - - - 8.402−1.359 8.944−1.072 3 +0.523 +0.517 Pal 11 - - - - - 14.125−0.505 14.024−0.498 3 +0.686 +0.300 +0.300 Pal 12 - - - 18.281−0.661 - 18.484−0.296 18.494−0.295 8 +0.403 +0.403 Pal 13 - - - - - 23.475−0.397 23.475−0.397 6 +1.645 +1.645 Pal 14 - - - - - 73.587−1.609 73.579−1.609 4

© 201x RAS, MNRAS 000, 1–19 Accurate distances to Galactic globular clusters 23

Figure 8. Comparison of recent literature distance determinations for the globular clusters NGC 104, NGC 362, NGC 5139 and NGC 6121 with our data. Black symbols depict distance determinations taken from the literature, while red symbols show our own measurements based on Gaia EDR3 data. Red triangles show Gaia EDR3 kinematic distances, red circles subdwarf distances, red squares moving group distances and red sexagons show Gaia EDR3 parallax distances. Blue triangles show HST kinematic distances and dark green squares with error bars star count distances. The bright green square is the distance given by Harris (2010) based on an averaging of literature values up to 2010. The distances are sorted according to publication year, with newest measurements at the top of each panel and the first and last year indicated. Distance determinations shown in grey have been neglected when calculating the mean cluster distance. For literature distances without an error, the dashed error bars show our adopted error. Solid error bars are literature measurements with error bars. The red vertical line and shaded region marks the average distance and its 1σ error bar. The average distances are also given at the top of each panel.

© 201x RAS, MNRAS 000, 1–19 24 Baumgardt & Vasiliev

Figure 9. Same as Fig. 8 for Arp 2, Djor 1, Djor 2 and E 3, ESO 452-SC11 and FSR 1716. © 201x RAS, MNRAS 000, 1–19 Accurate distances to Galactic globular clusters 25

Figure 10. Same as Fig. 8 for HP 1, IC 1257, IC 4499 and Liller 1, Lynga 7 and NGC 288.

© 201x RAS, MNRAS 000, 1–19 26 Baumgardt & Vasiliev

Figure 11. Same as Fig. 8 for NGC 1261, NGC 1851, NGC 1904, NGC 2298, NGC 2419 and NGC 2808. © 201x RAS, MNRAS 000, 1–19 Accurate distances to Galactic globular clusters 27

Figure 12. Same as Fig. 8 for NGC 3201, NGC 4147, NGC 4372, NGC 4590, NGC 4833 and NGC 5024. © 201x RAS, MNRAS 000, 1–19 28 Baumgardt & Vasiliev

Figure 13. Same as Fig. 8 for NGC 5053, NGC 5272, NGC 5286, NGC 5466, NGC 5694 and NGC 5824. © 201x RAS, MNRAS 000, 1–19 Accurate distances to Galactic globular clusters 29

Figure 14. Same as Fig. 8 for NGC 5897, NGC 5904, NGC 5927, NGC 5946, NGC 5986 and NGC 6093. © 201x RAS, MNRAS 000, 1–19 30 Baumgardt & Vasiliev

Figure 15. Same as Fig. 8 for NGC 6101, NGC 6139, NGC 6144 and NGC 6171, NGC 6205 and NGC 6218. © 201x RAS, MNRAS 000, 1–19 Accurate distances to Galactic globular clusters 31

Figure 16. Same as Fig. 8 for NGC 6229, NGC 6235, NGC 6254 and NGC 6256, NGC 6266 and NGC 6273. © 201x RAS, MNRAS 000, 1–19 32 Baumgardt & Vasiliev

Figure 17. Same as Fig. 8 for NGC 6284, NGC 6287, NGC 6293 and NGC 6304, NGC 6316 and NGC 6325. © 201x RAS, MNRAS 000, 1–19 Accurate distances to Galactic globular clusters 33

Figure 18. Same as Fig. 8 for NGC 6333, NGC 6341, NGC 6342 and NGC 6352, NGC 6355 and NGC 6356. © 201x RAS, MNRAS 000, 1–19 34 Baumgardt & Vasiliev

Figure 19. Same as Fig. 8 for NGC 6362, NGC 6366, NGC 6380 and NGC 6388, NGC 6397 and NGC 6401. © 201x RAS, MNRAS 000, 1–19 Accurate distances to Galactic globular clusters 35

Figure 20. Same as Fig. 8 for NGC 6402, NGC 6426, NGC 6440 and NGC 6441, NGC 6453 and NGC 6496. © 201x RAS, MNRAS 000, 1–19 36 Baumgardt & Vasiliev

Figure 21. Same as Fig. 8 for NGC 6517, NGC 6522, NGC 6528 and NGC 6535, NGC 6539 and NGC 6540. © 201x RAS, MNRAS 000, 1–19 Accurate distances to Galactic globular clusters 37

Figure 22. Same as Fig. 8 for NGC 6541, NGC 6544, NGC 6553 and NGC 6558, NGC 6569 and NGC 6584. © 201x RAS, MNRAS 000, 1–19 38 Baumgardt & Vasiliev

Figure 23. Same as Fig. 8 for NGC 6624, NGC 66226 NGC 6637 and NGC 6638, NGC 6642 and NGC 6652. © 201x RAS, MNRAS 000, 1–19 Accurate distances to Galactic globular clusters 39

Figure 24. Same as Fig. 8 for NGC 6656, NGC 6681, NGC 6712 and NGC 6715, NGC 6717 and NGC 6723. © 201x RAS, MNRAS 000, 1–19 40 Baumgardt & Vasiliev

Figure 25. Same as Fig. 8 for NGC 6749, NGC 6752, NGC 6760 and NGC 6779, NGC 6809 and NGC 6838. © 201x RAS, MNRAS 000, 1–19 Accurate distances to Galactic globular clusters 41

Figure 26. Same as Fig. 8 for NGC 6864, NGC 69346 NGC 6981 and NGC 7006, NGC 7078 and NGC 7089. © 201x RAS, MNRAS 000, 1–19 42 Baumgardt & Vasiliev

Figure 27. Same as Fig. 8 for NGC 7099, NGC 7492, Pal 1, Pal 5, Pal 6 and Pal 12 © 201x RAS, MNRAS 000, 1–19 Accurate distances to Galactic globular clusters 43

Figure 28. Same as Fig. 8 for Pal 13, Pal 14, Pal 15, , Rup 106 and Ter 1. © 201x RAS, MNRAS 000, 1–19 44 Baumgardt & Vasiliev

Figure 29. Same as Fig. 8 for Ter 4, Ter 5, Ter 6, Ter 7, Ter 8 and Ter 9. © 201x RAS, MNRAS 000, 1–19 Accurate distances to Galactic globular clusters 45

Table 2 – continued GEDR3 parallax dist. GEDR3 kin. dist. HST kin. dist. Subdwarf dist. Star Count dist. Lit. dist. Mean distance Name N [kpc] [kpc] [kpc] [kpc] [kpc] [kpc] [kpc] Tot +2.227 +1.152 +1.152 Pal 15 - - - 42.855−2.117 - 44.096−1.123 44.096−1.123 4 +1.414 +0.662 +0.662 Pyxis - - - 37.670−1.363 - 36.526−0.650 36.526−0.650 6 +4.288 +4.288 RLGC 1 - - - - - 28.840−3.733 28.840−3.733 1 +2.356 +2.356 RLGC 2 - - - - - 15.849−2.051 15.849−2.051 1 +0.735 +0.366 +0.365 Rup 106 - - - 19.588−0.709 - 20.730−0.360 20.711−0.359 6 +2.514 +1.581 +1.581 Sgr II - - - 66.988−2.423 - 66.527−1.544 66.527−1.544 5 +0.175 +0.175 Ter 1 - - - - - 5.673−0.170 5.673−0.170 6 +0.336 +0.332 Ter 2 - - - - - 7.681−0.322 7.753−0.318 4 +0.338 +0.318 Ter 3 - - - - - 7.568−0.324 7.644−0.304 3 +0.316 +0.315 Ter 4 - - - - - 7.558−0.304 7.591−0.302 5 +0.224 +0.150 Ter 5 - 6.780 ± 0.220 - - 6.346 ± 0.503 6.462−0.217 6.617−0.148 10 +0.360 +0.360 Ter 6 - - - - - 7.271−0.343 7.271−0.343 4 +0.497 +0.496 Ter 7 - - - - - 24.277−0.487 24.278−0.487 5 +1.038 +0.422 +0.421 Ter 8 - - - 27.669−1.001 - 27.542−0.415 27.535−0.415 8 +0.434 +0.356 Ter 9 - 5.030 ± 1.037 - - - 5.605−0.403 5.770−0.333 5 +0.414 +0.412 Ter 10 - - - - - 10.247−0.398 10.212−0.396 3 +0.444 +0.400 Ter 12 - 5.002 ± 1.851 - - - 5.107−0.408 5.166−0.369 4 +0.360 +0.344 Ton 2 - - - - - 6.934−0.343 6.987−0.326 3 +0.570 +0.570 UKS 1 - - - - - 15.581−0.550 15.581−0.550 2 +1.664 +1.622 VVV-CL001 - - - - - 8.204−1.383 8.082−1.343 1 +1.192 +1.192 Whiting 1 - - - - - 30.591−1.147 30.591−1.147 2 +0.472 +0.463 Pal 6 - - - - - 6.887−0.442 7.047−0.433 6

© 201x RAS, MNRAS 000, 1–19 46 Baumgardt & Vasiliev

Table 3. Globular cluster distances from the literature used in Table 3 – continued this paper. For each distance we give either the de-reddended Cluster Source Paper Method DM/Distance distance modulus or the distance in kpc depending on what has NGC 104 Grundahl, Stetson & Andersen (2002) CMD Fitting 13.33 ± 0.11 NGC 104 Gratton et al. (2003) CMD Fitting 13.38 ± 0.08 been given in the original paper. NGC 104 Weldrake et al. (2004) RR Lyrae 13.14 ± 0.25 NGC 104 Recio-Blanco et al. (2005) CMD Fitting 13.28 ± 0.08 Cluster Source Paper Method DM/Distance NGC 104 Salaris et al. (2007) CMD Fitting 13.18 ± 0.05 2MS-GC01 Ivanov & Borissova (2002) TRGB 12.64 ± 0.40 NGC 104 Bergbusch & Stetson (2009) CMD Fitting 13.25 NGC 104 Dotter et al. (2010) CMD Fitting 13.26 2MS-GC02 Borissova et al. (2007) CMD Fitting 13.55 ± 0.18 NGC 104 Paust et al. (2010) CMD Fitting 13.25 2MS-GC02 Alonso-Garc´ıaet al. (2015) RR Lyrae 14.28 ± 0.35 NGC 104 McDonald et al. (2011) SED 13.32 ± 0.09 AM 1 Hilker (2006) CMD Fitting 20.45 NGC 104 Cohen & Sarajedini (2012) Subdwarfs 13.27 AM 1 Dotter et al. (2010) CMD Fitting 20.37 NGC 104 Woodley et al. (2012) WD Cooling 13.36 ± 0.06 NGC 104 Piotto et al. (2012) CMD Fitting 13.25 AM 4 Carraro (2009) CMD Fitting 17.58 ± 0.20 NGC 104 VandenBerg et al. (2013) CMD Fitting 13.25 AM 4 Hamren et al. (2013) CMD Fitting 17.28 ± 0.03 NGC 104 Richer et al. (2013) WD Cooling 13.30 ± 0.08 Arp 2 Ferraro et al. (1999) ZAHB 17.39 ± 0.11 NGC 104 Chen et al. (2014) CMD Fitting 13.20 Arp 2 Dotter et al. (2010) CMD Fitting 17.33 NGC 104 Correnti et al. (2016) CMD Fitting 13.31 ± 0.05 Arp 2 Siegel et al. (2011) CMD Fitting 17.37 ± 0.03 NGC 104 Brogaard et al. (2017) Eclipsing Binary 13.21 ± 0.06 Arp 2 Cohen & Sarajedini (2012) Subdwarfs 17.44 NGC 104 Denissenkov et al. (2017) CMD Fitting 13.19 ± 0.05 Arp 2 VandenBerg et al. (2013) CMD Fitting 17.29 NGC 104 O’Malley, Gilligan & Chaboyer (2017) CMD Fitting 13.44 ± 0.20 Arp 2 Halford & Zaritsky (2015) CMD Fitting 17.25 ± 0.13 NGC 104 Wagner-Kaiser et al. (2017) CMD Fitting 13.28 ± 0.01 Arp 2 Wagner-Kaiser et al. (2017) CMD Fitting 17.29 ± 0.02 NGC 104 Chen et al. (2018) Parallax 4.45 ± 0.12 kpc Arp 2 Pritzl et al. (2019) SX Phe 17.27 ± 0.04 NGC 104 Fu et al. (2018) CMD Fitting 13.22 Arp 2 Pritzl et al. (2019) RR Lyrae 17.31 ± 0.07 NGC 104 Thompson et al. (2020) Eclipsing Binary 4.54 ± 0.03 kpc Arp 2 Valcin et al. (2020) CMD Fitting 17.36 ± 0.04 NGC 104 Valcin et al. (2020) CMD Fitting 13.26 ± 0.03 BH 140 Cantat-Gaudin et al. (2018) Parallax 5.23 ± 3.44 kpc NGC 1261 Ferraro et al. (1999) ZAHB 15.95 ± 0.06 NGC 1261 Recio-Blanco et al. (2005) CMD Fitting 16.23 ± 0.09 BH 261 Ortolani, Bica & Barbuy (2006) CMD Fitting 13.90 ± 0.15 NGC 1261 Dotter et al. (2010) CMD Fitting 16.08 BH 261 Barbuy et al. (2021) CMD Fitting 13.89 ± 0.20 NGC 1261 Paust et al. (2010) CMD Fitting 15.98 Crater Belokurov et al. (2014) CMD Fitting 21.10 ± 0.25 NGC 1261 Cohen & Sarajedini (2012) Subdwarfs 16.06 Crater Laevens et al. (2014) CMD Fitting 20.81 ± 0.12 NGC 1261 VandenBerg et al. (2013) CMD Fitting 16.01 Crater Weisz et al. (2016) CMD Fitting 20.83 ± 0.03 NGC 1261 Halford & Zaritsky (2015) CMD Fitting 16.15 ± 0.08 NGC 1261 Wagner-Kaiser et al. (2017) CMD Fitting 16.05 ± 0.02 Djor 1 Ortolani, Bica & Barbuy (1995) CMD Fitting 14.72 ± 0.15 NGC 1261 Arellano Ferro et al. (2019) RR Lyrae 16.18 ± 0.06 Djor 1 Barbuy, Bica & Ortolani (1998) CMD Fitting 13.75 NGC 1261 Cerny et al. (2020) TRGB 16.10 ± 0.10 Djor 1 Davidge (2000) TRGB 15.30 ± 0.25 NGC 1261 Valcin et al. (2020) CMD Fitting 16.12 ± 0.01 Djor 1 Valenti, Ferraro & Origlia (2010) CMD Fitting 15.65 ± 0.20 Djor 1 Ortolani et al. (2019b) CMD Fitting 14.85 ± 0.10 NGC 1851 Ferraro et al. (1999) ZAHB 15.43 ± 0.06 NGC 1851 Saviane et al. (2000) CMD Fitting 15.44 ± 0.20 Djor 2 Ortolani, Bica & Barbuy (1997b) CMD Fitting 13.70 ± 0.30 NGC 1851 Zoccali & Piotto (2000) CMD Fitting 15.35 ± 0.20 Djor 2 Barbuy, Bica & Ortolani (1998) CMD Fitting 13.68 NGC 1851 Cassisi, De Santis & Piersimoni (2001) RR Lyrae 15.37 ± 0.05 Djor 2 Valenti, Ferraro & Origlia (2010) CMD Fitting 14.23 ± 0.20 NGC 1851 Di Criscienzo, Marconi & Caputo (2004)RR Lyrae 15.36 ± 0.10 Djor 2 Ortolani et al. (2019a) RR Lyrae 14.80 ± 0.08 NGC 1851 Recio-Blanco et al. (2005) CMD Fitting 15.46 ± 0.09 Djor 2 Ortolani et al. (2019a) CMD Fitting 14.71 ± 0.03 NGC 1851 Bono, Caputo & Di Criscienzo (2007) RR Lyrae 15.40 ± 0.13 Djor 2 Kunder & Butler (2020) RR Lyrae 14.68 ± 0.07 NGC 1851 Cassisi et al. (2008) CMD Fitting 15.41 E 3 Mochejska, Kaluzny & Thompson (2000)SX Phe 14.46 NGC 1851 Piotto et al. (2012) CMD Fitting 15.41 E 3 Sarajedini et al. (2007) CMD Fitting 14.54 NGC 1851 VandenBerg et al. (2013) CMD Fitting 15.33 E 3 de la Fuente Marcos et al. (2015) CMD Fitting 15.07 ± 0.17 NGC 1851 Kunder et al. (2013a) RR Lyrae 15.46 ± 0.11 NGC 1851 Wagner-Kaiser et al. (2017) CMD Fitting 15.38 ± 0.02 ESO 280 Ortolani, Bica & Barbuy (2000) CMD Fitting 16.70 ± 0.20 NGC 1851 Cerny et al. (2020) TRGB 15.42 ± 0.10 ESO 280 Simpson (2018) CMD Fitting 16.80 ± 0.20 NGC 1851 Valcin et al. (2020) CMD Fitting 15.43 ± 0.03 ESO 280 Simpson & Martell (2019) CMD Fitting 16.57 ± 0.05 NGC 1904 Kravtsov et al. (1997) CMD Fitting 15.59 ESO 452 Bica, Ortolani & Barbuy (1999) CMD Fitting 14.05 ± 0.25 NGC 1904 Ferraro et al. (1999) ZAHB 15.61 ± 0.07 ESO 452 Cornish et al. (2006) CMD Fitting 14.30 ± 0.10 NGC 1904 Zoccali & Piotto (2000) CMD Fitting 15.49 ± 0.20 ESO 452 Simpson et al. (2017) CMD Fitting 14.41 ± 0.06 NGC 1904 Kim et al. (2006) CMD Fitting 15.82 ± 0.15 Eridanus Dotter et al. (2010) CMD Fitting 19.67 NGC 1904 Recio-Blanco et al. (2005) CMD Fitting 15.68 ± 0.08 NGC 1904 Matsunaga et al. (2006) TII Cepheids 15.57 FSR 1716 Bonatto & Bica (2008) CMD Fitting 11.76 ± 0.32 NGC 1904 Kains et al. (2012) RR Lyrae 15.61 ± 0.07 FSR 1716 Froebrich et al. (2010) CMD Fitting 14.23 NGC 1904 Dalessandro et al. (2013) CMD Fitting 15.64 ± 0.05 FSR 1716 Minniti et al. (2017) RR Lyrae 14.38 ± 0.10 NGC 1904 Kopacki (2015) RR Lyrae 15.54 FSR 1716 Contreras Ramos et al. (2018) RR Lyrae 14.38 ± 0.10 NGC 1904 Bhardwaj et al. (2017) TII Cepheids 15.46 ± 0.09 FSR 1735 Froebrich, Meusinger & Scholz (2007) CMD Fitting 14.80 ± 0.20 NGC 1904 Li & Deng (2018) CMD Fitting 15.54 FSR 1735 Froebrich et al. (2010) CMD Fitting 14.52 ± 0.30 NGC 1904 Cerny et al. (2020) TRGB 15.57 ± 0.10 FSR 1735 Carballo-Bello et al. (2016) RR Lyrae 15.17 ± 0.50 NGC 2298 Dotter et al. (2010) CMD Fitting 14.98 FSR 1758 Barb´aet al. (2019) CMD Fitting 15.30 ± 0.10 NGC 2298 Cohen & Sarajedini (2012) Subdwarfs 15.12 NGC 2298 O’Malley, Gilligan & Chaboyer (2017) CMD Fitting 15.18 ± 0.11 HP 1 Ortolani, Bica & Barbuy (1997a) CMD Fitting 14.15 ± 0.20 NGC 2298 Wagner-Kaiser et al. (2017) CMD Fitting 14.93 ± 0.03 HP 1 Barbuy, Bica & Ortolani (1998) CMD Fitting 14.04 NGC 2298 Wagner-Kaiser et al. (2017) CMD Fitting 14.93 ± 0.03 HP 1 Davidge (2000) TRGB 14.43 ± 0.25 NGC 2298 Monty et al. (2018) CMD Fitting 15.13 ± 0.06 HP 1 Matsunaga et al. (2006) TII Cepheids 14.36 NGC 2298 Valcin et al. (2020) CMD Fitting 15.05 ± 0.04 HP 1 Valenti, Ferraro & Origlia (2010) CMD Fitting 14.17 ± 0.20 HP 1 Ortolani et al. (2011) CMD Fitting 14.18 ± 0.20 NGC 2419 Ferraro et al. (1999) ZAHB 19.90 ± 0.10 HP 1 Bhardwaj et al. (2017) TII Cepheids 14.30 ± 0.07 NGC 2419 Ripepi et al. (2007) RR Lyrae 19.60 ± 0.05 HP 1 Kerber et al. (2019) CMD Fitting 14.09 ± 0.06 NGC 2419 Dalessandro et al. (2008) CMD Fitting 19.70 ± 0.10 NGC 2419 Dotter et al. (2010) CMD Fitting 19.93 IC 1257 Harris et al. (1997) CMD Fitting 16.88 ± 0.20 NGC 2419 Di Criscienzo et al. (2011) RR Lyrae 19.71 ± 0.07 IC 1257 Recio-Blanco et al. (2005) CMD Fitting 17.42 ± 0.10 NGC 2419 Hernitschek et al. (2019) RR Lyrae 19.51 ± 0.01 IC 1257 Hernitschek et al. (2019) RR Lyrae 17.17 NGC 2419 Cerny et al. (2020) TRGB 19.61 ± 0.10 IC 1276 Barbuy, Bica & Ortolani (1998) CMD Fitting 13.00 NGC 2808 Ferraro et al. (1999) ZAHB 14.88 ± 0.07 IC 4499 Ferraro et al. (1999) ZAHB 16.30 ± 0.07 NGC 2808 Bedin et al. (2000) CMD Fitting 15.11 ± 0.10 IC 4499 Cassisi, De Santis & Piersimoni (2001) RR Lyrae 16.45 ± 0.06 NGC 2808 Zoccali & Piotto (2000) CMD Fitting 14.84 ± 0.20 IC 4499 Di Criscienzo, Marconi & Caputo (2004)RR Lyrae 16.38 ± 0.17 NGC 2808 Saad & Lee (2001) Subdwarfs 14.88 IC 4499 Recio-Blanco et al. (2005) CMD Fitting 16.75 ± 0.10 NGC 2808 Recio-Blanco et al. (2005) CMD Fitting 15.26 ± 0.09 IC 4499 Sollima, Cacciari & Valenti (2006) RR Lyrae 16.35 ± 0.13 NGC 2808 Matsunaga et al. (2006) TII Cepheids 14.90 IC 4499 Bono, Caputo & Di Criscienzo (2007) RR Lyrae 16.35 ± 0.10 NGC 2808 Dalessandro et al. (2011) CMD Fitting 15.23 IC 4499 Dotter, Sarajedini & Anderson (2011) CMD Fitting 16.51 NGC 2808 VandenBerg et al. (2013) CMD Fitting 14.88 IC 4499 Wagner-Kaiser et al. (2017) CMD Fitting 16.32 ± 0.01 NGC 2808 Kunder et al. (2013c) RR Lyrae 15.01 ± 0.13 IC 4499 Cerny et al. (2020) TRGB 16.52 ± 0.10 NGC 2808 Massari et al. (2016) CMD Fitting 15.00 IC 4499 Valcin et al. (2020) CMD Fitting 16.47 ± 0.03 NGC 2808 Correnti et al. (2016) CMD Fitting 15.09 ± 0.05 Laevens 3 Laevens et al. (2015) CMD Fitting 19.14 ± 0.10 NGC 2808 Bhardwaj et al. (2017) TII Cepheids 15.11 ± 0.10 Laevens 3 Longeard et al. (2019) RR Lyrae 18.88 ± 0.04 NGC 2808 Wagner-Kaiser et al. (2017) CMD Fitting 15.06 ± 0.01 Laevens 3 Longeard et al. (2019) CMD Fitting 18.94 ± 0.04 NGC 2808 Cerny et al. (2020) TRGB 15.10 ± 0.10 NGC 2808 Valcin et al. (2020) CMD Fitting 15.18 ± 0.03 Liller 1 Barbuy, Bica & Ortolani (1998) CMD Fitting 14.34 Liller 1 Lee (2004) CMD Fitting 15.17 NGC 288 Reid & Gizis (1998) Subdwarfs 15.00 ± 0.15 Liller 1 Ortolani et al. (2007) CMD Fitting 14.53 ± 0.25 NGC 288 Ferraro et al. (1999) ZAHB 14.70 ± 0.10 Liller 1 Valenti, Ferraro & Origlia (2010) CMD Fitting 14.48 ± 0.20 NGC 288 Carretta et al. (2000) Subdwarfs 14.86 ± 0.12 Liller 1 Saracino et al. (2015) CMD Fitting 14.55 ± 0.25 NGC 288 Chen et al. (2000) SED 14.57 ± 0.07 Liller 1 Ferraro et al. (2021) CMD Fitting 14.65 ± 0.15 NGC 288 Catelan et al. (2001) CMD Fitting 14.70 NGC 288 Dotter et al. (2010) CMD Fitting 14.83 Lynga 7 Tavarez & Friel (1995) CMD Fitting 14.30 ± 0.20 NGC 288 Paust et al. (2010) CMD Fitting 14.74 Lynga 7 Sarajedini (2004) CMD Fitting 14.33 ± 0.10 NGC 288 Cohen & Sarajedini (2012) Subdwarfs 14.80 Lynga 7 Sarajedini et al. (2007) CMD Fitting 14.55 NGC 288 VandenBerg et al. (2013) CMD Fitting 14.82 Lynga 7 Dotter et al. (2010) CMD Fitting 14.44 NGC 288 Arellano Ferro et al. (2013b) SX Phe 14.75 ± 0.07 Lynga 7 Wagner-Kaiser et al. (2017) CMD Fitting 14.49 ± 0.04 NGC 288 Arellano Ferro et al. (2013b) RR Lyrae 14.77 ± 0.04 Lynga 7 Valcin et al. (2020) CMD Fitting 14.83 ± 0.06 NGC 288 Martinazzi et al. (2015) SX Phe 14.72 ± 0.01 Mercer 5 Longmore et al. (2011) CMD Fitting 13.70 ± 0.20 NGC 288 Halford & Zaritsky (2015) CMD Fitting 14.87 ± 0.10 NGC 288 Lee et al. (2016) RR Lyrae 14.69 NGC 104 Ferraro et al. (1999) ZAHB 13.31 ± 0.07 NGC 288 O’Malley, Gilligan & Chaboyer (2017) CMD Fitting 14.82 ± 0.15 NGC 104 Zoccali et al. (2001) WD Cooling 13.27 ± 0.14 NGC 288 Wagner-Kaiser et al. (2017) CMD Fitting 14.87 ± 0.02 NGC 104 Feast, Whitelock & Menzies (2002) Mira 13.38 ± 0.12 NGC 288 Cerny et al. (2020) TRGB 14.83 ± 0.10

© 201x RAS, MNRAS 000, 1–19 Accurate distances to Galactic globular clusters 47

Table 3 – continued Table 3 – continued

Cluster Source Paper Method DM/Distance Cluster Source Paper Method DM/Distance NGC 288 Valcin et al. (2020) CMD Fitting 14.90 ± 0.03 NGC 5053 Sarajedini et al. (2007) CMD Fitting 16.22 NGC 5053 D´ek´any & Kov´acs(2009) RR Lyrae 16.31 ± 0.04 NGC 3201 Covino & Ortolani (1997) CMD Fitting 13.42 ± 0.15 NGC 5053 Arellano Ferro et al. (2011) RR Lyrae 16.32 ± 0.05 NGC 3201 Ferraro et al. (1999) ZAHB 13.45 ± 0.07 NGC 5053 Dotter et al. (2010) CMD Fitting 16.28 NGC 3201 von Braun & Mateo (2001) CMD Fitting 13.26 NGC 5053 Paust et al. (2010) CMD Fitting 16.16 NGC 3201 Piersimoni, Bono & Ripepi (2002) RR Lyrae 13.32 ± 0.06 NGC 5053 Cohen & Sarajedini (2012) Subdwarfs 16.54 NGC 3201 Layden & Sarajedini (2003) RR Lyrae 13.40 ± 0.10 NGC 5053 VandenBerg et al. (2013) CMD Fitting 16.20 NGC 3201 Mazur, Krzemi´nski& Thompson (2003) SX Phe 13.34 ± 0.11 NGC 5053 Dambis et al. (2014) RR Lyrae 16.13 ± 0.16 NGC 3201 Di Criscienzo, Marconi & Caputo (2004)RR Lyrae 13.50 ± 0.15 NGC 5053 Chaboyer et al. (2017) Subdwarfs 16.48 ± 0.10 NGC 3201 Recio-Blanco et al. (2005) CMD Fitting 13.53 ± 0.08 NGC 5053 O’Malley, Gilligan & Chaboyer (2017) CMD Fitting 16.28 ± 0.10 NGC 3201 Dall’Ora et al. (2006) RR Lyrae 13.38 ± 0.03 NGC 5053 Wagner-Kaiser et al. (2017) CMD Fitting 16.17 ± 0.01 NGC 3201 Sollima, Cacciari & Valenti (2006) RR Lyrae 13.40 ± 0.13 NGC 5053 Hernitschek et al. (2019) RR Lyrae 16.11 ± 0.03 NGC 3201 Bono, Caputo & Di Criscienzo (2007) RR Lyrae 13.40 ± 0.14 NGC 5053 Cerny et al. (2020) TRGB 16.19 ± 0.10 NGC 3201 Bono et al. (2010) RR Lyrae 13.35 ± 0.11 NGC 5053 Valcin et al. (2020) CMD Fitting 16.25 ± 0.01 NGC 3201 Dotter et al. (2010) CMD Fitting 13.39 NGC 5053 Bhardwaj et al. (2020b) RR Lyrae 16.40 ± 0.05 NGC 3201 Paust et al. (2010) CMD Fitting 13.56 NGC 3201 Cohen & Sarajedini (2012) Subdwarfs 13.49 NGC 5139 Thompson et al. (2001) Eclipsing Binary 13.68 ± 0.11 NGC 3201 VandenBerg et al. (2013) CMD Fitting 13.30 NGC 5139 Caputo, degl’Innocenti & Marconi (2002) RR Lyrae 13.64 ± 0.11 NGC 3201 Arellano Ferro et al. (2014) RR Lyrae 13.49 ± 0.10 NGC 5139 Feast, Whitelock & Menzies (2002) Mira 13.77 ± 0.12 NGC 3201 Dambis et al. (2014) RR Lyrae 13.29 ± 0.16 NGC 5139 De Santis & Cassisi (2002) RR Lyrae 13.78 ± 0.05 NGC 3201 Anguiano et al. (2015) SED 13.12 ± 0.30 NGC 5139 Freyhammer & Otzen Petersen (2002) SX Phe 13.74 ± 0.17 NGC 3201 Halford & Zaritsky (2015) CMD Fitting 13.42 ± 0.08 NGC 5139 Kaluzny et al. (2004) Eclipsing Binary 13.72 ± 0.04 NGC 3201 Wagner-Kaiser et al. (2017) CMD Fitting 13.37 ± 0.04 NGC 5139 Sollima et al. (2004) CMD Fitting 13.65 ± 0.13 NGC 3201 Monty et al. (2018) CMD Fitting 13.49 ± 0.09 NGC 5139 Del Principe et al. (2006) RR Lyrae 13.71 ± 0.05 NGC 3201 Cerny et al. (2020) TRGB 13.49 ± 0.10 NGC 5139 Sollima, Cacciari & Valenti (2006) RR Lyrae 13.72 ± 0.13 NGC 3201 Valcin et al. (2020) CMD Fitting 13.46 ± 0.03 NGC 5139 Matsunaga et al. (2006) TII Cepheids 13.62 NGC 5139 Kaluzny et al. (2007) Eclipsing Binary 13.50 ± 0.13 NGC 362 Ferraro et al. (1999) ZAHB 14.66 ± 0.07 NGC 5139 Weldrake, Sackett & Bridges (2007) RR Lyrae 13.68 ± 0.27 NGC 362 Carretta et al. (2000) Subdwarfs 14.83 ± 0.12 NGC 5139 Bono et al. (2008) TRGB 13.65 ± 0.07 NGC 362 Zoccali & Piotto (2000) CMD Fitting 14.47 ± 0.20 NGC 5139 McDonald et al. (2009) SED 4.85 ± 0.27 kpc NGC 362 Catelan et al. (2001) CMD Fitting 14.64 NGC 5139 Benedict et al. (2011) RR Lyrae 13.81 ± 0.09 NGC 362 Recio-Blanco et al. (2005) CMD Fitting 14.84 ± 0.10 NGC 5139 McNamara (2011) RR Lyrae 13.76 ± 0.06 NGC 362 Sz´ekely et al. (2007) RR Lyrae 14.49 ± 0.15 NGC 5139 Dambis et al. (2014) RR Lyrae 13.66 ± 0.16 NGC 362 Sz´ekely et al. (2007) CMD Fitting 14.82 ± 0.10 NGC 5139 Braga et al. (2016) RR Lyrae 13.71 ± 0.08 NGC 362 Dotter et al. (2010) CMD Fitting 14.76 NGC 5139 Navarrete et al. (2017) RR Lyrae 13.71 ± 0.10 NGC 362 Paust et al. (2010) CMD Fitting 14.69 NGC 5139 Bhardwaj et al. (2017) TII Cepheids 13.71 ± 0.09 NGC 362 Piotto et al. (2012) CMD Fitting 14.66 NGC 5139 Wagner-Kaiser et al. (2017) CMD Fitting 13.61 ± 0.02 NGC 362 VandenBerg et al. (2013) CMD Fitting 14.70 NGC 5139 Bono et al. (2019) RR Lyrae 13.72 ± 0.03 NGC 362 Wagner-Kaiser et al. (2017) CMD Fitting 14.74 ± 0.02 NGC 5139 Cerny et al. (2020) TRGB 13.68 ± 0.10 NGC 362 Wagner-Kaiser et al. (2017) CMD Fitting 14.74 ± 0.02 NGC 5139 Braga et al. (2020) RR Lyrae 13.65 ± 0.07 NGC 362 Chen et al. (2018) Parallax 8.54 ± 0.45 kpc NGC 5139 Valcin et al. (2020) CMD Fitting 13.81 ± 0.03 NGC 362 Cerny et al. (2020) TRGB 14.76 ± 0.10 NGC 5139 Bhardwaj et al. (2020b) RR Lyrae 13.67 ± 0.03 NGC 362 Valcin et al. (2020) CMD Fitting 14.80 ± 0.03 NGC 5272 Rood et al. (1999) Subdwarfs 15.13 NGC 4147 Ferraro et al. (1999) ZAHB 16.30 ± 0.10 NGC 5272 Ferraro et al. (1999) ZAHB 15.01 ± 0.05 NGC 4147 Arellano Ferro et al. (2004) RR Lyrae 16.13 ± 0.12 NGC 5272 Davidge (2000) CMD Fitting 15.09 ± 0.10 NGC 4147 Stetson, Catelan & Smith (2005) RR Lyrae 16.34 NGC 5272 Cassisi, De Santis & Piersimoni (2001) RR Lyrae 15.06 ± 0.03 NGC 4147 Recio-Blanco et al. (2005) CMD Fitting 16.47 ± 0.08 NGC 5272 Saad & Lee (2001) Subdwarfs 14.95 NGC 4147 Bono, Caputo & Di Criscienzo (2007) RR Lyrae 16.23 ± 0.12 NGC 5272 Marconi et al. (2003) RR Lyrae 15.09 ± 0.08 NGC 4147 Dotter et al. (2010) CMD Fitting 16.45 NGC 5272 Kraft & Ivans (2003) CMD Fitting 15.02 NGC 4147 Cohen & Sarajedini (2012) Subdwarfs 16.59 NGC 5272 Di Criscienzo, Marconi & Caputo (2004) RR Lyrae 15.04 ± 0.10 NGC 4147 VandenBerg et al. (2013) CMD Fitting 16.35 NGC 5272 Cacciari, Corwin & Carney (2005) RR Lyrae 15.07 NGC 4147 Wagner-Kaiser et al. (2017) CMD Fitting 16.34 ± 0.01 NGC 5272 Cho et al. (2005) ZAHB 15.15 ± 0.21 NGC 4147 Arellano Ferro et al. (2018) RR Lyrae 16.38 ± 0.10 NGC 5272 Sollima, Cacciari & Valenti (2006) RR Lyrae 15.07 ± 0.13 NGC 4147 Hernitschek et al. (2019) RR Lyrae 16.34 NGC 5272 Matsunaga et al. (2006) TII Cepheids 15.10 NGC 4147 Lata et al. (2019) RR Lyrae 16.19 NGC 5272 Marconi & Degl’Innocenti (2007) RR Lyrae 15.07 ± 0.10 NGC 4147 Cerny et al. (2020) TRGB 16.37 ± 0.10 NGC 5272 An et al. (2009) CMD Fitting 14.97 ± 0.07 NGC 4147 Valcin et al. (2020) CMD Fitting 16.46 ± 0.02 NGC 5272 Dotter et al. (2010) CMD Fitting 15.05 NGC 4147 Kumar et al. (2020) ZAHB 16.34 NGC 5272 Paust et al. (2010) CMD Fitting 15.09 NGC 4372 Ferraro et al. (1999) ZAHB 13.99 ± 0.15 NGC 5272 Benedict et al. (2011) RR Lyrae 15.16 ± 0.07 NGC 4372 Recio-Blanco et al. (2005) CMD Fitting 13.83 ± 0.09 NGC 5272 Cohen & Sarajedini (2012) Subdwarfs 15.12 NGC 5272 VandenBerg et al. (2013) CMD Fitting 14.96 NGC 4590 Brocato, Castellani & Piersimoni (1997) CMD Fitting 15.03 ± 0.10 NGC 5272 Dalessandro et al. (2013) CMD Fitting 15.00 ± 0.05 NGC 4590 Ferraro et al. (1999) ZAHB 15.12 ± 0.05 NGC 5272 Dambis et al. (2014) RR Lyrae 14.94 ± 0.16 NGC 4590 Carretta et al. (2000) Subdwarfs 15.10 ± 0.12 NGC 5272 VandenBerg, Denissenkov & Catelan (2016)RR Lyrae 15.00 NGC 4590 Cassisi, De Santis & Piersimoni (2001) RR Lyrae 15.06 ± 0.05 NGC 5272 Stenning et al. (2016) CMD Fitting 15.09 ± 0.01 NGC 4590 Di Criscienzo, Marconi & Caputo (2004)RR Lyrae 15.12 ± 0.10 NGC 5272 Jurcsik et al. (2017) RR Lyrae 15.10 ± 0.05 NGC 4590 Recio-Blanco et al. (2005) CMD Fitting 15.14 ± 0.08 NGC 5272 Bhardwaj et al. (2017) TII Cepheids 14.95 ± 0.07 NGC 4590 Dall’Ora et al. (2006) RR Lyrae 15.16 ± 0.07 NGC 5272 Denissenkov et al. (2017) CMD Fitting 14.98 ± 0.05 NGC 4590 Sollima, Cacciari & Valenti (2006) RR Lyrae 15.01 ± 0.13 NGC 5272 O’Malley, Gilligan & Chaboyer (2017) CMD Fitting 15.15 ± 0.14 NGC 4590 Bono, Caputo & Di Criscienzo (2007) RR Lyrae 14.98 ± 0.12 NGC 5272 Wagner-Kaiser et al. (2017) CMD Fitting 15.02 ± 0.02 NGC 4590 Dotter et al. (2010) CMD Fitting 15.19 NGC 5272 Hernitschek et al. (2019) RR Lyrae 15.10 ± 0.02 NGC 4590 Benedict et al. (2011) RR Lyrae 15.14 ± 0.08 NGC 5272 Cerny et al. (2020) TRGB 15.08 ± 0.10 NGC 4590 Cohen & Sarajedini (2012) Subdwarfs 15.45 NGC 5272 Bhardwaj et al. (2020a) RR Lyrae 15.04 ± 0.04 NGC 4590 VandenBerg et al. (2013) CMD Fitting 15.07 NGC 5272 Valcin et al. (2020) CMD Fitting 15.09 ± 0.01 NGC 4590 Kains et al. (2015) SX Phe 14.97 ± 0.11 NGC 5272 Bhardwaj et al. (2020b) RR Lyrae 15.05 ± 0.04 NGC 4590 Kains et al. (2015) RR Lyrae 15.00 ± 0.11 NGC 4590 Chaboyer et al. (2017) Subdwarfs 15.41 ± 0.11 NGC 5286 Ferraro et al. (1999) ZAHB 15.27 ± 0.10 NGC 4590 O’Malley, Gilligan & Chaboyer (2017) CMD Fitting 15.23 ± 0.10 NGC 5286 Zorotovic et al. (2010) RR Lyrae 15.30 NGC 4590 Wagner-Kaiser et al. (2017) CMD Fitting 15.04 ± 0.01 NGC 5286 Dotter et al. (2010) CMD Fitting 15.25 NGC 4590 Hernitschek et al. (2019) RR Lyrae 15.10 ± 0.05 NGC 5286 Paust et al. (2010) CMD Fitting 15.21 NGC 4590 Cerny et al. (2020) TRGB 15.02 ± 0.10 NGC 5286 Cohen & Sarajedini (2012) Subdwarfs 15.36 NGC 4590 Valcin et al. (2020) CMD Fitting 15.25 ± 0.02 NGC 5286 Piotto et al. (2012) CMD Fitting 15.21 NGC 5286 VandenBerg et al. (2013) CMD Fitting 15.10 NGC 4833 Ferraro et al. (1999) ZAHB 14.15 ± 0.07 NGC 5286 Wagner-Kaiser et al. (2017) CMD Fitting 15.19 ± 0.01 NGC 4833 Caputo et al. (2000) RR Lyrae 13.96 ± 0.07 NGC 5286 Cerny et al. (2020) TRGB 15.36 ± 0.10 NGC 4833 Melbourne et al. (2000) CMD Fitting 14.06 ± 0.10 NGC 5286 Valcin et al. (2020) CMD Fitting 15.33 ± 0.03 NGC 4833 Recio-Blanco et al. (2005) CMD Fitting 14.30 ± 0.08 NGC 4833 Dotter et al. (2010) CMD Fitting 14.16 NGC 5466 Ferraro et al. (1999) ZAHB 16.14 ± 0.10 NGC 4833 Cohen & Sarajedini (2012) Subdwarfs 14.28 NGC 5466 Cassisi, De Santis & Piersimoni (2001) RR Lyrae 16.05 ± 0.03 NGC 4833 Wagner-Kaiser et al. (2017) CMD Fitting 14.05 ± 0.01 NGC 5466 Di Criscienzo, Marconi & Caputo (2004) RR Lyrae 16.08 ± 0.10 NGC 4833 Valcin et al. (2020) CMD Fitting 14.20 ± 0.02 NGC 5466 Jeon et al. (2004) SX Phe 16.00 ± 0.06 NGC 5466 Bono, Caputo & Di Criscienzo (2007) RR Lyrae 16.12 ± 0.10 NGC 5024 Jeon et al. (2003) SX Phe 16.32 NGC 5466 Fekadu, Sandquist & Bolte (2007) CMD Fitting 16.00 ± 0.10 NGC 5024 Recio-Blanco et al. (2005) CMD Fitting 16.35 ± 0.08 NGC 5466 Sarajedini et al. (2007) CMD Fitting 16.03 NGC 5024 Bono, Caputo & Di Criscienzo (2007) RR Lyrae 16.32 ± 0.09 NGC 5466 Arellano Ferro et al. (2008b) RR Lyrae 16.02 ± 0.09 NGC 5024 D´ek´any & Kov´acs(2009) RR Lyrae 16.31 ± 0.04 NGC 5466 Dotter et al. (2010) CMD Fitting 16.08 NGC 5024 Dotter et al. (2010) CMD Fitting 16.39 NGC 5466 Paust et al. (2010) CMD Fitting 16.00 NGC 5024 Arellano Ferro et al. (2011) RR Lyrae 16.32 ± 0.06 NGC 5466 Cohen & Sarajedini (2012) Subdwarfs 16.37 NGC 5024 Cohen & Sarajedini (2012) Subdwarfs 16.64 NGC 5466 VandenBerg et al. (2013) CMD Fitting 16.02 NGC 5024 VandenBerg et al. (2013) CMD Fitting 16.34 NGC 5466 Beccari et al. (2013) CMD Fitting 16.16 NGC 5024 Dambis et al. (2014) RR Lyrae 16.14 ± 0.16 NGC 5466 Dambis et al. (2014) RR Lyrae 16.01 ± 0.16 NGC 5024 Chaboyer et al. (2017) Subdwarfs 16.67 ± 0.10 NGC 5466 Chaboyer et al. (2017) Subdwarfs 16.30 ± 0.10 NGC 5024 O’Malley, Gilligan & Chaboyer (2017) CMD Fitting 16.52 ± 0.11 NGC 5466 O’Malley, Gilligan & Chaboyer (2017) CMD Fitting 16.16 ± 0.10 NGC 5024 Wagner-Kaiser et al. (2017) CMD Fitting 16.31 ± 0.01 NGC 5466 Wagner-Kaiser et al. (2017) CMD Fitting 15.94 ± 0.02 NGC 5024 Hernitschek et al. (2019) RR Lyrae 16.31 ± 0.02 NGC 5466 Hernitschek et al. (2019) RR Lyrae 15.99 ± 0.02 NGC 5024 Cerny et al. (2020) TRGB 16.30 ± 0.10 NGC 5466 Cerny et al. (2020) TRGB 15.98 ± 0.10 NGC 5024 Valcin et al. (2020) CMD Fitting 16.39 ± 0.02 NGC 5466 Valcin et al. (2020) CMD Fitting 16.08 ± 0.01 NGC 5024 Bhardwaj et al. (2020b) RR Lyrae 16.40 ± 0.04 NGC 5634 Bellazzini et al. (2002) CMD Fitting 17.17 ± 0.12 NGC 5053 Ferraro et al. (1999) ZAHB 16.18 ± 0.07 NGC 5634 Recio-Blanco et al. (2005) CMD Fitting 17.17 ± 0.09 NGC 5053 Cassisi, De Santis & Piersimoni (2001) RR Lyrae 16.10 ± 0.05 NGC 5634 Hernitschek et al. (2019) RR Lyrae 17.06 NGC 5053 Nemec (2004) RR Lyrae 16.04 ± 0.04 NGC 5634 Cerny et al. (2020) TRGB 17.02 ± 0.10 NGC 5053 Bono, Caputo & Di Criscienzo (2007) RR Lyrae 16.12 ± 0.13

© 201x RAS, MNRAS 000, 1–19 48 Baumgardt & Vasiliev

Table 3 – continued Table 3 – continued

Cluster Source Paper Method DM/Distance Cluster Source Paper Method DM/Distance NGC 5694 Ferraro et al. (1999) ZAHB 17.86 ± 0.10 NGC 6121 Hendricks et al. (2012) CMD Fitting 11.28 ± 0.06 NGC 5694 Zoccali & Piotto (2000) CMD Fitting 17.74 ± 0.20 NGC 6121 VandenBerg et al. (2013) CMD Fitting 11.35 NGC 5694 Recio-Blanco et al. (2005) CMD Fitting 17.68 ± 0.08 NGC 6121 Kaluzny et al. (2013) CMD Fitting 11.32 ± 0.15 NGC 5694 Correnti et al. (2011) CMD Fitting 17.75 ± 0.11 NGC 6121 Kaluzny et al. (2013) Eclipsing Binary 11.30 ± 0.05 NGC 5694 Hernitschek et al. (2019) RR Lyrae 17.65 NGC 6121 Richer et al. (2013) WD Cooling 11.34 ± 0.03 NGC 5694 Cerny et al. (2020) TRGB 17.75 ± 0.10 NGC 6121 Dambis et al. (2014) RR Lyrae 11.28 ± 0.16 NGC 6121 Braga et al. (2015) RR Lyrae 11.35 ± 0.06 NGC 5824 Ferraro et al. (1999) ZAHB 17.51 ± 0.07 NGC 6121 Miglio et al. (2016) Eclipsing Binary 11.30 ± 0.10 NGC 5824 Zoccali & Piotto (2000) CMD Fitting 17.56 ± 0.20 NGC 6121 Correnti et al. (2016) CMD Fitting 11.35 ± 0.04 NGC 5824 Recio-Blanco et al. (2005) CMD Fitting 17.68 ± 0.08 NGC 6121 Neeley et al. (2017) RR Lyrae 11.26 ± 0.04 NGC 5824 Walker et al. (2017) RR Lyrae 17.45 ± 0.07 NGC 6121 Wagner-Kaiser et al. (2017) CMD Fitting 11.42 ± 0.04 NGC 5824 Cerny et al. (2020) TRGB 17.52 ± 0.10 NGC 6121 Neeley et al. (2019) RR Lyrae 11.29 ± 0.03 NGC 5897 Ferraro et al. (1999) ZAHB 15.62 ± 0.08 NGC 6121 Valcin et al. (2020) CMD Fitting 11.56 ± 0.02 NGC 5897 Sollima, Cacciari & Valenti (2006) RR Lyrae 15.46 ± 0.13 NGC 6121 Bhardwaj et al. (2020b) RR Lyrae 11.28 ± 0.03 NGC 5897 Koch & McWilliam (2014) CMD Fitting 15.41 ± 0.15 NGC 6139 Davidge (1998) CMD Fitting 15.40 ± 0.20 NGC 5897 Hernitschek et al. (2019) RR Lyrae 15.55 NGC 6139 Zinn & Barnes (1998) CMD Fitting 14.95 ± 0.15 NGC 5897 Cerny et al. (2020) TRGB 15.43 ± 0.10 NGC 6139 Ortolani, Barbuy & Bica (1999) CMD Fitting 14.70 ± 0.15 NGC 5904 Jimenez & Padoan (1998) CMD Fitting 14.40 ± 0.10 NGC 6139 Davidge (2000) TRGB 15.17 ± 0.25 NGC 5904 Ferraro et al. (1999) ZAHB 14.34 ± 0.06 NGC 6139 Recio-Blanco et al. (2005) CMD Fitting 15.27 ± 0.09 NGC 5904 Kaluzny et al. (2000) RR Lyrae 14.25 ± 0.10 NGC 6144 Davidge (2000) TRGB 15.10 ± 0.25 NGC 5904 Melbourne et al. (2000) CMD Fitting 14.39 ± 0.10 NGC 6144 Neely, Sarajedini & Martins (2000) CMD Fitting 14.52 ± 0.20 NGC 5904 Cassisi, De Santis & Piersimoni (2001) RR Lyrae 14.28 ± 0.07 NGC 6144 Sarajedini et al. (2007) CMD Fitting 14.61 NGC 5904 Kraft & Ivans (2003) CMD Fitting 14.42 NGC 6144 Dotter et al. (2010) CMD Fitting 14.54 NGC 5904 Testa et al. (2004) Subdwarfs 14.12 ± 0.14 NGC 6144 Cohen & Sarajedini (2012) Subdwarfs 14.73 NGC 5904 Di Criscienzo, Marconi & Caputo (2004) RR Lyrae 14.31 ± 0.10 NGC 6144 Wagner-Kaiser et al. (2017) CMD Fitting 14.48 ± 0.01 NGC 5904 Layden et al. (2005) Subdwarfs 14.45 ± 0.11 NGC 6144 Valcin et al. (2020) CMD Fitting 14.70 ± 0.03 NGC 5904 Layden et al. (2005) Subdwarfs 14.67 ± 0.18 NGC 5904 Recio-Blanco et al. (2005) CMD Fitting 14.50 ± 0.08 NGC 6171 Ferraro et al. (1999) ZAHB 13.92 ± 0.10 NGC 5904 Sollima, Cacciari & Valenti (2006) RR Lyrae 14.35 ± 0.13 NGC 6171 Cassisi, De Santis & Piersimoni (2001) RR Lyrae 13.80 ± 0.08 NGC 5904 Matsunaga et al. (2006) TII Cepheids 14.37 NGC 6171 Recio-Blanco et al. (2005) CMD Fitting 13.57 ± 0.09 NGC 5904 Bono, Caputo & Di Criscienzo (2007) RR Lyrae 14.35 ± 0.10 NGC 6171 Sollima, Cacciari & Valenti (2006) RR Lyrae 13.76 ± 0.13 NGC 5904 An et al. (2009) CMD Fitting 14.30 ± 0.07 NGC 6171 Bono, Caputo & Di Criscienzo (2007) RR Lyrae 13.95 ± 0.15 NGC 5904 Dotter et al. (2010) CMD Fitting 14.32 NGC 6171 Dotter et al. (2010) CMD Fitting 13.65 NGC 5904 Paust et al. (2010) CMD Fitting 14.37 NGC 6171 O’Connell et al. (2011) SED 13.70 ± 0.30 NGC 5904 Coppola et al. (2011) WD Cooling 14.67 ± 0.18 NGC 6171 Cohen & Sarajedini (2012) Subdwarfs 13.62 NGC 5904 Coppola et al. (2011) RR Lyrae 14.44 ± 0.02 NGC 6171 VandenBerg et al. (2013) CMD Fitting 13.58 NGC 5904 Cohen & Sarajedini (2012) Subdwarfs 14.40 NGC 6171 Dambis et al. (2014) RR Lyrae 13.63 ± 0.16 NGC 5904 VandenBerg et al. (2013) CMD Fitting 14.25 NGC 6171 Wagner-Kaiser et al. (2017) CMD Fitting 13.75 ± 0.02 NGC 5904 Dambis et al. (2014) RR Lyrae 14.28 ± 0.16 NGC 6171 Deras et al. (2018) RR Lyrae 13.66 ± 0.05 NGC 5904 VandenBerg et al. (2014) Subdwarfs 14.35 ± 0.07 NGC 6171 Hernitschek et al. (2019) RR Lyrae 13.89 NGC 5904 Halford & Zaritsky (2015) CMD Fitting 14.40 ± 0.08 NGC 6171 Valcin et al. (2020) CMD Fitting 13.99 ± 0.04 NGC 5904 Arellano Ferro et al. (2016) RR Lyrae 14.43 ± 0.15 NGC 6205 Ferraro et al. (1999) ZAHB 14.40 ± 0.15 NGC 5904 Bhardwaj et al. (2017) TII Cepheids 14.20 ± 0.11 NGC 6205 Carretta et al. (2000) Subdwarfs 14.38 ± 0.12 NGC 5904 O’Malley, Gilligan & Chaboyer (2017) CMD Fitting 14.48 ± 0.15 NGC 6205 Davidge (2000) CMD Fitting 14.40 ± 0.25 NGC 5904 Wagner-Kaiser et al. (2017) CMD Fitting 14.29 ± 0.02 NGC 6205 Yim et al. (2000) CMD Fitting 14.44 ± 0.10 NGC 5904 Hernitschek et al. (2019) RR Lyrae 14.48 ± 0.05 NGC 6205 Kraft & Ivans (2003) CMD Fitting 14.42 NGC 5904 Gontcharov, Mosenkov & Khovritchev (2019)CMD Fitting 14.34 ± 0.09 NGC 6205 Recio-Blanco et al. (2005) CMD Fitting 14.48 ± 0.08 NGC 5904 Cerny et al. (2020) TRGB 14.41 ± 0.10 NGC 6205 Cho et al. (2005) ZAHB 14.42 ± 0.22 NGC 5904 Valcin et al. (2020) CMD Fitting 14.38 ± 0.02 NGC 6205 An et al. (2009) CMD Fitting 14.37 ± 0.05 NGC 5904 Bhardwaj et al. (2020b) RR Lyrae 14.31 ± 0.07 NGC 6205 Sandquist et al. (2010) TRGB 14.33 ± 0.10 NGC 5927 Ferraro et al. (1999) ZAHB 14.40 ± 0.10 NGC 6205 Dotter et al. (2010) CMD Fitting 14.43 NGC 5927 Heitsch & Richtler (1999) CMD Fitting 14.45 ± 0.17 NGC 6205 Paust et al. (2010) CMD Fitting 14.29 NGC 5927 Feast, Whitelock & Menzies (2002) Mira 14.55 ± 0.12 NGC 6205 Cohen & Sarajedini (2012) Subdwarfs 14.51 NGC 5927 Recio-Blanco et al. (2005) CMD Fitting 14.48 ± 0.08 NGC 6205 VandenBerg et al. (2013) CMD Fitting 14.35 NGC 5927 Dotter et al. (2010) CMD Fitting 14.55 NGC 6205 Dalessandro et al. (2013) CMD Fitting 14.32 ± 0.05 NGC 5927 Paust et al. (2010) CMD Fitting 14.38 NGC 6205 Denissenkov et al. (2017) CMD Fitting 14.34 ± 0.05 NGC 5927 Cohen & Sarajedini (2012) Subdwarfs 14.65 NGC 6205 O’Malley, Gilligan & Chaboyer (2017) CMD Fitting 14.49 ± 0.13 NGC 5927 VandenBerg et al. (2013) CMD Fitting 14.57 NGC 6205 Wagner-Kaiser et al. (2017) CMD Fitting 14.33 ± 0.02 NGC 5927 Wagner-Kaiser et al. (2017) CMD Fitting 14.64 ± 0.03 NGC 6205 Barker & Paust (2018) CMD Fitting 14.43 ± 0.13 NGC 5927 Valcin et al. (2020) CMD Fitting 14.74 ± 0.05 NGC 6205 Deras et al. (2019) RR Lyrae 14.26 ± 0.03 NGC 6205 Cerny et al. (2020) TRGB 14.30 ± 0.10 NGC 5946 Davidge (1995) CMD Fitting 14.70 ± 0.20 NGC 6205 Valcin et al. (2020) CMD Fitting 14.46 ± 0.01 NGC 5946 Recio-Blanco et al. (2005) CMD Fitting 14.99 ± 0.09 NGC 6205 Gontcharov, Khovritchev & Mosenkov (2020)CMD Fitting 14.35 ± 0.06 NGC 5946 Froebrich et al. (2010) CMD Fitting 15.38 ± 0.30 NGC 6218 Ferraro et al. (1999) ZAHB 13.59 ± 0.15 NGC 5986 Ortolani, Bica & Barbuy (2000) CMD Fitting 15.25 ± 0.25 NGC 6218 Saad & Lee (2001) Subdwarfs 13.44 NGC 5986 Alves, Bond & Onken (2001) CMD Fitting 15.15 ± 0.10 NGC 6218 von Braun et al. (2002) RR Lyrae 13.46 ± 0.12 NGC 5986 Recio-Blanco et al. (2005) CMD Fitting 15.32 ± 0.08 NGC 6218 Hargis, Sandquist & Bolte (2004) Subdwarfs 13.63 ± 0.11 NGC 5986 Matsunaga et al. (2006) TII Cepheids 15.11 NGC 6218 Hargis, Sandquist & Bolte (2004) CMD Fitting 13.46 ± 0.11 NGC 5986 Dotter et al. (2010) CMD Fitting 15.17 NGC 6218 Pollard et al. (2005) Subdwarfs 13.65 ± 0.12 NGC 5986 Cohen & Sarajedini (2012) Subdwarfs 15.25 NGC 6218 Recio-Blanco et al. (2005) CMD Fitting 13.55 ± 0.20 NGC 5986 Bhardwaj et al. (2017) TII Cepheids 15.09 ± 0.06 NGC 6218 de Marchi, Pulone & Paresce (2006) CMD Fitting 13.67 NGC 5986 Wagner-Kaiser et al. (2017) CMD Fitting 15.10 ± 0.01 NGC 6218 Matsunaga et al. (2006) TII Cepheids 13.45 NGC 5986 Cerny et al. (2020) TRGB 15.15 ± 0.10 NGC 6218 Dotter et al. (2010) CMD Fitting 13.53 NGC 5986 Valcin et al. (2020) CMD Fitting 15.20 ± 0.03 NGC 6218 Cohen & Sarajedini (2012) Subdwarfs 13.62 NGC 6093 Alcaino et al. (1998a) CMD Fitting 15.01 NGC 6218 VandenBerg et al. (2013) CMD Fitting 13.64 NGC 6093 Brocato et al. (1998) CMD Fitting 15.02 ± 0.12 NGC 6218 Bhardwaj et al. (2017) TII Cepheids 13.65 ± 0.07 NGC 6093 Ferraro et al. (1999) ZAHB 14.94 ± 0.07 NGC 6218 Wagner-Kaiser et al. (2017) CMD Fitting 13.55 ± 0.01 NGC 6093 Davidge (2000) TRGB 14.70 ± 0.25 NGC 6218 Arellano Ferro et al. (2020) TRGB 13.47 ± 0.07 NGC 6093 Recio-Blanco et al. (2005) CMD Fitting 15.16 ± 0.08 NGC 6218 Cerny et al. (2020) TRGB 13.56 ± 0.10 NGC 6093 Matsunaga et al. (2006) TII Cepheids 15.04 NGC 6218 Arellano Ferro et al. (2020) RR Lyrae 13.45 NGC 6093 Dotter et al. (2010) CMD Fitting 15.14 NGC 6218 Arellano Ferro et al. (2020) SX Phe 13.65 ± 0.12 NGC 6093 Paust et al. (2010) CMD Fitting 14.94 NGC 6218 Arellano Ferro et al. (2020) CMD Fitting 13.64 NGC 6093 Cohen & Sarajedini (2012) Subdwarfs 15.30 NGC 6218 Valcin et al. (2020) CMD Fitting 13.61 ± 0.03 NGC 6093 Ruelas-Mayorga et al. (2016) CMD Fitting 15.59 ± 0.50 NGC 6229 Ferraro et al. (1999) ZAHB 17.43 ± 0.05 NGC 6093 Bhardwaj et al. (2017) TII Cepheids 15.12 ± 0.07 NGC 6229 Saad & Lee (2001) Subdwarfs 17.31 NGC 6093 Wagner-Kaiser et al. (2017) CMD Fitting 15.05 ± 0.01 NGC 6229 Recio-Blanco et al. (2005) CMD Fitting 17.47 ± 0.09 NGC 6093 Barker & Paust (2018) CMD Fitting 15.04 ± 0.13 NGC 6229 Bono, Caputo & Di Criscienzo (2007) RR Lyrae 17.38 ± 0.12 NGC 6093 Dalessandro et al. (2018) CMD Fitting 15.14 ± 0.05 NGC 6229 Arellano Ferro et al. (2015) RR Lyrae 17.41 ± 0.05 NGC 6093 Hernitschek et al. (2019) RR Lyrae 15.16 NGC 6229 Hernitschek et al. (2019) RR Lyrae 17.38 ± 0.01 NGC 6093 Cerny et al. (2020) TRGB 15.01 ± 0.10 NGC 6229 Cerny et al. (2020) TRGB 17.43 ± 0.10 NGC 6093 Valcin et al. (2020) CMD Fitting 15.20 ± 0.03 NGC 6235 Davidge (2000) TRGB 15.40 ± 0.24 NGC 6101 Marconi et al. (2001) CMD Fitting 15.92 ± 0.10 NGC 6235 Howland et al. (2003) RR Lyrae 15.52 ± 0.10 NGC 6101 Dotter et al. (2010) CMD Fitting 15.81 NGC 6235 Recio-Blanco et al. (2005) CMD Fitting 15.44 ± 0.09 NGC 6101 Cohen et al. (2011) RR Lyrae 15.89 ± 0.10 NGC 6235 Chun et al. (2010) CMD Fitting 15.05 NGC 6101 Cohen & Sarajedini (2012) Subdwarfs 16.09 NGC 6101 Fitzgerald et al. (2012) RR Lyrae 15.54 ± 0.15 NGC 6254 Ferraro et al. (1999) ZAHB 13.36 ± 0.10 NGC 6101 Dalessandro et al. (2015) CMD Fitting 15.83 ± 0.12 NGC 6254 Piotto & Zoccali (1999) CMD Fitting 13.41 ± 0.15 NGC 6101 Chaboyer et al. (2017) Subdwarfs 16.10 ± 0.11 NGC 6254 Saad & Lee (2001) Subdwarfs 13.36 NGC 6101 O’Malley, Gilligan & Chaboyer (2017) CMD Fitting 15.90 ± 0.11 NGC 6254 von Braun et al. (2002) RR Lyrae 13.55 ± 0.12 NGC 6101 Wagner-Kaiser et al. (2017) CMD Fitting 15.73 ± 0.01 NGC 6254 Pollard et al. (2005) Subdwarfs 13.36 ± 0.10 NGC 6101 Cerny et al. (2020) TRGB 15.78 ± 0.10 NGC 6254 Matsunaga et al. (2006) TII Cepheids 13.23 NGC 6101 Valcin et al. (2020) CMD Fitting 15.85 ± 0.03 NGC 6254 Dotter et al. (2010) CMD Fitting 13.65 NGC 6254 Cohen & Sarajedini (2012) Subdwarfs 13.74 NGC 6121 Ferraro et al. (1999) ZAHB 11.65 ± 0.10 NGC 6254 Bhardwaj et al. (2017) TII Cepheids 13.55 ± 0.08 NGC 6121 Hansen et al. (2004) WD Cooling 11.18 ± 0.06 NGC 6254 Wagner-Kaiser et al. (2017) CMD Fitting 13.60 ± 0.03 NGC 6121 Sollima, Cacciari & Valenti (2006) RR Lyrae 11.39 ± 0.13 NGC 6254 Arellano Ferro et al. (2020) TRGB 13.47 ± 0.08 NGC 6121 Bedin et al. (2009) CMD Fitting 11.48 ± 0.11 NGC 6254 Arellano Ferro et al. (2020) RR Lyrae 13.45 NGC 6121 Dotter et al. (2010) CMD Fitting 11.39 NGC 6254 Arellano Ferro et al. (2020) SX Phe 13.65 ± 0.12 NGC 6121 Benedict et al. (2011) RR Lyrae 11.48 ± 0.13 NGC 6254 Arellano Ferro et al. (2020) CMD Fitting 13.64

© 201x RAS, MNRAS 000, 1–19 Accurate distances to Galactic globular clusters 49

Table 3 – continued Table 3 – continued

Cluster Source Paper Method DM/Distance Cluster Source Paper Method DM/Distance NGC 6254 Valcin et al. (2020) CMD Fitting 13.78 ± 0.03 NGC 6352 Dotter et al. (2010) CMD Fitting 13.62 NGC 6352 Cohen & Sarajedini (2012) Subdwarfs 13.69 NGC 6256 Ortolani, Barbuy & Bica (1999) CMD Fitting 14.03 ± 0.20 NGC 6352 VandenBerg et al. (2013) CMD Fitting 13.68 NGC 6256 Recio-Blanco et al. (2005) CMD Fitting 13.70 ± 0.09 NGC 6352 Wagner-Kaiser et al. (2017) CMD Fitting 13.75 ± 0.01 NGC 6256 Matsunaga et al. (2006) TII Cepheids 14.57 NGC 6352 Libralato et al. (2019) CMD Fitting 13.62 NGC 6256 Valenti, Ferraro & Origlia (2007) CMD Fitting 14.80 NGC 6352 Valcin et al. (2020) CMD Fitting 13.76 ± 0.04 NGC 6256 Bhardwaj et al. (2017) TII Cepheids 14.18 ± 0.08 NGC 6352 Oliveira et al. (2020) CMD Fitting 13.65 ± 0.05 NGC 6256 Cadelano et al. (2020) CMD Fitting 14.16 ± 0.10 NGC 6355 Davidge (2000) TRGB 14.63 ± 0.25 NGC 6266 Ferraro et al. (1999) ZAHB 14.24 ± 0.20 NGC 6355 Ortolani, Bica & Barbuy (2003) CMD Fitting 14.73 ± 0.30 NGC 6266 Recio-Blanco et al. (2005) CMD Fitting 13.99 ± 0.09 NGC 6355 Recio-Blanco et al. (2005) CMD Fitting 14.79 ± 0.10 NGC 6266 Matsunaga et al. (2006) TII Cepheids 14.19 NGC 6355 Valenti, Ferraro & Origlia (2007) CMD Fitting 14.77 NGC 6266 Valenti, Ferraro & Origlia (2007) CMD Fitting 14.10 NGC 6355 Chun et al. (2010) CMD Fitting 14.60 NGC 6266 Contreras et al. (2010) RR Lyrae 14.12 ± 0.14 NGC 6266 Contreras et al. (2010) TII Cepheids 13.85 ± 0.26 NGC 6356 Feast, Whitelock & Menzies (2002) Mira 16.20 ± 0.12 NGC 6266 Milone (2015) CMD Fitting 13.94 NGC 6356 Recio-Blanco et al. (2005) CMD Fitting 15.93 ± 0.09 NGC 6266 Bhardwaj et al. (2017) TII Cepheids 13.86 ± 0.08 NGC 6356 Froebrich et al. (2010) CMD Fitting 15.70 ± 0.30 NGC 6356 Hernitschek et al. (2019) RR Lyrae 15.21 NGC 6273 Piotto & Zoccali (1999) CMD Fitting 14.81 ± 0.20 NGC 6273 Davidge (2000) TRGB 14.30 ± 0.25 NGC 6362 Brocato et al. (1999) CMD Fitting 14.43 ± 0.10 NGC 6273 Recio-Blanco et al. (2005) CMD Fitting 14.97 ± 0.08 NGC 6362 Piotto & Zoccali (1999) CMD Fitting 14.48 ± 0.10 NGC 6273 Matsunaga et al. (2006) TII Cepheids 14.71 NGC 6362 Cassisi, De Santis & Piersimoni (2001) RR Lyrae 14.42 ± 0.04 NGC 6273 Valenti, Ferraro & Origlia (2007) CMD Fitting 14.57 NGC 6362 Olech et al. (2001) RR Lyrae 14.54 ± 0.05 NGC 6273 Chun et al. (2010) CMD Fitting 14.58 NGC 6362 Di Criscienzo, Marconi & Caputo (2004) RR Lyrae 14.35 ± 0.10 NGC 6273 Bhardwaj et al. (2017) TII Cepheids 14.64 ± 0.07 NGC 6362 Recio-Blanco et al. (2005) CMD Fitting 14.46 ± 0.09 NGC 6362 Sollima, Cacciari & Valenti (2006) RR Lyrae 14.44 ± 0.13 NGC 6284 Davidge (2000) TRGB 15.47 ± 0.25 NGC 6362 Bono, Caputo & Di Criscienzo (2007) RR Lyrae 14.34 ± 0.08 NGC 6284 Recio-Blanco et al. (2005) CMD Fitting 15.99 ± 0.08 NGC 6362 Dotter et al. (2010) CMD Fitting 14.42 NGC 6284 Matsunaga et al. (2006) TII Cepheids 15.93 NGC 6362 Paust et al. (2010) CMD Fitting 14.36 NGC 6284 Froebrich et al. (2010) CMD Fitting 15.70 ± 0.30 NGC 6362 Cohen & Sarajedini (2012) Subdwarfs 14.47 NGC 6284 Bhardwaj et al. (2017) TII Cepheids 15.74 ± 0.09 NGC 6362 VandenBerg et al. (2013) CMD Fitting 14.36 NGC 6287 Davidge (1998) CMD Fitting 14.60 ± 0.25 NGC 6362 Dambis et al. (2014) RR Lyrae 14.29 ± 0.16 NGC 6287 Davidge (2000) TRGB 14.73 ± 0.25 NGC 6362 Kaluzny et al. (2015) Eclipsing Binary 14.45 ± 0.04 NGC 6287 Lee et al. (2001) CMD Fitting 14.35 NGC 6362 Li et al. (2017) CMD Fitting 14.36 NGC 6287 Recio-Blanco et al. (2005) CMD Fitting 14.62 ± 0.08 NGC 6362 O’Malley, Gilligan & Chaboyer (2017) CMD Fitting 14.48 ± 0.19 NGC 6287 Froebrich et al. (2010) CMD Fitting 14.57 ± 0.30 NGC 6362 Wagner-Kaiser et al. (2017) CMD Fitting 14.44 ± 0.01 NGC 6362 Arellano Ferro et al. (2018) RR Lyrae 14.51 ± 0.04 NGC 6293 Davidge (2000) TRGB 15.53 ± 0.39 NGC 6362 Arellano Ferro et al. (2018) SX Phe 14.53 NGC 6293 Recio-Blanco et al. (2005) CMD Fitting 14.07 ± 0.08 NGC 6362 VandenBerg & Denissenkov (2018) RR Lyrae 14.28 ± 0.05 NGC 6293 Lee & Carney (2006) CMD Fitting 14.61 NGC 6362 Kerber et al. (2018) CMD Fitting 14.37 ± 0.05 NGC 6293 Matsunaga et al. (2006) TII Cepheids 14.76 NGC 6362 Cerny et al. (2020) TRGB 14.47 ± 0.10 NGC 6293 Valenti, Ferraro & Origlia (2007) CMD Fitting 15.10 NGC 6362 Valcin et al. (2020) CMD Fitting 14.43 ± 0.02 NGC 6293 Chun et al. (2010) CMD Fitting 14.79 NGC 6362 Oliveira et al. (2020) CMD Fitting 14.44 ± 0.05 NGC 6293 Bhardwaj et al. (2017) TII Cepheids 14.85 ± 0.10 NGC 6366 Alonso et al. (1997) CMD Fitting 12.26 ± 0.15 NGC 6304 Ortolani, Bica & Barbuy (2000) CMD Fitting 13.47 ± 0.50 NGC 6366 Ferraro et al. (1999) ZAHB 12.90 ± 0.10 NGC 6304 Valenti, Bellazzini & Cacciari (2003) RR Lyrae 13.69 ± 0.08 NGC 6366 Sarajedini et al. (2007) CMD Fitting 12.87 NGC 6304 Valenti, Origlia & Ferraro (2005) CMD Fitting 13.88 NGC 6366 Arellano Ferro et al. (2008a) RR Lyrae 12.55 ± 0.04 NGC 6304 Recio-Blanco et al. (2005) CMD Fitting 13.88 ± 0.09 NGC 6366 Paust et al. (2009) CMD Fitting 12.60 NGC 6304 Dotter et al. (2010) CMD Fitting 13.96 NGC 6366 Dotter et al. (2010) CMD Fitting 12.63 NGC 6304 Cohen & Sarajedini (2012) Subdwarfs 13.90 NGC 6366 Cohen & Sarajedini (2012) Subdwarfs 12.59 NGC 6304 VandenBerg et al. (2013) CMD Fitting 13.99 NGC 6366 VandenBerg et al. (2013) CMD Fitting 12.63 NGC 6304 Wagner-Kaiser et al. (2017) CMD Fitting 14.04 ± 0.03 NGC 6366 Campos et al. (2013) CMD Fitting 12.88 ± 0.15 NGC 6304 Valcin et al. (2020) CMD Fitting 14.29 ± 0.05 NGC 6366 Wagner-Kaiser et al. (2017) CMD Fitting 12.71 ± 0.04 NGC 6304 Oliveira et al. (2020) CMD Fitting 13.98 ± 0.05 NGC 6366 Valcin et al. (2020) CMD Fitting 12.83 ± 0.04 NGC 6316 Heitsch & Richtler (1999) CMD Fitting 15.32 ± 0.23 NGC 6380 Ortolani, Bica & Barbuy (1998) CMD Fitting 14.96 ± 0.20 NGC 6316 Layden et al. (2003) RR Lyrae 15.40 ± 0.10 NGC 6380 Valenti, Ferraro & Origlia (2004) CMD Fitting 14.81 NGC 6316 Recio-Blanco et al. (2005) CMD Fitting 15.37 ± 0.10 NGC 6380 Recio-Blanco et al. (2005) CMD Fitting 13.77 ± 0.15 NGC 6316 Valenti, Ferraro & Origlia (2007) CMD Fitting 15.32 NGC 6388 Pritzl et al. (2002) RR Lyrae 14.99 ± 0.20 NGC 6325 Ortolani, Bica & Barbuy (2003) CMD Fitting 14.13 ± 0.30 NGC 6388 Recio-Blanco et al. (2005) CMD Fitting 15.32 ± 0.09 NGC 6325 Recio-Blanco et al. (2005) CMD Fitting 14.16 ± 0.09 NGC 6388 Matsunaga & IRSF/SIRIUS Team (2007) Mira 15.44 ± 0.08 NGC 6325 Matsunaga et al. (2006) TII Cepheids 14.51 NGC 6388 Valenti, Ferraro & Origlia (2007) CMD Fitting 15.38 NGC 6325 Chun et al. (2010) CMD Fitting 14.10 NGC 6388 Hughes et al. (2007) CMD Fitting 15.48 ± 0.21 NGC 6325 Bhardwaj et al. (2017) TII Cepheids 14.53 ± 0.07 NGC 6388 Dalessandro et al. (2008) CMD Fitting 15.60 ± 0.20 NGC 6333 Ferraro et al. (1999) ZAHB 14.65 ± 0.15 NGC 6388 Moretti et al. (2009) CMD Fitting 15.33 NGC 6333 Davidge (2000) TRGB 14.87 ± 0.25 NGC 6388 Piotto et al. (2012) CMD Fitting 14.99 NGC 6333 Caputo et al. (2000) RR Lyrae 14.62 ± 0.07 NGC 6388 Tailo et al. (2017) CMD Fitting 15.32 NGC 6333 Cassisi, De Santis & Piersimoni (2001) RR Lyrae 14.57 ± 0.05 NGC 6388 Wagner-Kaiser et al. (2017) CMD Fitting 15.34 ± 0.03 NGC 6333 Bono, Caputo & Di Criscienzo (2007) RR Lyrae 14.59 ± 0.07 NGC 6388 Valcin et al. (2020) CMD Fitting 15.51 ± 0.04 NGC 6333 Chun et al. (2010) CMD Fitting 14.67 NGC 6397 Alcaino et al. (1997b) CMD Fitting 11.88 NGC 6333 Arellano Ferro et al. (2013a) RR Lyrae 14.51 ± 0.08 NGC 6397 Reid & Gizis (1998) Subdwarfs 12.24 ± 0.15 NGC 6341 Pont et al. (1998) Subdwarfs 14.61 ± 0.08 NGC 6397 Ferraro et al. (1999) ZAHB 11.91 ± 0.10 NGC 6341 Ferraro et al. (1999) ZAHB 14.76 ± 0.10 NGC 6397 Anthony-Twarog & Twarog (2000) CMD Fitting 12.15 NGC 6341 Carretta et al. (2000) Subdwarfs 14.66 ± 0.12 NGC 6397 Gratton et al. (2003) CMD Fitting 12.04 ± 0.08 NGC 6341 Davidge (2000) CMD Fitting 14.61 ± 0.08 NGC 6397 Hansen et al. (2007) WD Cooling 12.02 ± 0.06 NGC 6341 Melbourne et al. (2000) CMD Fitting 14.63 ± 0.10 NGC 6397 Richer et al. (2008) CMD Fitting 12.03 ± 0.06 NGC 6341 Cassisi, De Santis & Piersimoni (2001) RR Lyrae 14.65 ± 0.05 NGC 6397 Strickler et al. (2009) WD Cooling 12.02 ± 0.06 NGC 6341 Lee et al. (2001) CMD Fitting 14.60 NGC 6397 Dotter et al. (2010) CMD Fitting 12.05 NGC 6341 VandenBerg et al. (2002) CMD Fitting 14.53 ± 0.12 NGC 6397 di Criscienzo, D’Antona & Ventura (2010)CMD Fitting 11.98 ± 0.05 NGC 6341 Kraft & Ivans (2003) CMD Fitting 14.75 NGC 6397 Cohen & Sarajedini (2012) Subdwarfs 12.34 NGC 6341 Del Principe et al. (2005) RR Lyrae 14.61 ± 0.03 NGC 6397 Heyl et al. (2012) Kin. dis. 2.20 ± 0.50 kpc NGC 6341 Sollima, Cacciari & Valenti (2006) RR Lyrae 14.65 ± 0.13 NGC 6397 Richer et al. (2013) WD Cooling 12.07 ± 0.06 NGC 6341 Paust, Chaboyer & Sarajedini (2007) CMD Fitting 14.64 ± 0.05 NGC 6397 Martinazzi et al. (2014) CMD Fitting 12.04 ± 0.05 NGC 6341 Ruelas-Mayorga & S´anchez (2008) CMD Fitting 14.71 NGC 6397 Chen et al. (2014) CMD Fitting 11.95 NGC 6341 An et al. (2009) CMD Fitting 14.65 ± 0.04 NGC 6397 Wagner-Kaiser et al. (2017) CMD Fitting 11.95 ± 0.01 NGC 6341 Di Cecco et al. (2010) CMD Fitting 14.74 ± 0.05 NGC 6397 Brown et al. (2018) Parallax 11.89 ± 0.11 NGC 6341 Dotter et al. (2010) CMD Fitting 14.74 NGC 6397 Correnti et al. (2018) CMD Fitting 12.02 ± 0.03 NGC 6341 Paust et al. (2010) CMD Fitting 14.58 NGC 6397 Cerny et al. (2020) TRGB 11.90 ± 0.10 NGC 6341 Benedict et al. (2011) RR Lyrae 14.68 ± 0.10 NGC 6397 Valcin et al. (2020) CMD Fitting 12.12 ± 0.03 NGC 6341 Cohen & Sarajedini (2012) Subdwarfs 15.00 NGC 6397 Ahumada et al. (2021) SX Phe 11.75 ± 0.13 NGC 6341 Dell’Omodarme et al. (2012) CMD Fitting 14.78 NGC 6397 Ahumada et al. (2021) CMD Fitting 11.99 NGC 6341 VandenBerg et al. (2013) CMD Fitting 14.65 NGC 6397 Ahumada et al. (2021) Eclipsing Binary 11.97 ± 0.10 NGC 6341 VandenBerg et al. (2014) Subdwarfs 14.71 ± 0.07 NGC 6401 Barbuy et al. (1999) CMD Fitting 15.40 ± 0.17 NGC 6341 Dambis et al. (2014) RR Lyrae 14.39 ± 0.17 NGC 6401 Recio-Blanco et al. (2005) CMD Fitting 14.32 ± 0.15 NGC 6341 VandenBerg, Denissenkov & Catelan (2016)RR Lyrae 14.67 NGC 6401 Valenti, Ferraro & Origlia (2007) CMD Fitting 14.43 NGC 6341 Chaboyer et al. (2017) Subdwarfs 14.88 ± 0.10 NGC 6401 Chun et al. (2010) CMD Fitting 14.61 NGC 6341 O’Malley, Gilligan & Chaboyer (2017) CMD Fitting 14.78 ± 0.12 NGC 6401 Tsapras et al. (2017) RR Lyrae 14.01 ± 0.26 NGC 6341 Wagner-Kaiser et al. (2017) CMD Fitting 14.62 ± 0.01 NGC 6341 Cerny et al. (2020) TRGB 14.59 ± 0.10 NGC 6402 Recio-Blanco et al. (2005) CMD Fitting 14.74 ± 0.09 NGC 6341 Yepez, Arellano Ferro & Deras (2020) RR Lyrae 14.60 ± 0.05 NGC 6402 Matsunaga et al. (2006) TII Cepheids 14.86 NGC 6341 Valcin et al. (2020) CMD Fitting 14.76 ± 0.03 NGC 6402 Froebrich et al. (2010) CMD Fitting 14.62 ± 0.30 NGC 6402 Bhardwaj et al. (2017) TII Cepheids 14.83 ± 0.08 NGC 6342 Heitsch & Richtler (1999) CMD Fitting 14.30 ± 0.20 NGC 6402 Contreras Pe˜naet al. (2018) RR Lyrae 14.92 ± 0.16 NGC 6342 Valenti, Ferraro & Origlia (2004) CMD Fitting 14.63 NGC 6342 Recio-Blanco et al. (2005) CMD Fitting 14.83 ± 0.09 NGC 6426 Zinn & Barnes (1996) CMD Fitting 16.20 NGC 6342 Froebrich et al. (2010) CMD Fitting 14.32 ± 0.30 NGC 6426 Hatzidimitriou et al. (1999) RR Lyrae 16.41 ± 0.07 NGC 6426 Cassisi, De Santis & Piersimoni (2001) RR Lyrae 16.68 ± 0.05 NGC 6352 Fullton et al. (1995) CMD Fitting 13.70 ± 0.15 NGC 6426 Bono, Caputo & Di Criscienzo (2007) RR Lyrae 16.71 ± 0.10 NGC 6352 Ferraro et al. (1999) ZAHB 13.83 ± 0.10 NGC 6426 Dotter, Sarajedini & Anderson (2011) CMD Fitting 16.62 NGC 6352 Feast, Whitelock & Menzies (2002) Mira 13.96 ± 0.12 NGC 6426 Wagner-Kaiser et al. (2017) CMD Fitting 16.52 ± 0.02 NGC 6352 Faria & Feltzing (2002) CMD Fitting 13.89 NGC 6426 Hernitschek et al. (2019) RR Lyrae 16.49 NGC 6352 Pulone et al. (2003) CMD Fitting 13.60 ± 0.10 NGC 6426 Valcin et al. (2020) CMD Fitting 16.71 ± 0.04

© 201x RAS, MNRAS 000, 1–19 50 Baumgardt & Vasiliev

Table 3 – continued Table 3 – continued

Cluster Source Paper Method DM/Distance Cluster Source Paper Method DM/Distance NGC 6440 Ferraro et al. (1999) ZAHB 14.47 ± 0.20 NGC 6624 Valenti, Ferraro & Origlia (2004) CMD Fitting 14.63 NGC 6440 Valenti, Ferraro & Origlia (2004) CMD Fitting 14.58 NGC 6624 Recio-Blanco et al. (2005) CMD Fitting 14.36 ± 0.10 NGC 6440 Recio-Blanco et al. (2005) CMD Fitting 14.62 ± 0.09 NGC 6624 Dotter et al. (2010) CMD Fitting 14.57 NGC 6440 Pallanca et al. (2021) CMD Fitting 14.60 NGC 6624 Siegel et al. (2011) CMD Fitting 14.58 NGC 6624 VandenBerg et al. (2013) CMD Fitting 14.51 NGC 6441 Heitsch & Richtler (1999) CMD Fitting 15.34 ± 0.20 NGC 6624 Saracino et al. (2016) CMD Fitting 14.49 NGC 6441 Layden et al. (1999) CMD Fitting 15.40 ± 0.17 NGC 6624 Wagner-Kaiser et al. (2017) CMD Fitting 14.60 ± 0.02 NGC 6441 Pritzl et al. (2001) RR Lyrae 15.23 ± 0.15 NGC 6624 Valcin et al. (2020) CMD Fitting 14.65 ± 0.04 NGC 6441 Pritzl et al. (2003) RR Lyrae 15.48 NGC 6624 Oliveira et al. (2020) CMD Fitting 14.52 ± 0.05 NGC 6441 Valenti, Ferraro & Origlia (2004) CMD Fitting 15.65 NGC 6441 Recio-Blanco et al. (2005) CMD Fitting 15.65 ± 0.09 NGC 6626 Davidge, Cote & Harris (1996) CMD Fitting 13.45 ± 0.20 NGC 6441 Matsunaga et al. (2006) TII Cepheids 15.60 NGC 6626 Davidge (2000) TRGB 13.73 ± 0.25 NGC 6441 Matsunaga & IRSF/SIRIUS Team (2007)Mira 15.65 ± 0.05 NGC 6626 Matsunaga et al. (2006) TII Cepheids 13.74 NGC 6441 Dall’Ora et al. (2008) RR Lyrae 15.67 ± 0.15 NGC 6626 Chun et al. (2010) CMD Fitting 13.60 NGC 6441 Bhardwaj et al. (2017) TII Cepheids 15.55 ± 0.10 NGC 6626 Bhardwaj et al. (2017) TII Cepheids 13.77 ± 0.10 NGC 6441 Wagner-Kaiser et al. (2017) CMD Fitting 15.70 ± 0.03 NGC 6626 Kerber et al. (2018) CMD Fitting 13.59 ± 0.06 NGC 6441 Valcin et al. (2020) CMD Fitting 15.79 ± 0.06 NGC 6626 Moni Bidin et al. (2021) CMD Fitting 13.50 ± 0.10 NGC 6453 Ortolani, Barbuy & Bica (1999) CMD Fitting 14.50 ± 0.20 NGC 6637 Ferraro et al. (1999) ZAHB 14.62 ± 0.10 NGC 6453 Davidge (2000) TRGB 15.00 ± 0.25 NGC 6637 Heasley et al. (2000) CMD Fitting 14.73 NGC 6453 Pulone et al. (2003) CMD Fitting 14.80 ± 0.10 NGC 6637 Feast, Whitelock & Menzies (2002) Mira 14.74 ± 0.12 NGC 6453 Recio-Blanco et al. (2005) CMD Fitting 15.30 ± 0.09 NGC 6637 Valenti, Origlia & Ferraro (2005) CMD Fitting 14.87 NGC 6453 Matsunaga et al. (2006) TII Cepheids 14.93 NGC 6637 Recio-Blanco et al. (2005) CMD Fitting 14.70 ± 0.09 NGC 6453 Valenti, Ferraro & Origlia (2010) CMD Fitting 15.15 ± 0.20 NGC 6637 Matsunaga & IRSF/SIRIUS Team (2007) Mira 14.71 ± 0.06 NGC 6453 Bhardwaj et al. (2017) TII Cepheids 14.98 ± 0.07 NGC 6637 Dotter et al. (2010) CMD Fitting 14.74 NGC 6637 Siegel et al. (2011) CMD Fitting 14.75 NGC 6496 Richtler, Grebel & Seggewiss (1994) CMD Fitting 15.03 ± 0.15 NGC 6637 Cohen & Sarajedini (2012) Subdwarfs 14.76 NGC 6496 Dotter et al. (2010) CMD Fitting 14.94 NGC 6637 VandenBerg et al. (2013) CMD Fitting 14.76 NGC 6496 VandenBerg et al. (2013) CMD Fitting 14.97 NGC 6637 Wagner-Kaiser et al. (2017) CMD Fitting 14.78 ± 0.01 NGC 6496 Fraga, Kunder & Tokovinin (2013) CMD Fitting 15.06 ± 0.10 NGC 6637 Valcin et al. (2020) CMD Fitting 14.79 ± 0.04 NGC 6496 Abbas et al. (2015) CMD Fitting 14.95 ± 0.15 NGC 6637 Oliveira et al. (2020) CMD Fitting 14.75 ± 0.05 NGC 6496 Wagner-Kaiser et al. (2017) CMD Fitting 14.96 ± 0.01 NGC 6496 Valcin et al. (2020) CMD Fitting 14.97 ± 0.05 NGC 6638 Valenti, Origlia & Ferraro (2005) CMD Fitting 15.07 NGC 6638 Recio-Blanco et al. (2005) CMD Fitting 15.04 ± 0.10 NGC 6517 Recio-Blanco et al. (2005) CMD Fitting 14.73 ± 0.09 NGC 6638 Froebrich et al. (2010) CMD Fitting 14.46 ± 0.30 NGC 6517 Froebrich et al. (2010) CMD Fitting 15.02 ± 0.30 NGC 6642 Recio-Blanco et al. (2005) CMD Fitting 14.72 ± 0.09 NGC 6522 Barbuy, Bica & Ortolani (1998) CMD Fitting 13.91 NGC 6642 Kim et al. (2006) CMD Fitting 14.49 NGC 6522 Terndrup et al. (1998) CMD Fitting 14.30 ± 0.10 NGC 6642 Barbuy et al. (2006) CMD Fitting 14.30 ± 0.15 NGC 6522 Davidge (2000) TRGB 14.37 ± 0.25 NGC 6642 Valenti, Ferraro & Origlia (2007) CMD Fitting 14.67 NGC 6522 Recio-Blanco et al. (2005) CMD Fitting 14.53 ± 0.09 NGC 6642 Balbinot et al. (2009) CMD Fitting 14.53 ± 0.17 NGC 6522 Valenti, Ferraro & Origlia (2010) CMD Fitting 14.34 ± 0.20 NGC 6522 Kerber et al. (2018) CMD Fitting 14.29 ± 0.05 NGC 6652 Ferraro et al. (1999) ZAHB 15.03 ± 0.10 NGC 6652 Chaboyer, Sarajedini & Armandroff (2000)CMD Fitting 14.70 ± 0.10 NGC 6528 Barbuy, Bica & Ortolani (1998) CMD Fitting 14.45 NGC 6652 Recio-Blanco et al. (2005) CMD Fitting 14.97 ± 0.08 NGC 6528 Richtler et al. (1998) CMD Fitting 14.36 ± 0.25 NGC 6652 Dotter et al. (2010) CMD Fitting 14.83 NGC 6528 Ferraro et al. (1999) ZAHB 14.36 ± 0.20 NGC 6652 Siegel et al. (2011) CMD Fitting 14.84 NGC 6528 Heitsch & Richtler (1999) CMD Fitting 14.87 ± 0.20 NGC 6652 VandenBerg et al. (2013) CMD Fitting 14.91 NGC 6528 Feltzing & Johnson (2002) CMD Fitting 14.29 NGC 6652 Li et al. (2017) CMD Fitting 14.85 NGC 6528 Momany et al. (2003) CMD Fitting 14.44 NGC 6652 O’Malley, Gilligan & Chaboyer (2017) CMD Fitting 14.99 ± 0.19 NGC 6535 Ferraro et al. (1999) ZAHB 14.31 ± 0.15 NGC 6652 Wagner-Kaiser et al. (2017) CMD Fitting 15.01 ± 0.01 NGC 6535 Dotter et al. (2010) CMD Fitting 14.00 NGC 6652 Valcin et al. (2020) CMD Fitting 14.90 ± 0.03 NGC 6535 VandenBerg et al. (2013) CMD Fitting 13.81 NGC 6652 Oliveira et al. (2020) CMD Fitting 14.89 ± 0.05 NGC 6535 Halford & Zaritsky (2015) CMD Fitting 14.10 ± 0.10 NGC 6656 Piotto & Zoccali (1999) CMD Fitting 12.65 ± 0.12 NGC 6535 Wagner-Kaiser et al. (2017) CMD Fitting 14.01 ± 0.02 NGC 6656 Cho & Lee (2002) CMD Fitting 12.52 NGC 6535 Valcin et al. (2020) CMD Fitting 14.13 ± 0.03 NGC 6656 Monaco et al. (2004b) CMD Fitting 12.56 ± 0.20 NGC 6539 Recio-Blanco et al. (2005) CMD Fitting 14.50 ± 0.09 NGC 6656 Sollima, Cacciari & Valenti (2006) RR Lyrae 12.65 ± 0.13 NGC 6539 Froebrich et al. (2010) CMD Fitting 14.38 ± 0.30 NGC 6656 Cohen & Sarajedini (2012) Subdwarfs 12.76 NGC 6656 Piotto et al. (2012) CMD Fitting 12.55 NGC 6540 Barbuy, Bica & Ortolani (1998) CMD Fitting 12.40 NGC 6656 Kunder et al. (2013b) RR Lyrae 12.46 ± 0.13 NGC 6540 Recio-Blanco et al. (2005) CMD Fitting 13.64 ± 0.09 NGC 6656 Wagner-Kaiser et al. (2017) CMD Fitting 12.65 ± 0.02 NGC 6540 Valenti, Ferraro & Origlia (2010) CMD Fitting 13.57 ± 0.20 NGC 6656 Valcin et al. (2020) CMD Fitting 12.79 ± 0.03 NGC 6541 Alcaino et al. (1997a) CMD Fitting 14.20 NGC 6681 Ferraro et al. (1999) ZAHB 14.98 ± 0.10 NGC 6541 Davidge (2000) TRGB 14.47 ± 0.25 NGC 6681 Davidge (2000) TRGB 14.50 ± 0.25 NGC 6541 Kim et al. (2006) CMD Fitting 14.04 NGC 6681 Recio-Blanco et al. (2005) CMD Fitting 15.01 ± 0.08 NGC 6541 Lee & Carney (2006) CMD Fitting 14.19 NGC 6681 Dotter et al. (2010) CMD Fitting 14.86 NGC 6541 Dotter et al. (2010) CMD Fitting 14.45 NGC 6681 Siegel et al. (2011) CMD Fitting 14.87 NGC 6541 Paust et al. (2010) CMD Fitting 14.27 NGC 6681 Cohen & Sarajedini (2012) Subdwarfs 15.01 NGC 6541 Cohen & Sarajedini (2012) Subdwarfs 14.63 NGC 6681 VandenBerg et al. (2013) CMD Fitting 14.80 NGC 6541 O’Malley, Gilligan & Chaboyer (2017) CMD Fitting 14.57 ± 0.12 NGC 6681 O’Malley, Gilligan & Chaboyer (2017) CMD Fitting 15.05 ± 0.13 NGC 6541 Wagner-Kaiser et al. (2017) CMD Fitting 14.39 ± 0.01 NGC 6681 Wagner-Kaiser et al. (2017) CMD Fitting 14.84 ± 0.01 NGC 6541 Cerny et al. (2020) TRGB 14.40 ± 0.10 NGC 6681 Valcin et al. (2020) CMD Fitting 14.92 ± 0.03 NGC 6541 Valcin et al. (2020) CMD Fitting 14.51 ± 0.04 NGC 6712 de Marchi et al. (1999) CMD Fitting 14.16 NGC 6544 Rosenberg et al. (2000) CMD Fitting 11.99 NGC 6712 Ferraro et al. (1999) ZAHB 14.14 ± 0.07 NGC 6544 Recio-Blanco et al. (2005) CMD Fitting 12.28 ± 0.08 NGC 6712 Ortolani, Bica & Barbuy (2000) CMD Fitting 14.48 ± 0.25 NGC 6544 Valenti, Ferraro & Origlia (2010) CMD Fitting 12.23 ± 0.20 NGC 6712 Paltrinieri et al. (2001) CMD Fitting 14.55 NGC 6544 Cohen et al. (2014) CMD Fitting 11.96 ± 0.15 NGC 6712 Feast, Whitelock & Menzies (2002) Mira 14.25 ± 0.12 NGC 6553 Guarnieri, Renzini & Ortolani (1997) CMD Fitting 13.60 ± 0.25 NGC 6712 Recio-Blanco et al. (2005) CMD Fitting 14.30 ± 0.09 NGC 6553 Barbuy, Bica & Ortolani (1998) CMD Fitting 13.54 NGC 6712 Deras et al. (2020) RR Lyrae 14.54 ± 0.05 NGC 6553 Guarnieri et al. (1998) CMD Fitting 13.60 ± 0.26 NGC 6715 Sarajedini & Layden (1995) RR Lyrae 17.13 ± 0.10 NGC 6553 Ferraro et al. (1999) ZAHB 13.45 ± 0.20 NGC 6715 Bellazzini, Ferraro & Buonanno (1999) CMD Fitting 17.25 ± 0.15 NGC 6553 Heitsch & Richtler (1999) CMD Fitting 13.65 ± 0.20 NGC 6715 Layden & Sarajedini (2000) RR Lyrae 17.19 ± 0.12 NGC 6553 Sagar et al. (1999) CMD Fitting 13.70 NGC 6715 Monaco et al. (2004a) RR Lyrae 17.10 ± 0.15 NGC 6553 Beaulieu et al. (2001) CMD Fitting 13.60 NGC 6715 Bono, Caputo & Di Criscienzo (2007) RR Lyrae 16.99 ± 0.11 NGC 6553 Zoccali et al. (2001) CMD Fitting 13.62 ± 0.13 NGC 6715 Siegel et al. (2007) CMD Fitting 17.27 NGC 6553 Feast, Whitelock & Menzies (2002) Mira 13.84 ± 0.20 NGC 6715 Kunder & Chaboyer (2009) RR Lyrae 16.97 ± 0.07 NGC 6558 Hazen (1996) RR Lyrae 14.10 ± 0.15 NGC 6715 Sollima et al. (2010) RR Lyrae 17.13 ± 0.11 NGC 6558 Rich et al. (1998) CMD Fitting 14.07 ± 0.20 NGC 6715 Siegel et al. (2011) CMD Fitting 17.27 ± 0.05 NGC 6558 Davidge (2000) TRGB 15.17 ± 0.52 NGC 6715 Piotto et al. (2012) CMD Fitting 17.15 NGC 6558 Barbuy et al. (2007) CMD Fitting 14.43 NGC 6715 VandenBerg et al. (2013) CMD Fitting 17.10 NGC 6558 Chun et al. (2010) CMD Fitting 14.30 NGC 6715 Hamanowicz et al. (2016) RR Lyrae 17.13 ± 0.10 NGC 6569 Ortolani, Bica & Barbuy (2001) CMD Fitting 14.96 ± 0.20 NGC 6715 Wagner-Kaiser et al. (2017) CMD Fitting 17.06 ± 0.02 NGC 6569 Valenti, Origlia & Ferraro (2005) CMD Fitting 15.40 NGC 6715 Ferguson & Strigari (2020) RR Lyrae 17.11 NGC 6569 Recio-Blanco et al. (2005) CMD Fitting 15.11 ± 0.08 NGC 6715 Valcin et al. (2020) CMD Fitting 17.26 ± 0.04 NGC 6569 Matsunaga et al. (2006) TII Cepheids 15.11 NGC 6717 Ortolani, Barbuy & Bica (1999) CMD Fitting 14.14 ± 0.20 NGC 6569 Bhardwaj et al. (2017) TII Cepheids 15.17 ± 0.12 NGC 6717 Ferraro et al. (1999) ZAHB 14.40 ± 0.15 NGC 6569 Saracino et al. (2019) RR Lyrae 15.00 ± 0.11 NGC 6717 Davidge (2000) TRGB 14.57 ± 0.25 NGC 6584 Sarajedini & Forrester (1995) CMD Fitting 15.73 NGC 6717 Recio-Blanco et al. (2005) CMD Fitting 14.47 ± 0.20 NGC 6584 Ferraro et al. (1999) ZAHB 15.61 ± 0.05 NGC 6717 Dotter et al. (2010) CMD Fitting 14.39 NGC 6584 Recio-Blanco et al. (2005) CMD Fitting 15.98 ± 0.09 NGC 6717 VandenBerg et al. (2013) CMD Fitting 14.31 NGC 6584 Sollima, Cacciari & Valenti (2006) RR Lyrae 15.67 ± 0.13 NGC 6717 Wagner-Kaiser et al. (2017) CMD Fitting 14.36 ± 0.02 NGC 6584 Dotter et al. (2010) CMD Fitting 15.70 NGC 6717 Valcin et al. (2020) CMD Fitting 14.49 ± 0.05 NGC 6584 Cohen & Sarajedini (2012) Subdwarfs 15.83 NGC 6717 Oliveira et al. (2020) CMD Fitting 14.35 ± 0.05 NGC 6584 VandenBerg et al. (2013) CMD Fitting 15.59 NGC 6723 Alca´ınoet al. (1999) CMD Fitting 14.42 NGC 6584 O’Malley, Gilligan & Chaboyer (2017) CMD Fitting 15.85 ± 0.13 NGC 6723 Recio-Blanco et al. (2005) CMD Fitting 14.73 ± 0.10 NGC 6584 Wagner-Kaiser et al. (2017) CMD Fitting 15.63 ± 0.02 NGC 6723 Kim et al. (2006) CMD Fitting 14.72 NGC 6584 Cerny et al. (2020) TRGB 15.69 ± 0.10 NGC 6723 Bono, Caputo & Di Criscienzo (2007) RR Lyrae 14.59 ± 0.14 NGC 6584 Valcin et al. (2020) CMD Fitting 15.76 ± 0.03 NGC 6723 Dotter et al. (2010) CMD Fitting 14.53 NGC 6624 Richtler, Grebel & Seggewiss (1994) CMD Fitting 14.72 ± 0.11 NGC 6723 Cohen & Sarajedini (2012) Subdwarfs 14.52 NGC 6624 Heasley et al. (2000) CMD Fitting 14.44 NGC 6723 VandenBerg et al. (2013) CMD Fitting 14.53

© 201x RAS, MNRAS 000, 1–19 Accurate distances to Galactic globular clusters 51

Table 3 – continued Table 3 – continued

Cluster Source Paper Method DM/Distance Cluster Source Paper Method DM/Distance NGC 6723 Dambis et al. (2014) RR Lyrae 14.53 ± 0.16 NGC 7006 Ferraro et al. (1999) ZAHB 18.06 ± 0.15 NGC 6723 Lee et al. (2014) RR Lyrae 14.65 ± 0.05 NGC 7006 Bono, Caputo & Di Criscienzo (2007) RR Lyrae 18.02 ± 0.15 NGC 6723 O’Malley, Gilligan & Chaboyer (2017) CMD Fitting 14.71 ± 0.20 NGC 7006 Gerashchenko (2007) ZAHB 17.85 NGC 6723 Wagner-Kaiser et al. (2017) CMD Fitting 14.58 ± 0.01 NGC 7006 Dotter, Sarajedini & Anderson (2011) CMD Fitting 18.04 NGC 6723 Cerny et al. (2020) TRGB 14.69 ± 0.10 NGC 7006 Wagner-Kaiser et al. (2017) CMD Fitting 17.89 ± 0.04 NGC 6723 Valcin et al. (2020) CMD Fitting 14.55 ± 0.03 NGC 7006 Hernitschek et al. (2019) RR Lyrae 18.02 ± 0.01 NGC 6723 Oliveira et al. (2020) CMD Fitting 14.59 ± 0.15 NGC 7006 Cerny et al. (2020) TRGB 18.05 ± 0.10 NGC 7006 Valcin et al. (2020) CMD Fitting 18.00 ± 0.04 NGC 6749 Kaisler, Harris & McLaughlin (1997) CMD Fitting 14.45 ± 0.50 NGC 6749 Rosino et al. (1997) CMD Fitting 14.32 ± 0.25 NGC 7078 Ferraro et al. (1999) ZAHB 15.14 ± 0.07 NGC 6749 Matsunaga et al. (2006) TII Cepheids 14.51 NGC 7078 Cassisi, De Santis & Piersimoni (2001) RR Lyrae 15.13 ± 0.05 NGC 6749 Bhardwaj et al. (2017) TII Cepheids 14.39 ± 0.07 NGC 7078 Kraft & Ivans (2003) CMD Fitting 15.25 NGC 7078 Di Criscienzo, Marconi & Caputo (2004) RR Lyrae 15.15 ± 0.10 NGC 6752 Renzini et al. (1996) WD Cooling 13.05 ± 0.10 NGC 7078 Recio-Blanco et al. (2005) CMD Fitting 15.20 ± 0.11 NGC 6752 Ferraro et al. (1999) ZAHB 13.16 ± 0.15 NGC 7078 Arellano Ferro, Garc´ıaLugo & Rosenzweig (2006)RR Lyrae 14.79 ± 0.10 NGC 6752 Carretta et al. (2000) Subdwarfs 13.20 ± 0.12 NGC 7078 Sollima, Cacciari & Valenti (2006) RR Lyrae 15.13 ± 0.13 NGC 6752 Saad & Lee (2001) Subdwarfs 13.17 NGC 7078 Matsunaga et al. (2006) TII Cepheids 15.13 NGC 6752 Gratton et al. (2003) CMD Fitting 13.12 ± 0.08 NGC 7078 Bono, Caputo & Di Criscienzo (2007) RR Lyrae 14.99 ± 0.11 NGC 6752 Dotter et al. (2010) CMD Fitting 13.16 NGC 7078 An et al. (2009) CMD Fitting 15.12 ± 0.11 NGC 6752 Cohen & Sarajedini (2012) Subdwarfs 13.27 NGC 7078 Dotter et al. (2010) CMD Fitting 15.24 NGC 6752 Correnti et al. (2016) CMD Fitting 13.11 ± 0.06 NGC 7078 Ruelas-Mayorga et al. (2010) CMD Fitting 15.03 ± 0.10 NGC 6752 O’Malley, Gilligan & Chaboyer (2017) CMD Fitting 13.25 ± 0.13 NGC 7078 Benedict et al. (2011) RR Lyrae 15.19 ± 0.10 NGC 6752 Wagner-Kaiser et al. (2017) CMD Fitting 13.05 ± 0.03 NGC 7078 Benedict et al. (2011) RR Lyrae 15.09 ± 0.10 NGC 6752 Cerny et al. (2020) TRGB 13.04 ± 0.10 NGC 7078 Cohen & Sarajedini (2012) Subdwarfs 15.51 NGC 6752 Valcin et al. (2020) CMD Fitting 13.19 ± 0.03 NGC 7078 VandenBerg et al. (2013) CMD Fitting 15.07 NGC 6752 Souza et al. (2020) CMD Fitting 13.07 ± 0.04 NGC 7078 Dambis et al. (2014) RR Lyrae 14.98 ± 0.16 NGC 6760 Heitsch & Richtler (1999) CMD Fitting 14.51 ± 0.24 NGC 7078 Feuillet, Paust & Chaboyer (2014) CMD Fitting 15.19 ± 0.10 NGC 6760 Recio-Blanco et al. (2005) CMD Fitting 14.66 ± 0.08 NGC 7078 VandenBerg, Denissenkov & Catelan (2016) RR Lyrae 15.11 NGC 7078 Chaboyer et al. (2017) Subdwarfs 15.49 ± 0.10 NGC 6779 Ivanov et al. (2000) CMD Fitting 14.87 ± 0.30 NGC 7078 Bhardwaj et al. (2017) TII Cepheids 15.26 ± 0.06 NGC 6779 Hatzidimitriou et al. (2004) CMD Fitting 14.62 ± 0.26 NGC 7078 O’Malley, Gilligan & Chaboyer (2017) CMD Fitting 15.38 ± 0.10 NGC 6779 Matsunaga et al. (2006) TII Cepheids 15.08 NGC 7078 Wagner-Kaiser et al. (2017) CMD Fitting 15.16 ± 0.01 NGC 6779 Sarajedini et al. (2007) CMD Fitting 15.08 NGC 7078 Hernitschek et al. (2019) RR Lyrae 15.22 ± 0.05 NGC 6779 Dotter et al. (2010) CMD Fitting 15.18 NGC 7078 Cerny et al. (2020) TRGB 15.11 ± 0.10 NGC 6779 Cohen & Sarajedini (2012) Subdwarfs 15.41 NGC 7078 Valcin et al. (2020) CMD Fitting 15.26 ± 0.03 NGC 6779 Bhardwaj et al. (2017) TII Cepheids 15.14 ± 0.10 NGC 6779 Wagner-Kaiser et al. (2017) CMD Fitting 15.07 ± 0.01 NGC 7089 Cassisi, De Santis & Piersimoni (2001) RR Lyrae 15.42 ± 0.05 NGC 6779 Cerny et al. (2020) TRGB 14.99 ± 0.10 NGC 7089 Saad & Lee (2001) Subdwarfs 15.33 NGC 6779 Valcin et al. (2020) CMD Fitting 15.19 ± 0.02 NGC 7089 Cho & Lee (2002) CMD Fitting 15.34 NGC 7089 Di Criscienzo, Marconi & Caputo (2004) RR Lyrae 15.31 ± 0.10 NGC 6809 Jimenez & Padoan (1998) CMD Fitting 13.88 ± 0.10 NGC 7089 Recio-Blanco et al. (2005) CMD Fitting 15.47 ± 0.09 NGC 6809 Olech et al. (1999) RR Lyrae 13.78 ± 0.15 NGC 7089 L´azaroet al. (2006) RR Lyrae 15.10 ± 0.04 NGC 6809 Ferraro et al. (1999) ZAHB 13.80 ± 0.10 NGC 7089 Matsunaga et al. (2006) TII Cepheids 15.33 NGC 6809 Piotto & Zoccali (1999) CMD Fitting 13.65 ± 0.20 NGC 7089 Bono, Caputo & Di Criscienzo (2007) RR Lyrae 15.34 ± 0.11 NGC 6809 Cassisi, De Santis & Piersimoni (2001) RR Lyrae 13.65 ± 0.05 NGC 7089 Dotter et al. (2010) CMD Fitting 15.39 NGC 6809 Pych et al. (2001) SX Phe 13.61 ± 0.25 NGC 7089 Cohen & Sarajedini (2012) Subdwarfs 15.48 NGC 6809 Di Criscienzo, Marconi & Caputo (2004)RR Lyrae 13.70 ± 0.10 NGC 7089 Piotto et al. (2012) CMD Fitting 15.30 NGC 6809 Sollima, Cacciari & Valenti (2006) RR Lyrae 13.62 ± 0.13 NGC 7089 VandenBerg et al. (2013) CMD Fitting 15.40 NGC 6809 Bono, Caputo & Di Criscienzo (2007) RR Lyrae 13.67 ± 0.09 NGC 7089 Bhardwaj et al. (2017) TII Cepheids 15.40 ± 0.07 NGC 6809 Vargas Alvarez´ & Sandquist (2007) RR Lyrae 13.69 NGC 7089 Wagner-Kaiser et al. (2017) CMD Fitting 15.27 ± 0.02 NGC 6809 Dotter et al. (2010) CMD Fitting 13.66 NGC 7089 Hernitschek et al. (2019) RR Lyrae 15.42 ± 0.07 NGC 6809 McNamara (2011) RR Lyrae 13.62 ± 0.05 NGC 7089 Cerny et al. (2020) TRGB 15.41 ± 0.10 NGC 6809 Siegel et al. (2011) CMD Fitting 13.67 NGC 7089 Valcin et al. (2020) CMD Fitting 15.40 ± 0.03 NGC 6809 Cohen & Sarajedini (2012) Subdwarfs 13.82 NGC 6809 VandenBerg et al. (2013) CMD Fitting 13.53 NGC 7099 Alcaino et al. (1998b) CMD Fitting 14.53 ± 0.20 NGC 6809 Kaluzny et al. (2014) Eclipsing Binary 13.63 ± 0.05 NGC 7099 Ferraro et al. (1999) ZAHB 14.69 ± 0.10 NGC 6809 Dambis et al. (2014) RR Lyrae 13.57 ± 0.16 NGC 7099 Sandquist et al. (1999) CMD Fitting 14.64 ± 0.12 NGC 6809 Chaboyer et al. (2017) Subdwarfs 14.15 ± 0.11 NGC 7099 Carretta et al. (2000) Subdwarfs 14.81 ± 0.12 NGC 6809 O’Malley, Gilligan & Chaboyer (2017) CMD Fitting 13.94 ± 0.11 NGC 7099 Recio-Blanco et al. (2005) CMD Fitting 14.72 ± 0.08 NGC 6809 Wagner-Kaiser et al. (2017) CMD Fitting 13.56 ± 0.01 NGC 7099 Dotter et al. (2010) CMD Fitting 14.72 NGC 6809 VandenBerg & Denissenkov (2018) RR Lyrae 13.70 ± 0.05 NGC 7099 Paust et al. (2010) CMD Fitting 14.47 NGC 6809 Cerny et al. (2020) TRGB 13.53 ± 0.10 NGC 7099 Cohen & Sarajedini (2012) Subdwarfs 15.01 NGC 6809 Valcin et al. (2020) CMD Fitting 13.70 ± 0.02 NGC 7099 VandenBerg et al. (2013) CMD Fitting 14.60 NGC 7099 Kains et al. (2013) RR Lyrae 14.59 ± 0.05 NGC 6838 Reid & Gizis (1998) Subdwarfs 13.19 ± 0.15 NGC 7099 Chaboyer et al. (2017) Subdwarfs 14.96 ± 0.10 NGC 6838 Ferraro et al. (1999) ZAHB 12.93 ± 0.10 NGC 7099 O’Malley, Gilligan & Chaboyer (2017) CMD Fitting 14.79 ± 0.11 NGC 6838 Feast, Whitelock & Menzies (2002) Mira 13.07 ± 0.12 NGC 7099 Wagner-Kaiser et al. (2017) CMD Fitting 14.61 ± 0.01 NGC 6838 Grundahl, Stetson & Andersen (2002) CMD Fitting 12.84 ± 0.11 NGC 7099 Hernitschek et al. (2019) RR Lyrae 14.62 NGC 6838 Recio-Blanco et al. (2005) CMD Fitting 12.96 ± 0.10 NGC 7099 Cerny et al. (2020) TRGB 14.52 ± 0.01 NGC 6838 An et al. (2009) CMD Fitting 12.91 ± 0.08 NGC 7099 Valcin et al. (2020) CMD Fitting 14.76 ± 0.02 NGC 6838 Dotter et al. (2010) CMD Fitting 12.97 NGC 6838 Cohen & Sarajedini (2012) Subdwarfs 13.03 NGC 7492 Ferraro et al. (1999) ZAHB 17.12 ± 0.10 NGC 6838 VandenBerg et al. (2013) CMD Fitting 13.00 NGC 7492 Figuera Jaimes et al. (2013) RR Lyrae 16.94 ± 0.04 NGC 6838 Di Cecco et al. (2015) CMD Fitting 13.07 NGC 7492 Cerny et al. (2020) TRGB 16.77 ± 0.10 NGC 6838 Li et al. (2017) CMD Fitting 13.48 NGC 7492 Ghosh et al. (2020) CMD Fitting 16.95 ± 0.05 NGC 6838 Wagner-Kaiser et al. (2017) CMD Fitting 13.03 ± 0.01 Pal 1 Rosenberg et al. (1998) CMD Fitting 15.25 ± 0.25 NGC 6838 Valcin et al. (2020) CMD Fitting 13.10 ± 0.04 Pal 1 Sarajedini et al. (2007) CMD Fitting 15.76 NGC 6864 Catelan et al. (2002) CMD Fitting 16.60 Pal 1 Wagner-Kaiser et al. (2017) CMD Fitting 15.45 ± 0.08 NGC 6864 Recio-Blanco et al. (2005) CMD Fitting 16.44 ± 0.09 Pal 1 Valcin et al. (2020) CMD Fitting 15.29 ± 0.07 NGC 6864 Bono, Caputo & Di Criscienzo (2007) RR Lyrae 16.59 ± 0.14 Pal 10 Kaisler, Harris & McLaughlin (1997) CMD Fitting 13.85 ± 0.37 NGC 6864 Hernitschek et al. (2019) RR Lyrae 16.59 ± 0.03 Pal 10 Froebrich et al. (2010) CMD Fitting 15.13 ± 0.30 NGC 6864 Cerny et al. (2020) TRGB 16.67 ± 0.10 Pal 11 Ortolani, Bica & Barbuy (2001) CMD Fitting 15.61 ± 0.15 NGC 6934 Ferraro et al. (1999) ZAHB 15.98 ± 0.07 Pal 11 Lewis et al. (2006) CMD Fitting 15.78 ± 0.06 NGC 6934 Piotto & Zoccali (1999) CMD Fitting 16.22 ± 0.20 NGC 6934 Kaluzny, Olech & Stanek (2001) RR Lyrae 15.81 ± 0.06 Pal 12 Rosenberg et al. (1998) CMD Fitting 16.45 ± 0.10 NGC 6934 Di Criscienzo, Marconi & Caputo (2004)RR Lyrae 15.92 ± 0.15 Pal 12 Mart´ınez-Delgadoet al. (2002) CMD Fitting 16.39 ± 0.10 NGC 6934 Recio-Blanco et al. (2005) CMD Fitting 16.16 ± 0.10 Pal 12 Dotter et al. (2010) CMD Fitting 16.34 NGC 6934 Bono, Caputo & Di Criscienzo (2007) RR Lyrae 15.95 ± 0.13 Pal 12 VandenBerg et al. (2013) CMD Fitting 16.38 NGC 6934 Dotter et al. (2010) CMD Fitting 16.02 Pal 12 Wagner-Kaiser et al. (2017) CMD Fitting 16.33 ± 0.04 NGC 6934 Cohen & Sarajedini (2012) Subdwarfs 16.16 Pal 12 Musella et al. (2018) CMD Fitting 16.30 ± 0.10 NGC 6934 VandenBerg et al. (2013) CMD Fitting 15.94 Pal 12 Valcin et al. (2020) CMD Fitting 16.35 ± 0.04 NGC 6934 Dambis et al. (2014) RR Lyrae 15.98 ± 0.16 Pal 13 Borissova, Markov & Spassova (1997) CMD Fitting 16.91 NGC 6934 Halford & Zaritsky (2015) CMD Fitting 16.03 ± 0.08 Pal 13 Siegel et al. (2001) RR Lyrae 16.97 NGC 6934 Wagner-Kaiser et al. (2017) CMD Fitting 15.93 ± 0.01 Pal 13 Cˆot´eet al. (2002) CMD Fitting 16.93 ± 0.10 NGC 6934 Yepez et al. (2018) RR Lyrae 16.02 ± 0.05 Pal 13 Hamren et al. (2013) CMD Fitting 16.74 ± 0.02 NGC 6934 Hernitschek et al. (2019) RR Lyrae 16.12 ± 0.03 Pal 13 Hernitschek et al. (2019) RR Lyrae 16.86 NGC 6934 Cerny et al. (2020) TRGB 16.01 ± 0.10 Pal 13 Yepez et al. (2019) RR Lyrae 16.87 ± 0.05 NGC 6934 Valcin et al. (2020) CMD Fitting 16.02 ± 0.02 Pal 13 Shipp et al. (2020) RR Lyrae 16.86 ± 0.02 NGC 6981 Ferraro et al. (1999) ZAHB 16.06 ± 0.08 Pal 14 Hilker (2006) CMD Fitting 19.42 NGC 6981 Cassisi, De Santis & Piersimoni (2001) RR Lyrae 16.20 ± 0.05 Pal 14 Dotter, Sarajedini & Yang (2008) CMD Fitting 19.41 ± 0.10 NGC 6981 Recio-Blanco et al. (2005) CMD Fitting 16.16 ± 0.08 Pal 14 Jordi et al. (2009) CMD Fitting 19.26 ± 0.05 NGC 6981 Bono, Caputo & Di Criscienzo (2007) RR Lyrae 16.02 ± 0.13 Pal 14 Sollima et al. (2011) CMD Fitting 19.29 ± 0.12 NGC 6981 Dotter et al. (2010) CMD Fitting 16.11 NGC 6981 Bramich et al. (2011) RR Lyrae 16.11 ± 0.05 Pal 15 Dotter, Sarajedini & Anderson (2011) CMD Fitting 18.32 NGC 6981 Cohen & Sarajedini (2012) Subdwarfs 16.17 Pal 15 Wagner-Kaiser et al. (2017) CMD Fitting 18.09 ± 0.03 NGC 6981 VandenBerg et al. (2013) CMD Fitting 16.08 Pal 15 Valcin et al. (2020) CMD Fitting 18.47 ± 0.04 NGC 6981 Halford & Zaritsky (2015) CMD Fitting 16.20 ± 0.08 Pal 2 Harris et al. (1997) CMD Fitting 17.10 ± 0.30 NGC 6981 Wagner-Kaiser et al. (2017) CMD Fitting 16.10 ± 0.02 Pal 2 Sarajedini et al. (2007) CMD Fitting 17.13 NGC 6981 Hernitschek et al. (2019) RR Lyrae 16.22 ± 0.01 Pal 2 Bonatto & Chies-Santos (2020) CMD Fitting 17.07 ± 0.13 NGC 6981 Cerny et al. (2020) TRGB 16.11 ± 0.10 NGC 6981 Valcin et al. (2020) CMD Fitting 16.16 ± 0.02 Pal 3 Hilker (2006) CMD Fitting 19.95

© 201x RAS, MNRAS 000, 1–19 52 Baumgardt & Vasiliev

Table 3 – continued

Cluster Source Paper Method DM/Distance Pal 3 Sharina et al. (2018) CMD Fitting 19.82 Pal 3 Hernitschek et al. (2019) RR Lyrae 19.65 ± 0.01 Pal 4 Dotter et al. (2010) CMD Fitting 20.03 Pal 4 Frank et al. (2012) CMD Fitting 20.06 ± 0.05 Pal 5 Grillmair & Smith (2001) CMD Fitting 16.81 Pal 5 Dotter, Sarajedini & Anderson (2011) CMD Fitting 16.61 Pal 5 K¨upper et al. (2015) Tail Modeling 23.60 ± 0.80 kpc Pal 5 Hernitschek et al. (2019) RR Lyrae 16.68 ± 0.03 Pal 5 Price-Whelan et al. (2019) RR Lyrae 16.57 ± 0.03 Pal 5 Xu et al. (2021) CMD Fitting 16.84 ± 0.10 Pal 6 Ortolani, Bica & Barbuy (1995) CMD Fitting 14.76 ± 0.20 Pal 6 Barbuy, Bica & Ortolani (1998) CMD Fitting 14.03 Pal 6 Lee & Carney (2002) CMD Fitting 14.28 ± 0.15 Pal 6 Lee (2004) CMD Fitting 14.48 Pal 8 Armandroff (1988) CMD Fitting 15.41 ± 0.20 Pal 8 Froebrich et al. (2010) CMD Fitting 15.34 ± 0.30 Pyxis Da Costa (1995) CMD Fitting 17.72 ± 0.30 Pyxis Sarajedini & Geisler (1996) CMD Fitting 17.96 Pyxis Dotter, Sarajedini & Anderson (2011) CMD Fitting 17.87 Pyxis Wagner-Kaiser et al. (2017) CMD Fitting 17.68 ± 0.06 Pyxis Valcin et al. (2020) CMD Fitting 17.92 ± 0.04 RLGC 1 Ryu & Lee (2018) CMD Fitting 17.30 ± 0.30 RLGC 2 Ryu & Lee (2018) CMD Fitting 16.00 ± 0.30 Rup 106 Ferraro et al. (1999) ZAHB 16.64 ± 0.21 Rup 106 Dotter, Sarajedini & Anderson (2011) CMD Fitting 16.69 Rup 106 Wagner-Kaiser et al. (2017) CMD Fitting 16.54 ± 0.02 Rup 106 Dotter et al. (2018) CMD Fitting 16.70 Rup 106 Valcin et al. (2020) CMD Fitting 16.71 ± 0.03 Sgr II Mutlu-Pakdil et al. (2018) CMD Fitting 19.20 ± 0.20 Sgr II Joo et al. (2019) RR Lyrae 19.03 ± 0.10 Sgr II Longeard et al. (2020) CMD Fitting 19.19 ± 0.10 Sgr II Vivas, Mart´ınez-V´azquez& Walker (2020)RR Lyrae 18.97 ± 0.20 Ter 1 Barbuy, Bica & Ortolani (1998) CMD Fitting 13.45 Ter 1 Ortolani, Barbuy & Bica (1999) CMD Fitting 13.58 ± 0.15 Ter 1 Matsunaga et al. (2006) TII Cepheids 13.73 Ter 1 Valenti, Ferraro & Origlia (2010) CMD Fitting 14.13 ± 0.20 Ter 1 Bhardwaj et al. (2017) TII Cepheids 13.78 ± 0.06 Ter 10 Ortolani, Bica & Barbuy (1997b) CMD Fitting 13.40 ± 0.40 Ter 10 Barbuy, Bica & Ortolani (1998) CMD Fitting 13.39 Ter 10 Alonso-Garc´ıa et al. (2015) RR Lyrae 15.06 ± 0.10 Ter 10 Ortolani et al. (2019b) CMD Fitting 15.08 ± 0.20 Ter 12 Ortolani, Bica & Barbuy (1998) CMD Fitting 12.65 ± 0.30 Ter 2 Ortolani, Bica & Barbuy (1997c) CMD Fitting 14.44 ± 0.20 Ter 2 Barbuy, Bica & Ortolani (1998) CMD Fitting 14.11 Ter 2 Valenti, Ferraro & Origlia (2010) CMD Fitting 14.38 ± 0.20 Ter 3 Barbuy, Bica & Ortolani (1998) CMD Fitting 14.25 Ter 3 Valenti, Ferraro & Origlia (2007) CMD Fitting 14.54 Ter 4 Ortolani, Barbuy & Bica (1997) CMD Fitting 14.59 ± 0.20 Ter 4 Barbuy, Bica & Ortolani (1998) CMD Fitting 14.31 Ter 4 Ortolani et al. (2007) CMD Fitting 14.52 ± 0.10 Ter 4 Chun et al. (2010) CMD Fitting 15.10 Ter 4 Valenti, Ferraro & Origlia (2010) CMD Fitting 14.13 ± 0.20 Ter 5 Ortolani, Barbuy & Bica (1996) CMD Fitting 13.74 ± 0.27 Ter 5 Barbuy, Bica & Ortolani (1998) CMD Fitting 12.80 Ter 5 Feast, Whitelock & Menzies (2002) Mira 14.17 ± 0.12 Ter 5 Cohn et al. (2002) CMD Fitting 14.70 ± 0.40 Ter 5 Valenti, Ferraro & Origlia (2007) CMD Fitting 13.85 Ter 5 Ortolani et al. (2007) CMD Fitting 13.74 ± 0.30 Ter 5 Origlia et al. (2019) RR Lyrae 13.85 ± 0.20 Ter 6 Fahlman, Douglas & Thompson (1995) CMD Fitting 14.16 ± 0.15 Ter 6 Barbuy, Ortolani & Bica (1997) CMD Fitting 14.25 Ter 6 Barbuy, Bica & Ortolani (1998) CMD Fitting 13.67 Ter 6 Valenti, Ferraro & Origlia (2007) CMD Fitting 14.13 Ter 7 Ferraro et al. (1999) ZAHB 16.87 ± 0.10 Ter 7 Dotter et al. (2010) CMD Fitting 17.01 Ter 7 Siegel et al. (2011) CMD Fitting 17.05 ± 0.02 Ter 7 Wagner-Kaiser et al. (2017) CMD Fitting 16.89 ± 0.03 Ter 7 Valcin et al. (2020) CMD Fitting 16.87 ± 0.05 Ter 8 Ferraro et al. (1999) ZAHB 17.14 ± 0.10 Ter 8 Dotter et al. (2010) CMD Fitting 17.25 Ter 8 Siegel et al. (2011) CMD Fitting 17.26 ± 0.05 Ter 8 VandenBerg et al. (2013) CMD Fitting 17.21 Ter 8 Wagner-Kaiser et al. (2017) CMD Fitting 17.19 ± 0.01 Ter 8 Cerny et al. (2020) TRGB 17.10 ± 0.10 Ter 8 Valcin et al. (2020) CMD Fitting 17.29 ± 0.03 Ter 9 Ortolani, Barbuy & Bica (1999) CMD Fitting 13.45 ± 0.20 Ter 9 Valenti, Ferraro & Origlia (2010) CMD Fitting 13.73 ± 0.20 Ton 2 Bica, Ortolani & Barbuy (1996) CMD Fitting 14.03 UKS 1 Ortolani, Bica & Barbuy (1997b) CMD Fitting 14.35 ± 0.30 UKS 1 Barbuy, Bica & Ortolani (1998) CMD Fitting 14.35 ± 0.30 UKS 1 Ortolani et al. (2007) CMD Fitting 15.67 ± 0.20 UKS 1 Minniti et al. (2011) CMD Fitting 16.01 ± 0.08 VVV-CL001 Fern´andez-Trincado et al. (2021) CMD Fitting 14.57 ± 0.40 Whiting 1 Carraro, Zinn & Moni Bidin (2007) CMD Fitting 17.34 ± 0.13 Whiting 1 Valcheva et al. (2015) CMD Fitting 17.48 ± 0.10

© 201x RAS, MNRAS 000, 1–19