Rr Lyrae Stars in Large Magellanic Cloud Globular Clusters

Total Page:16

File Type:pdf, Size:1020Kb

Rr Lyrae Stars in Large Magellanic Cloud Globular Clusters RR LYRAE STARS IN LARGE MAGELLANIC CLOUD GLOBULAR CLUSTERS By Charles A. Kuehn III A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Astrophysics and Astronomy 2011 ABSTRACT RR LYRAE STARS IN LARGE MAGELLANIC CLOUD GLOBULAR CLUSTERS By Charles A. Kuehn III The Oosterhoff phenomenon presents a challenge to the accretion model for the buildup of at least part of the Milky Way halo. The existence of the Oosterhoff gap among the globular clusters in the halo of the Milky Way, while globular clusters in satellite galaxies tend to fall in this gap, seems to contradict the idea that the halo was formed through the accretion of objects similar to these current satellite galaxies. This dissertation seeks to better understand the Oosterhoff phenomenon through a systematic study of RR Lyrae stars in globular clusters in the Large Magellanic Cloud (LMC). Similar studies have been carried out on a set of Milky Way globular clusters which fall in the Oosterhoff-I (Oo-I) and Oosterhoff-II (Oo-II) classes but few studies with the requisite level of detail have been carried out on extragalactic objects. This dissertation set out to study the differences between RR Lyrae stars in Oo- I/II clusters and those in Oo-int clusters. Answers for three specific questions were sought. 1.) How do the properties of double-mode RR Lyrae stars in Oo-int clusters compare to those in Oo-I/II clusters? 2.) How do the positions of RR Lyrae stars on the Bailey diagram differ between stars in Oo-int clusters and those in Oo-I/II clusters. 3.) How do the physical properties of RR Lyrae stars, obtained through the Fourier decomposition of their light curves, change when going from Oo-I/II clusters to Oo-int clusters? The implications that this study has on the nature of the Oosterhoff dichotomy are also discussed. Copyright by CHARLES A. KUEHN III 2011 To Mom, Dad, Nana, Grandpa, and the rest of my family. To my grandmother and Papa who wished that they had been able to see me receive my PhD. iv ACKNOWLEDGMENTS There are many people who I wish to thank for their role in making this dissertation possible. First off I want to thank my adviser Horace Smith, whose guidance over the years not only made this dissertation possible, but allowed me to even get to this point in my career. M´arcio Catelan for his guidance over the years and his valuable comments on not only this thesis but other projects that we have collaborated on. Karen Kinemuchi for her proofreading of this dissertation and her advice on how to survive the dissertation writing and defense process. Nathan De Lee for his assis- tance on computer related matters when I was first starting out. The undergraduate students; Lisa Taylor, Randall McClellan, Kristina Looper, and Kyra Dame for their assistance with parts of this project. I wish to thank Catherine Kennedy for her support and friendship which were important in helping me get to this point. Thanks to Christopher Waters for the LATEX class used to format this thesis. v TABLE OF CONTENTS List of Tables....................................... ................. viii List of Figures...................................... ................. x List of Symbols...................................... ................ xiii 1 Introduction...................................... ................ 1 2 Milky Way Formation................................. ........... 4 2.1 StructureoftheMilkyWay .................... 4 2.2 FormationoftheMilkyWayHalo ................ 6 3 RR Lyrae Variables.................................. ............ 10 3.1 Magnitudes............................. 10 3.2 RR Lyrae Properties and Pulsation Mechanism . 12 3.3 RRLyraeClasses ......................... 16 3.4 OosterhoffGroups ......................... 18 3.5 OtherTypesofVariableStars. .. .. 20 4 Observations, Data Reduction, and Physical Property Determina- tion............................................... ............... 23 4.1 Observations and Image Processing . 23 4.2 Photometry and Variable Identification . 24 4.3 Determination of RR Lyrae Physical Properties . 26 4.3.1 FourierDecomposition. 26 4.3.2 RRabVariables......................... 27 4.3.3 RRcVariables ......................... 29 5 NGC 1466........................................... ............. 31 5.1 DataReductionforNGC1466 .................. 32 5.2 VariableStars ........................... 34 5.2.1 RRLyraeStars......................... 43 5.2.2 Comments on Individual RR Lyrae Stars . 44 5.2.3 RRdStars............................ 45 5.2.4 OtherVariables......................... 46 5.3 PhysicalPropertiesoftheRRLyraeStars . 50 5.4 DistanceModulus ......................... 53 5.5 OosterhoffClassification...................... 54 vi 6 Reticulum......................................... ............... 59 6.1 VariableStars ........................... 61 6.2 PhysicalPropertiesoftheRRLyraeStars . 69 6.3 DistanceModulus ......................... 72 6.4 OosterhoffClassification...................... 73 7 NGC 1786........................................... ............. 75 7.1 VariableStars ........................... 76 7.1.1 RRLyraeStars......................... 83 7.2 PhysicalPropertiesoftheRRLyraeStars . 87 7.3 DistanceModulus ......................... 91 7.4 OosterhoffClassification...................... 92 8 NGC 2210........................................... ............. 96 8.1 RRLyraeStars........................... 97 8.2 PhysicalPropertiesoftheRRLyraeStars . 99 8.3 DistanceModulus ......................... 101 8.4 OosterhoffClassification. .. .. 101 9 Exploring Oosterhoff Intermediate Systems . ..........104 9.1 StructureoftheInstabilityStrip . 104 9.2 IndicatorsofOosterhoffStatus . 106 9.3 Bailey Diagrams for Oosterhoff Intermediate Objects . ... 110 9.3.1 NGC1466vsDraco ...................... 113 9.3.2 NGC1466vsNGC2210.................... 115 9.3.3 NGC2210vsNGC2257.................... 116 9.3.4 NGC 1466 andNGC 2210 vs Oosterhoff I/IISystems . 118 9.3.5 OosterhoffIntermediateLocus? . 120 10 Trends in Physical Properties ....................... ............. 122 11 Conclusions...................................... ................ 136 A NGC 1466 Light Curves................................ ..........141 B Reticulum Light Curves.............................. ............178 C NGC 1786 Light Curves................................ ..........198 References ......................................... .............. 235 vii LIST OF TABLES 3.1 Filters and Their Wavelengths . .. 12 3.2 PropertiesofRRLyraestars. 12 3.3 OosterhoffGroupProperties. 18 4.1 InstrumentProperties. 23 5.1 NGC 1466 Variables: Identification and Coordinates . ....... 38 5.2 NGC 1466 Variables: Photometric Properties . ..... 40 5.3 NGC1466Variables: Photometry . 43 5.4 NGC1466RRd’s: PhotometricParameters . .. 45 5.5 NGC1466RRabFourierCoefficients . 50 5.6 NGC1466RRcFourierCoefficients . 51 5.7 NGC1466RRabPhysicalProperties . 51 5.8 NGC1466RRcPhysicalProperties . 52 6.1 Reticulum Variables: Identification and Coordinates . .......... 65 6.2 Reticulum Variables: Photometric Properties . ....... 66 6.3 Reticulum RRd’s: Photometric Parameters . ..... 67 6.4 Reticulum RRab Fourier Coefficients . .. 70 6.5 Reticulum RRc Fourier Coefficients . .. 70 6.6 Reticulum RRab Physical Properties . ... 71 6.7 Reticulum RRc Physical Properties . ... 72 7.1 NGC 1786 Variables: Identification and Coordinates . ....... 77 viii 7.2 NGC 1786 Variables: Photometric Properties . ..... 80 7.3 NGC1786RRd’s: PhotometricParameters . .. 83 7.4 NGC1786RRabFourierCoefficients . 89 7.5 NGC1786RRcFourierCoefficients . 89 7.6 NGC1786RRabPhysicalProperties . 90 7.7 NGC1786RRcPhysicalProperties . 90 8.1 NGC 2210 Variables: Photometric Properties . ..... 97 8.2 NGC2210RRabFourierCoefficients . 99 8.3 NGC2210RRcFourierCoefficients . 99 8.4 NGC2210RRabPhysicalProperties . 100 8.5 NGC2210RRcPhysicalProperties . 100 9.1 PropertiesforStellarSystems . ... 112 10.1 RRab Physical Properties for Previously Studied Clusters ........ 122 10.2 RRc Physical Properties for Previously Studied Clusters ......... 123 10.3 RRab Physical Properties for LMC Clusters . ..... 130 10.4 RRc Physical Properties for LMC Clusters . ..... 130 ix LIST OF FIGURES 3.1 HRDiagramforRRLyraeStars . 14 3.2 RRLyraeBaileyClasses ........................... 17 3.3 Average period vs metallicity for Globular Clusters . ......... 19 3.4 Milky Way Halo Period-Amplitude Diagram . ... 21 4.1 ExampleofaFourierSeriesFit . 27 5.1 NGC1466CMD ............................... 32 5.2 NGC1466CMD:HorizontalBranch . 33 5.3 NGC1466:RRabLightCurves . 35 5.4 NGC1466:RRcLightCurves . .. .. 36 5.5 NGC1466:RRdLightCurves. 37 5.6 NGC1466PetersenDiagram . .. .. 47 5.7 NGC1466:ACLightCurve ......................... 48 5.8 NGC 1466: B vs V Amplitudes ....................... 49 5.9 NGC 1466: V -bandBaileyDiagram. 55 5.10 NGC 1466: B-bandBaileyDiagram. 56 5.11 NGC 1466: RRLyrae RawPeriod Distribution . ... 57 5.12 NGC 1466: RR Lyrae Fundamentalized Period Distribution ....... 58 6.1 ReticulumCMD ............................... 60 6.2 ReticulumCMD:HorizontalBranch . 61 6.3 Reticulum: RRabLightCurves . 62 x 6.4 Reticulum:RRcLightCurves . 63 6.5 Reticulum:RRdLightCurves . 64 6.6 ReticulumPetersenDiagram. 69 6.7 Reticulum: V -bandBaileyDiagram. 73 6.8 Reticulum: B-bandBaileyDiagram. 74 7.1 NGC1786CMD ............................... 84 7.2 NGC1786CMD:HorizontalBranch . 85 7.3 NGC1786:RRabLightCurves . 86 7.4 NGC1786:RRcLightCurves . .. .. 87 7.5 NGC1786:RRdLightCurves. 88 7.6 NGC 1786: V -bandBaileyDiagram. 93 7.7 NGC 1786: B-bandBaileyDiagram.
Recommended publications
  • ¼¼Çwªâðw¦¹Á¼ºëw£Àêëw ˆ†ˆ€ «ÆÊ¿Àäàww«¸ÂÀ ‰‡‡Œ†ˆ‰†‰Œ
    ¼¼ÇwªÂÐw¦¹Á¼ºËw£ÀÊËw II - C ll r l 400 e e l G C k i 200 r he Dec. P.A. w R.A. Size Size Chart N a he ss d l Object Type Con. Mag. Class t NGC Description l AS o o sc e s r ( h m ) max min No. C a ( ' ) ( ) sc R AAS e r e M C T e B H H NGC 7192 GALXY IND 22 06.8 -64 19 11.2 1.9 m 1.8 m Elliptical pB,S,R,pmbM 134 NGC 7219 GALXY TUC 22 13.1 -64 51 12.5 1.7 m 1 m 27 SBa pB,S,R,2st nr 134 NGC 7329 GALXY TUC 22 40.4 -66 29 11.3 3.7 m 2.7 m 107 SBbc Ring pB,pS,mE90 134 NGC 7417 GALXY TUC 22 57.8 -65 02 12.3 1.9 m 1.3 m 2 SBab Ring pB,cS,R,gpmbM 134 NGC 7637 GALXY OCT 23 26.5 -81 55 12.5 2.1 m 1.9 m Sc vF,pL,R,vlbM,* nr 134 «ÆÊ¿ÀÄÀww«¸ÂÀ ¼¼ÇwªÂÐw¦¹Á¼ºËw£ÀÊËw II - C ll r l 400 e e l G C k i 200 r he Dec. P.A. w R.A. Size Size Chart N a he ss d l Object Type Con. Mag. Class t NGC Description l AS o o sc e s r ( h m ) max min No. C a ( ' ) ( ) sc R AAS e r e M C T e B H H Mel 227 OPNCL OCT 20 12.1 -79 19 5.3 50.0 m II 2 p 135 NGC 6872 GALXY PAV 20 17.0 -70 46 11.8 6.3 m 2.2 m 66 SBb/P F,pS,lE,glbM,1st of 4 135 NGC 6876 GALXY PAV 20 18.3 -70 52 11.1 3 m 2.6 m 80 E3 pB,S,R,eS* sf,2nd of 4 135 NGC 6877 GALXY PAV 20 18.6 -70 51 12.2 2 m 1 m 169 E6 vF,vS,R,3rd of 4 135 NGC 6880 GALXY PAV 20 19.5 -70 52 12.2 2.1 m 1.3 m 35 SBO-a F,S,R,r,vS* att,4 of 4 135 NGC 6920 GALXY OCT 20 44.0 -80 00 12.5 1.8 m 1.5 m SO pB,cS,R,psmbM 135 NGC 6943 GALXY PAV 20 44.6 -68 45 11.4 4 m 2.2 m 130 SBc pF,L,mE,vglbM vS* 135 IC 5052 GALXY PAV 20 52.1 -69 12 11.2 5.9 m 0.9 m 143 SBcd F,L,eE 140 deg 135 NGC 7020 GALXY PAV 21 11.3 -64 02 11.8 3.5 m 1.6 m 165 SBO-a Ring pB,cS,lE,pgbM 135 NGC 7083 GALXY IND 21 35.7 -63 54 11.2 3.6 m 2.1 m 5 Sbc pF,cL,vlE,vgpmbM,r 135 NGC 7096 GALXY IND 21 41.3 -63 55 11.9 1.8 m 1.6 m 130 Sa vF,S,R,vS** nf 135 NGC 7098 GALXY OCT 21 44.3 -75 07 11.3 4 m 2.6 m 74 SB Ring pF,R,g,psmbM,am st 135 NGC 7095 GALXY OCT 21 52.4 -81 32 11.5 4 m 3.3 m Sc F,pL,R,vglbM,*13 inv 135 «ÆÊ¿ÀÄÀww«¸ÂÀ ¼¼ÇwªÂÐw¦¹Á¼ºËw£ÀÊËw II - C ll r l 400 e e l G C k i 200 r he Dec.
    [Show full text]
  • Atlas Menor Was Objects to Slowly Change Over Time
    C h a r t Atlas Charts s O b by j Objects e c t Constellation s Objects by Number 64 Objects by Type 71 Objects by Name 76 Messier Objects 78 Caldwell Objects 81 Orion & Stars by Name 84 Lepus, circa , Brightest Stars 86 1720 , Closest Stars 87 Mythology 88 Bimonthly Sky Charts 92 Meteor Showers 105 Sun, Moon and Planets 106 Observing Considerations 113 Expanded Glossary 115 Th e 88 Constellations, plus 126 Chart Reference BACK PAGE Introduction he night sky was charted by western civilization a few thou - N 1,370 deep sky objects and 360 double stars (two stars—one sands years ago to bring order to the random splatter of stars, often orbits the other) plotted with observing information for T and in the hopes, as a piece of the puzzle, to help “understand” every object. the forces of nature. The stars and their constellations were imbued with N Inclusion of many “famous” celestial objects, even though the beliefs of those times, which have become mythology. they are beyond the reach of a 6 to 8-inch diameter telescope. The oldest known celestial atlas is in the book, Almagest , by N Expanded glossary to define and/or explain terms and Claudius Ptolemy, a Greco-Egyptian with Roman citizenship who lived concepts. in Alexandria from 90 to 160 AD. The Almagest is the earliest surviving astronomical treatise—a 600-page tome. The star charts are in tabular N Black stars on a white background, a preferred format for star form, by constellation, and the locations of the stars are described by charts.
    [Show full text]
  • Optical Astronomy Observatories
    NATIONAL OPTICAL ASTRONOMY OBSERVATORIES NATIONAL OPTICAL ASTRONOMY OBSERVATORIES FY 1994 PROVISIONAL PROGRAM PLAN June 25, 1993 TABLE OF CONTENTS I. INTRODUCTION AND PLAN OVERVIEW 1 II. SCIENTIFIC PROGRAM 3 A. Cerro Tololo Inter-American Observatory 3 B. Kitt Peak National Observatory 9 C. National Solar Observatory 16 III. US Gemini Project Office 22 IV. MAJOR PROJECTS 23 A. Global Oscillation Network Group (GONG) 23 B. 3.5-m Mirror Project 25 C. WIYN 26 D. SOAR 27 E. Other Telescopes at CTIO 28 V. INSTRUMENTATION 29 A. Cerro Tololo Inter-American Observatory 29 B. Kitt Peak National Observatory 31 1. KPNO O/UV 31 2. KPNO Infrared 34 C. National Solar Observatory 38 1. Sacramento Peak 38 2. Kitt Peak 40 D. Central Computer Services 44 VI. TELESCOPE OPERATIONS AND USER SUPPORT 45 A. Cerro Tololo Inter-American Observatory 45 B. Kitt Peak National Observatory 45 C. National Solar Observatory 46 VII. OPERATIONS AND FACILITIES MAINTENANCE 46 A. Cerro Tololo 47 B. Kitt Peak 48 C. NSO/Sacramento Peak 48 D. NOAO Tucson Headquarters 49 VIII. SCIENTIFIC STAFF AND SUPPORT 50 A. CTIO 50 B. KPNO 50 C. NSO 51 IX. PROGRAM SUPPORT 51 A. NOAO Director's Office 51 B. Central Administrative Services 52 C. Central Computer Services 52 D. Central Facilities Operations 53 E. Engineering and Technical Services 53 F. Publications and Information Resources 53 X. RESEARCH EXPERIENCES FOR UNDERGRADUATES PROGRAM 54 XI. BUDGET 55 A. Cerro Tololo Inter-American Observatory 56 B. Kitt Peak National Observatory 56 C. National Solar Observatory 57 D. Global Oscillation Network Group 58 E.
    [Show full text]
  • II. Relative Ages and Distances for Six Ancient Globular Clusters
    Mon. Not. R. Astron. Soc. 000, 1{?? (2002) Printed 7 April 2018 (MN LATEX style file v2.2) Exploring the nature and synchronicity of early cluster formation in the Large Magellanic Cloud: II. Relative ages and distances for six ancient globular clusters R. Wagner-Kaiser1, Dougal Mackey2, Ata Sarajedini1;3, Brian Chaboyer4, Roger E. Cohen5, Soung-Chul Yang6, Jeffrey D. Cummings7, Doug Geisler8, Aaron J. Grocholski9 1University of Florida, Department of Astronomy, 211 Bryant Space Science Center, Gainesville, FL, 32611 USA 2Australian National University, Research School of Astronomy & Astrophysics, Canberra, ACT 2611, Australia 3Florida Atlantic University, Department of Physics, 777 Glades Rd, Boca Raton, FL, 33431 USA 4Dartmouth College, Department of Physics and Astronomy, Hanover, NH, 03755, USA 5Space Telescope Science Institute, Baltimore, MD 21218, USA 6Korea Astronomy and Space Science Institute (KASI), Daejeon 305-348, Korea 7Center for Astrophysical Sciences, Johns Hopkins University, Baltimore MD 21218 8Departamento de Astronomia, Universidad de Concepcion, Casilla 160-C, Concepcion, Chile 9Department of Physics and Astronomy, Swarthmore College, Swarthmore, PA 19081, USA ABSTRACT We analyze Hubble Space Telescope observations of six globular clusters in the Large Magellanic Cloud from program GO-14164 in Cycle 23. These are the deepest available observations of the LMC globular cluster population; their uniformity facilitates a precise comparison with globular clusters in the Milky Way. Measuring the magnitude of the main sequence turnoff point relative to template Galactic globular clusters allows the relative ages of the clusters to be determined with a mean precision of 8.4%, and down to 6% for individual objects. We find that the mean age of our LMC cluster ensemble is identical to the mean age of the oldest metal-poor clusters in the Milky Way halo to 0.2 ± 0.4 Gyr.
    [Show full text]
  • Properties of Stellar Generations in Globular Clusters and Relations With
    Astronomy & Astrophysics manuscript no. carretta c ESO 2018 November 9, 2018 Properties of stellar generations in Globular Clusters and relations with global parameters ⋆ E. Carretta1, A. Bragaglia1, R.G. Gratton2, A. Recio-Blanco3, S. Lucatello2,4, V. D’Orazi2, and S. Cassisi5 1 INAF-Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127 Bologna, Italy 2 INAF-Osservatorio Astronomico di Padova, vicolo dell’Osservatorio 5, I-35122 Padova, Italy 3 Laboratoire Cassiop´ee UMR 6202, Universit`ede Nice Sophia-Antipolis, CNRS, Observatoire de la Cote d’Azur, BP 4229, 06304 Nice Cedex 4, France 4 Excellence Cluster Universe, Technische Universit¨at M¨unchen, Boltzmannstr. 2, D-85748, Garching, Germany 5 INAF-Osservatorio Astronomico di Collurania, via M. Maggini, I-64100 Teramo, Italy Received .....; accepted ..... ABSTRACT We revise the scenario of the formation of Galactic globular clusters (GCs) by adding the observed detailed chemical composition of their different stellar generations to the set of their global parameters. We exploit the unprecedented set of homogeneous abundances of more than 1200 red giants in 19 clusters, as well as additional data from literature, to give a new definition of bona fide globular clusters, as the stellar aggregates showing the presence of the Na-O anticorrelation. We propose a classification of GCs according to their kinematics and location in the Galaxy in three populations: disk/bulge, inner halo, and outer halo. We find that the luminosity function of globular clusters is fairly independent of their population, suggesting that it is imprinted by the formation mechanism, and only marginally affected by the ensuing evolution. We show that a large fraction of the primordial population should have been lost by the proto-GCs.
    [Show full text]
  • The Astrophysical Journal Supplement Series, 45:259-334
    .259W The Astrophysical Journal Supplement Series, 45:259-334, 1981 February 45. © 1981. The American Astronomical Society. All rights reserved. Printed in U.S.A. ... 198lApJS A CATALOG OF RADIAL VELOCITIES IN GALACTIC GLOBULAR CLUSTERS1 R. F. Webbink Department of Astronomy, University of Illinois at Urbana-Champaign Received 1980 February 25; accepted 1980 July 9 ABSTRACT A catalog of all stellar and integrated radial velocities of galactic globular clusters published prior to 1980 is assembled here. Known systematic errors in the data are discussed, and data on 686 stars and 85 globular clusters are presented in the body of the catalog; an Appendix lists published radial velocities in 4 dwarf spheroidal satellites of the Galaxy. Weighted mean velocities for each of the 89 systems in the catalog and Appendix are calculated. Subject headings: clusters: globular— stars: catalogs I. INTRODUCTION data. No catalog of individual stellar and cluster veloci- Radial velocities of galactic globular clusters were ties exists as such. first obtained in the pioneering surveys by Slipher (1918, The present catalog is intended to fill the need for a 1919, 1922, 1924), at Lowell Observatory, and by San- comprehensive listing of all available globular cluster ford (1918, 1919a,6), at Mount Wilson, who together radial velocity data and to provide a systematic reassess- obtained velocities of 18 clusters. In the more than 60 ment of the cluster velocities on this basis. To the best of years since those studies, several other radial velocity the author’s knowledge, all data published prior to 1980 surveys have been published, of which the most exten- January 1 are included here.
    [Show full text]
  • 1.4 the Magellanic Clouds
    The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgementTown of the source. The thesis is to be used for private study or non- commercial research purposes only. Cape Published by the University ofof Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University THE STRUCTURE OF THE LARGE MAGELLANIC CLOUD By Oyirwoth Patrick Abedigamba Town A dissertation submitted in partial fulfillmentCape of the requirements for the degree M.Sc. in the Departmentof of Astronomy, as part of the National Astrophysics and Space Science Programme UNIVERSITY OF CAPE TOWN AUGUST 2010 University Supervisors: Honorary. Prof. Michael Feast1,2 Prof. Patricia Whitelock2,1 1Astronomy Department, University of Cape Town 2South African Astronomical Observatory Key words Large Magellanic Cloud, RR Lyrae stars, Optical Gravitational Lensing Experiment, Fourier parameters, metallicity [Fe/H]. Town Cape of University i Abstract This work gives an account of the study of the metallicity [Fe/H] distribution (gradient) in the oldest population in the Large Magellanic Cloud (LMC), by making use of the available RR Lyrae data from the Optical Gravitational Lensing Experiment III (OGLE III). RR Lyrae stars are amongst the oldest objects in the universe and they have a range in element (metal) abundances. Measuring the distribution of metallicities of RR Lyrae stars in a galaxy gives one clues to the origin of galaxies. It is known that the pulsation periods of RR Lyraes is broadly correlated with their metallicity. This fact has been used for investigating the metallicity distribution of RR Lyrae stars in the LMC.
    [Show full text]
  • Probing the Nature of Black Holes with Gravitational Waves
    Probing the nature of black holes with gravitational waves Thesis by Matthew Giesler In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2020 Defended February 25, 2020 ii © 2020 Matthew Giesler ORCID: 0000-0003-2300-893X All rights reserved iii ACKNOWLEDGEMENTS I want to thank my advisor, Saul Teukolsky, for his mentorship, his guidance, his broad wisdom, and especially for his patience. I also have a great deal of thanks to give to Mark Scheel. Thank you for taking the time to answer the many questions I have come to you with over the years and thank you for all of the the much-needed tangential discussions. I would also like to thank my additional thesis committee members, Yanbei Chen and Rana Adhikari. I am also greatly indebted to Geoffrey Lovelace. Thank you, Geoffrey, for your unwavering support and for being an invaluable source of advice. I am forever grateful that we crossed paths. I also want to thank my fellow TAPIR grads: Vijay Varma, Jon Blackman, Belinda Pang, Masha Okounkova, Ron Tso, Kevin Barkett, Sherwood Richers and Jonas Lippuner. Thanks for the lunches and enlightenment. To my SXS office mates, thank you for all of the discussions – for those about physics, but mostly for the less serious digressions. I must also thank some additional collaborators who contributed to the work in this thesis. Thank you Drew Clausen, Daniel Hemberger, Will Farr, and Maximiliano Isi. Many thanks to JoAnn Boyd. Thank you for all that you have done over the years, but especially for our chats.
    [Show full text]
  • Ngc Catalogue Ngc Catalogue
    NGC CATALOGUE NGC CATALOGUE 1 NGC CATALOGUE Object # Common Name Type Constellation Magnitude RA Dec NGC 1 - Galaxy Pegasus 12.9 00:07:16 27:42:32 NGC 2 - Galaxy Pegasus 14.2 00:07:17 27:40:43 NGC 3 - Galaxy Pisces 13.3 00:07:17 08:18:05 NGC 4 - Galaxy Pisces 15.8 00:07:24 08:22:26 NGC 5 - Galaxy Andromeda 13.3 00:07:49 35:21:46 NGC 6 NGC 20 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 7 - Galaxy Sculptor 13.9 00:08:21 -29:54:59 NGC 8 - Double Star Pegasus - 00:08:45 23:50:19 NGC 9 - Galaxy Pegasus 13.5 00:08:54 23:49:04 NGC 10 - Galaxy Sculptor 12.5 00:08:34 -33:51:28 NGC 11 - Galaxy Andromeda 13.7 00:08:42 37:26:53 NGC 12 - Galaxy Pisces 13.1 00:08:45 04:36:44 NGC 13 - Galaxy Andromeda 13.2 00:08:48 33:25:59 NGC 14 - Galaxy Pegasus 12.1 00:08:46 15:48:57 NGC 15 - Galaxy Pegasus 13.8 00:09:02 21:37:30 NGC 16 - Galaxy Pegasus 12.0 00:09:04 27:43:48 NGC 17 NGC 34 Galaxy Cetus 14.4 00:11:07 -12:06:28 NGC 18 - Double Star Pegasus - 00:09:23 27:43:56 NGC 19 - Galaxy Andromeda 13.3 00:10:41 32:58:58 NGC 20 See NGC 6 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 21 NGC 29 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 22 - Galaxy Pegasus 13.6 00:09:48 27:49:58 NGC 23 - Galaxy Pegasus 12.0 00:09:53 25:55:26 NGC 24 - Galaxy Sculptor 11.6 00:09:56 -24:57:52 NGC 25 - Galaxy Phoenix 13.0 00:09:59 -57:01:13 NGC 26 - Galaxy Pegasus 12.9 00:10:26 25:49:56 NGC 27 - Galaxy Andromeda 13.5 00:10:33 28:59:49 NGC 28 - Galaxy Phoenix 13.8 00:10:25 -56:59:20 NGC 29 See NGC 21 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 30 - Double Star Pegasus - 00:10:51 21:58:39
    [Show full text]
  • ANDREA KUNDER an Der Sternwarte 16 14482 Potsdam, Germany B: [email protected] Curriculum Vitae : +49-331-58395304 M
    Leibniz Institut für Astrophysik ANDREA KUNDER An der Sternwarte 16 14482 Potsdam, Germany B: [email protected] Curriculum Vitae : +49-331-58395304 m: www.aip.de/∼akunder EDUCATION June 2009 Dartmouth College; Hanover, NH PhD in Physics & Astronomy Advisor: Dr. Brian C. Chaboyer Thesis: RR Lyrae stars as tracers of stellar populations in the Galactic bulge and satellite galaxies May 2003 Willamette University; Salem, OR Bachlelors of Arts in Chemistry and German; GPA: 3.73/4.00 2000 - 2001 Ludwig-Maximillians Universität München; Munich, Germany Immersion program in language, culture, and history. 2002 Columbia University’s Biosphere 2; Oracle, AZ Universe Semester; Researched RR Lyrae stars with local telescopes. CURRENT EMPLOYMENT Independent Postdoctoral Fellow, Leibniz Institut für Astrophysik, Potsdam (AIP) PI of a Deutsche Forschungsgemeinschaft (DFG) fully-funded grant to research the Galactic bulge RESEARCH INTERESTS The formation and evolution of Local Group galaxies and the Milky Way through detailed chemical and dynamical studies of individual stars; RR Lyrae stars and distance indicators; Globular clusters and resolved stellar populations. HONORS/AWARDS • 2016 “Eigene Stelle" Deutsche Forschungsgemeinschaft Science Grant (269,650 Euros) • 2013 NOAO Science Excellence Award • 2013 NOAO DECam Installation, Commissioning and Scientific Verification Team Award • 2009 The Dartmouth College Arts and Sciences Graduate Student Research Presentation Award • 2007 Honorable Mention Chambliss Award (AAS) • Mary L. Collins Graduate Scholarship
    [Show full text]
  • Southern Sky Binocular Observing List
    Southern Sky Binocular Observing List Object R.A. DEC Mag PA* Type Size Const Urn SA [ ] NGC 104 00 24.1 -72 05 4.5 ----- GbCl 25.0' Tuc 440 24 [ ] SMC 00 52.8 -72 50 2.7 10 Glxy 316'X186' Tuc 441 24 [ ] NGC 362 01 03.2 -70 51 6.6 ----- GbCl 12.9' Tuc 441 24 [ ] NGC 1261 03 12.3 -55 13 8.4 ----- GbCl 6.9' Hor 419 24 [ ] NGC 1851 05 14.1 -40 03 7.2 ----- GbCl 11.0' Col 393 19 [ ] LMC 05 23.6 -69 45 0.9 170 Glxy 646'X550' Dor 444 24 [ ] NGC 2070 05 38.6 -69 05 8.2 ----- BNeb 40'X25' Dor 445 24 [ ] NGC 2451 07 45.4 -37 58 2.8 ----- OpCl 45.0' Pup 362 19 [ ] NGC 2477 07 52.3 -38 33 5.8 ----- OpCl 27.0' Pup 362 19 [ ] NGC 2516 07 58.3 -60 52 3.8 ----- OpCl 29.0' Car 424 24 [ ] NGC 2547 08 10.7 -49 16 4.7 ----- OpCl 20.0' Vel 396 20 [ ] NGC 2546 08 12.4 -37 38 6.3 ----- OpCl 40.0' Pup 362 20 [ ] NGC 2627 08 37.3 -29 57 8.4 ----- OpCl 11.0' Pyx 363 20 [ ] IC 2391 08 40.2 -53 04 2.5 ----- OpCl 50.0' Vel 425 25 [ ] IC 2395 08 41.1 -48 12 4.6 ----- OpCl 7.0' Vel 397 20 [ ] NGC 2659 08 42.6 -44 57 8.6 ----- OpCl 2.7' Vel 397 20 [ ] NGC 2670 08 45.5 -48 47 7.8 ----- OpCl 9.0' Vel 397 20 [ ] NGC 2808 09 12.0 -64 52 6.3 ----- GbCl 13.8' Car 448 25 [ ] IC 2488 09 27.6 -56 59 7.4 ----- OpCl 14.0' Vel 425 25 [ ] NGC 2910 09 30.4 -52 54 7.2 ----- OpCl 5.0' Vel 426 25 [ ] NGC 2925 09 33.7 -53 26 8.3 ----- OpCl 12.0' Vel 426 25 [ ] NGC 3114 10 02.7 -60 07 4.2 ----- OpCl 35.0' Car 426 25 [ ] NGC 3201 10 17.6 -46 25 6.7 ----- GbCl 18.0' Vel 399 20 [ ] NGC 3228 10 21.8 -51 43 6.0 ----- OpCl 18.0' Vel 426 25 [ ] NGC 3293 10 35.8 -58 14 4.7 ----- OpCl 5.0' Car
    [Show full text]
  • Fourier Analysis of Non-Blazhko Ab-Type RR Lyrae Stars Observed with the Kepler Space Telescope
    Mon. Not. R. Astron. Soc. 000, 1–?? (2011) Printed 25 September 2018 (MN LATEX style file v2.2) Fourier analysis of non-Blazhko ab-type RR Lyrae stars observed with the Kepler space telescope J. M. Nemec1,2⋆, R. Smolec3, J. M. Benk˝o4, P. Moskalik5, K. Kolenberg3,6, R. Szab´o4, D. W. Kurtz7, S. Bryson8, E. Guggenberger3, M. Chadid9, Y.-B. Jeon10, A. Kunder12, A. C. Layden13, K. Kinemuchi8, L. L. Kiss4, E. Poretti14, J. Christensen-Dalsgaard11, H. Kjeldsen11, D. Caldwell15, V. Ripepi16, A. Derekas4, J. Nuspl4, F. Mullally15, S. E. Thompson15, W. J. Borucki8 1Department of Physics & Astronomy, Camosun College, Victoria, British Columbia, V8P 5J2, Canada 2International Statistics & Research Corporation, PO Box 39, Brentwood Bay, British Columbia, V8M 1R3, Canada 3Institute for Astronomy, University of Vienna, T¨urkenschanzstrasse 17, A-1180 Vienna, Austria 4Konkoly Observatory of the Hungarian Academy of Sciences, Konkoly Thege Mikl´os ´ut 15-17, H-1121 Budapest, Hungary 5Copernicus Astronomical Center, ul. Bartycka 18, 00-716 Warsaw, Poland 6Harvard College Observatory, 60 Garden Street, Cambridge, MA 02138, USA 7Jeremiah Horrocks Institute of Astrophysics, University of Central Lancashire, Preston PR1 2HE, UK 8NASA Ames Research Center, MS 244-30, Moffett Field, CA 94035, USA 9Observatoire de la Cˆote dAzur, Universit´eNice Sophia-Antipolis, UMR 6525, Parc Valrose, 06108 Nice Cedex 02, France 10Korea Astronomy and Space Science Institute, Daejeon, 305-348, Korea 11Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark 12Cerro Tololo Inter-American Observatory, Cassila 603, La Serena, Chile 13Physics & Astronomy Department, Bowling Green State University, Bowling Green, Ohio OH 43403 14Osservatorio Astronomico di Brera, Via E.
    [Show full text]