Chinese Satellite Diplomacy: China's Strategic Weapon for Soft and Hard Power Gains

Total Page:16

File Type:pdf, Size:1020Kb

Chinese Satellite Diplomacy: China's Strategic Weapon for Soft and Hard Power Gains Wright State University CORE Scholar Browse all Theses and Dissertations Theses and Dissertations 2018 Chinese Satellite Diplomacy: China's Strategic Weapon for Soft and Hard Power Gains Nicholas Jackman Wright State University Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all Part of the International Relations Commons Repository Citation Jackman, Nicholas, "Chinese Satellite Diplomacy: China's Strategic Weapon for Soft and Hard Power Gains" (2018). Browse all Theses and Dissertations. 1923. https://corescholar.libraries.wright.edu/etd_all/1923 This Thesis is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE Scholar. For more information, please contact [email protected]. CHINESE SATELLITE DIPLOMACY: CHINA’S STRATEGIC WEAPON FOR SOFT AND HARD POWER GAINS A thesis submitted in partial fulfillment of the requirements for the degree of Master of Arts By NICHOLAS JACKMAN B.A., American Military University, 2013 2018 Wright State University WRIGHT STATE UNIVERSITY GRADUATE SCHOOL February 23rd, 2018 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY NICHOLAS JACKMAN ENTITLED CHINESE SATELLITE DIPLOMACY: CHINA’S STRATEGIC WEAPON FOR SOFT AND HARD POWER GAINS BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Arts. ______________________________ Laura M. Luehrmann, Ph.D. Thesis Director ______________________________ Laura M. Luehrmann, Ph.D. Director, Master of Arts Program in International and Comparative Politics Committee on Final Examination: ___________________________________ Laura M. Luehrmann, Ph.D. School of Public and International Affairs ___________________________________ Liam Anderson, Ph.D. School of Public and International Affairs ___________________________________ Alex Elkins, M. A. School of Public and International Affairs ______________________________ Barry Milligan, Ph.D. Interim Dean of the Graduate School ABSTRACT Jackman, Nicholas. M.A., Department of Political Science, Wright State University, 2018. Chinese Satellite Diplomacy: China’s Strategic Weapon for Soft and Hard Power Gains China signed its first turn-key communication satellite contract with Nigeria in 2004. The contract stipulated that China would design, build, integrate, launch, and complete in-orbit checkout for the Nigcomsat-1 communication satellite and then transfer control over to Nigeria. By 2018, China had contracted and launched another six communication satellites for various foreign customers. The customers, who are foreign governments, are geographically dispersed throughout South America, Europe, Africa, and Asia. The satellite sales have occurred during China’s unprecedented economic growth, a time in which China has been granted additional foreign policy options as its power increases relative to others. This thesis utilizes lateral pressure theory to suggest that China has strategically signed contracts with foreign governments for the sale of communication satellites to further its foreign policy objectives. Examination of China’s space history, its foreign policy goals, and key variables shed light on China’s intentions and possible future actions. iii Table of Contents Chapter 1: China’s Foreign Policy and Space Program.................................................................. 1 Realist assumptions and Lateral Pressure Theory ....................................................................... 2 Soft and Hard Power Defined ..................................................................................................... 4 Chinese Governmental Structure ................................................................................................ 8 Views of Chinese Foreign Policy Goals ................................................................................... 10 China’s Foreign Policy Goals ................................................................................................... 14 Foreign Policy Formulation ...................................................................................................... 20 China’s Space Program ............................................................................................................. 21 China’s Current Space Capabilities........................................................................................... 32 Chapter 2: Methodology and Variable Selection .......................................................................... 37 Hypothesis and Expectations .................................................................................................... 44 Chapter 3: Case Studies ................................................................................................................ 45 Nigeria ....................................................................................................................................... 45 Venezuela .................................................................................................................................. 54 Pakistan ..................................................................................................................................... 61 Bolivia ....................................................................................................................................... 68 Laos ........................................................................................................................................... 75 Belarus ....................................................................................................................................... 82 Algeria ....................................................................................................................................... 88 Nicaragua .................................................................................................................................. 94 Chapter 4: Analysis ..................................................................................................................... 102 Chapter 5: Conclusions ............................................................................................................... 110 Variables.................................................................................................................................. 111 Future Studies .......................................................................................................................... 115 Conditions for China’s Future Success ................................................................................... 116 Future Sales ............................................................................................................................. 117 Importance of Space Studies ................................................................................................... 120 Acronym List .............................................................................................................................. 121 Bibliography ............................................................................................................................... 123 iv List of Figures Figure 1. China’s Proposed New Silk Roads ................................................................................ 18 Figure 2. Nigeria and China Trade Balances ................................................................................ 49 Figure 3. Nigeria and US Trade Balances .................................................................................... 50 Figure 4. Venezuela and China Trade Balances ........................................................................... 57 Figure 5. Venezuela and US Trade Balances ................................................................................ 58 Figure 6. Pakistan and China Trade Balances .............................................................................. 64 Figure 7. Pakistan and US Trade Balances ................................................................................... 65 Figure 8. Bolivia and China Trade Balances ................................................................................ 71 Figure 9. Bolivia and US Trade Balances ..................................................................................... 72 Figure 10. Laos and China Trade Balances .................................................................................. 79 Figure 11. Laos and US Trade Balances ....................................................................................... 80 Figure 12. Belarus and China Trade Balances .............................................................................. 86 Figure 13. Belarus and US Trade Balances .................................................................................. 87 Figure 14. Algeria and China Trade Balances .............................................................................. 92 Figure 15. Algeria and US Trade Balances .................................................................................. 93 Figure 16. Nicaragua and China Trade Balances .......................................................................... 99 Figure 17. Nicaragua and US Trade Balances ............................................................................ 100 List of Tables Table 1. Nine Elements of Statecraft ...........................................................................................
Recommended publications
  • Space Age The
    SPACE SCIENCE THE NEW SPACE AGE 4 TWAS Newsletter, Vol. 26 No. 4, 2014 SPECIAL report: Space SCIENCE India is orbiting Mars. China is on the Moon. Even nations like Turkmenistan, Ecuador and Malaysia are sending satellites aloft. But what do they all hope to accomplish? by Sean Treacy ot long ago, a 41-metre rocket thrust off a space age joined by nations great and small. Nlaunch pad in China and ascended toward At least 35 developing countries now have space. Once it escaped Earth’s atmosphere, their own space agencies, and about the same it released a little cube, only 10-by-10-by-10 number have had a satellite in orbit. In the two centimetres. And then, as the cube slowly years since Pegaso’s launch, Peru, Uruguay and stretched out the solar panels on its sides and Turkmenistan have also reached Earth’s orbit drifted into orbit, a control room in Ecuador for the first time. Other countries, such as Costa burst into applause. Rica, Ethiopia and Tunisia, are planning to finish The box was Ecuador’s first satellite – a their first satellites in coming years. compact, inexpensive device called a CubeSat. Mazlan Othman, Malaysia’s first astrophysicist This one was named Pegaso – Spanish for and the former director of the United Nations Pegasus – and on 26 April 2013 it was the Office for Outer Space Affairs (UNOOSA), said centre of attention for a huge portion of this drive for developing countries to enter Ecuador’s 15 million people. In the days after space science is partly due to space’s special the launch they toasted to Pegaso across the power to instill optimism.
    [Show full text]
  • China Science and Technology Newsletter No. 14
    CHINA SCIENCE AND TECHNOLOGY NEWSLETTER Department of International Cooperation No.14 Ministry of Science and Technology(MOST), P.R.China July 25 2014 Special Issue: China’s Space Development Achievements and Prospects of China’s Space Development The 64th IAC Held in Beijing Shenzhou 10 Misson Successfully Accomplished Chang’e 3 Achieved Soft Landing on the Moon GF-1 Satellite - The First Satellite of CHEOS Achievements and Prospects of China’s Space Development Mr. Xu Dazhe, Chairman of China Aerospace Science in 1970 marked the start of China entering into space and and Technology Corporation (CASC) delivered a speech exploring the universe. Due to substantial governmental at the 64th International Astronautical Congress (IAC) on support and promotion, China’s space industry developed September 23, 2013, sharing experiences gained in the quite fast and has made world-known achievements. development of China’s space industry with international As the leader in China’s space sector, CASC is colleagues. assigned to develop, manufacture and test launch OUTSTANDING ACHIEVEMENTS MADE BY vehicles, manned spaceships, various satellites and CHINA’S SPACE INDUSTRY other spacecraft for major national space programs such as China’s Manned Space Program, China’s Lunar China’s space programs have had 57 years of Exploration Program, BeiDou Navigation Satellite development since the 1950s. The successful launch of System, and China’s High-Resolution Earth Observation China’s first artificial satellite Dongfanghong 1 (DFH-1) Monthly-Editorial Board:Building A8 West, Liulinguan Nanli, Haidian District, Beijing 100036, China Contact: Prof.Zhang Ning E-mail: [email protected] [email protected] http://www.caistc.com System.
    [Show full text]
  • Enhanced Orbit Determination for Beidou Satellites with Fengyun-3C Onboard GNSS Data
    GPS Solut DOI 10.1007/s10291-017-0604-y ORIGINAL ARTICLE Enhanced orbit determination for BeiDou satellites with FengYun-3C onboard GNSS data 1,2 1 1 3 3 Qile Zhao • Chen Wang • Jing Guo • Guanglin Yang • Mi Liao • 1 1,2 Hongyang Ma • Jingnan Liu Received: 3 September 2016 / Accepted: 27 January 2017 Ó The Author(s) 2017. This article is published with open access at Springerlink.com Abstract A key limitation for precise orbit determination (Root Mean Square) of overlapping orbit differences of BeiDou satellites, particularly for satellites in geosta- (OODs) is 2.3 cm for GPS-only solution. The 3D RMS of tionary orbit (GEO), is the relative weak geometry of orbit differences between BeiDou-only and GPS-only ground stations. Fortunately, data from a low earth orbiting solutions is 15.8 cm. Also, precise orbits and clocks for satellite with an onboard GNSS receiver can improve the BeiDou satellites were determined based on 97 global geometry of GNSS orbit determination compared to using (termed GN) or 15 regional (termed RN) ground stations. only ground data. The Chinese FengYun-3C (FY3C) Furthermore, also using FY3C onboard BeiDou data, two satellite carries the GNSS Occultation Sounder equipment additional sets of BeiDou orbit and clock products are with both dual-frequency GPS (L1 and L2) and BeiDou determined with the data from global (termed GW) or (B1 and B2) tracking capacity. The satellite-induced vari- regional (termed RW) stations. In general, the OODs ations in pseudoranges have been estimated from multipath decrease for BeiDou satellites, particularly for GEO observables using an elevation-dependent piece-wise linear satellites, when the FY3C onboard BeiDou data are added.
    [Show full text]
  • Generation of GOES-16 True Color Imagery Without a Green Band
    Confidential manuscript submitted to Earth and Space Science 1 Generation of GOES-16 True Color Imagery without a Green Band 2 M.K. Bah1, M. M. Gunshor1, T. J. Schmit2 3 1 Cooperative Institute for Meteorological Satellite Studies (CIMSS), 1225 West Dayton Street, 4 Madison, University of Wisconsin-Madison, Madison, Wisconsin, USA 5 2 NOAA/NESDIS Center for Satellite Applications and Research, Advanced Satellite Products 6 Branch (ASPB), Madison, Wisconsin, USA 7 8 Corresponding Author: Kaba Bah: ([email protected]) 9 Key Points: 10 • The Advanced Baseline Imager (ABI) is the latest generation Geostationary Operational 11 Environmental Satellite (GOES) imagers operated by the U.S. The ABI is improved in 12 many ways over preceding GOES imagers. 13 • There are a number of approaches to generating true color images; all approaches that use 14 the GOES-16 ABI need to first generate the visible “green” spectral band. 15 • Comparisons are shown between different methods for generating true color images from 16 the ABI observations and those from the Earth Polychromatic Imaging Camera (EPIC) on 17 Deep Space Climate Observatory (DSCOVR). 18 Confidential manuscript submitted to Earth and Space Science 19 Abstract 20 A number of approaches have been developed to generate true color images from the Advanced 21 Baseline Imager (ABI) on the Geostationary Operational Environmental Satellite (GOES)-16. 22 GOES-16 is the first of a series of four spacecraft with the ABI onboard. These approaches are 23 complicated since the ABI does not have a “green” (0.55 µm) spectral band. Despite this 24 limitation, representative true color images can be built.
    [Show full text]
  • August 2011 Updates UNSPIDER
    UN-SPIDER November 2011 Updates Please forward this issue of UN-SPIDER Updates to colleagues who might Follow UN-SPIDER on benefit from receiving the information. If you would like to subscribe to this list please visit the following website: http://mail.un-spider.org/cgi-bin/mailman/listinfo/unspider UN-SPIDER News 1. UN-SPIDER Conference in Beijing UN-SPIDER organised the “United Nations Conference on Space-based Technologies for Disaster Management - Best Practices for Risk Reduction and Rapid Response Mapping” on 22-25 November 2011. The conference brought together 128 participants from 42 countries representing 93 national, regional and international organizations, non-government organizations, the private sector and academia representing all the continents. Participants represented civil protection agencies, emergency management organizations, space agencies, remote sensing agencies, research institutions, ministries of environment and natural resources, science and technology bureaus, and other government and non-government agencies. The conference included 7 plenary sessions that incorporated 36 presentations from the experts and users of the technology, 3 side meetings and 3 breakout discussion sessions. It covered a range of topics including advancements in technology, best practices in disaster risk management, experiences in rapid response mapping, etc. Outcomes and impacts of the recent UN-SPIDER technical advisory missions were discussed. For further information and the Conference Report >> UN-SPIDER 2. Second UN-SPIDER International Expert Meeting: Crowdsource Mapping for Preparedness and Emergency Response which took place in Geneva, Switzerland on 16 November 2011 This one-day Expert Meeting brought together 72 experts and practitioners from 21 countries. This second Expert Meeting was purposely organised back-to-back with the International Conference on Crisis Mapping (ICCM 2011) (http://crisismappers.net/page/iccm-geneva-2011).
    [Show full text]
  • Federal Register/Vol. 85, No. 103/Thursday, May 28, 2020
    32256 Federal Register / Vol. 85, No. 103 / Thursday, May 28, 2020 / Proposed Rules FEDERAL COMMUNICATIONS closes-headquarters-open-window-and- presentation of data or arguments COMMISSION changes-hand-delivery-policy. already reflected in the presenter’s 7. During the time the Commission’s written comments, memoranda, or other 47 CFR Part 1 building is closed to the general public filings in the proceeding, the presenter [MD Docket Nos. 19–105; MD Docket Nos. and until further notice, if more than may provide citations to such data or 20–105; FCC 20–64; FRS 16780] one docket or rulemaking number arguments in his or her prior comments, appears in the caption of a proceeding, memoranda, or other filings (specifying Assessment and Collection of paper filers need not submit two the relevant page and/or paragraph Regulatory Fees for Fiscal Year 2020. additional copies for each additional numbers where such data or arguments docket or rulemaking number; an can be found) in lieu of summarizing AGENCY: Federal Communications original and one copy are sufficient. them in the memorandum. Documents Commission. For detailed instructions for shown or given to Commission staff ACTION: Notice of proposed rulemaking. submitting comments and additional during ex parte meetings are deemed to be written ex parte presentations and SUMMARY: In this document, the Federal information on the rulemaking process, must be filed consistent with section Communications Commission see the SUPPLEMENTARY INFORMATION 1.1206(b) of the Commission’s rules. In (Commission) seeks comment on several section of this document. proceedings governed by section 1.49(f) proposals that will impact FY 2020 FOR FURTHER INFORMATION CONTACT: of the Commission’s rules or for which regulatory fees.
    [Show full text]
  • The Chinese Navy: Expanding Capabilities, Evolving Roles
    The Chinese Navy: Expanding Capabilities, Evolving Roles The Chinese Navy Expanding Capabilities, Evolving Roles Saunders, EDITED BY Yung, Swaine, PhILLIP C. SAUNderS, ChrISToPher YUNG, and Yang MIChAeL Swaine, ANd ANdreW NIeN-dzU YANG CeNTer For The STUdY oF ChINeSe MilitarY AffairS INSTITUTe For NATIoNAL STrATeGIC STUdIeS NatioNAL deFeNSe UNIverSITY COVER 4 SPINE 990-219 NDU CHINESE NAVY COVER.indd 3 COVER 1 11/29/11 12:35 PM The Chinese Navy: Expanding Capabilities, Evolving Roles 990-219 NDU CHINESE NAVY.indb 1 11/29/11 12:37 PM 990-219 NDU CHINESE NAVY.indb 2 11/29/11 12:37 PM The Chinese Navy: Expanding Capabilities, Evolving Roles Edited by Phillip C. Saunders, Christopher D. Yung, Michael Swaine, and Andrew Nien-Dzu Yang Published by National Defense University Press for the Center for the Study of Chinese Military Affairs Institute for National Strategic Studies Washington, D.C. 2011 990-219 NDU CHINESE NAVY.indb 3 11/29/11 12:37 PM Opinions, conclusions, and recommendations expressed or implied within are solely those of the contributors and do not necessarily represent the views of the U.S. Department of Defense or any other agency of the Federal Government. Cleared for public release; distribution unlimited. Chapter 5 was originally published as an article of the same title in Asian Security 5, no. 2 (2009), 144–169. Copyright © Taylor & Francis Group, LLC. Used by permission. Library of Congress Cataloging-in-Publication Data The Chinese Navy : expanding capabilities, evolving roles / edited by Phillip C. Saunders ... [et al.]. p. cm. Includes bibliographical references and index.
    [Show full text]
  • Highlights in Space 2010
    International Astronautical Federation Committee on Space Research International Institute of Space Law 94 bis, Avenue de Suffren c/o CNES 94 bis, Avenue de Suffren UNITED NATIONS 75015 Paris, France 2 place Maurice Quentin 75015 Paris, France Tel: +33 1 45 67 42 60 Fax: +33 1 42 73 21 20 Tel. + 33 1 44 76 75 10 E-mail: : [email protected] E-mail: [email protected] Fax. + 33 1 44 76 74 37 URL: www.iislweb.com OFFICE FOR OUTER SPACE AFFAIRS URL: www.iafastro.com E-mail: [email protected] URL : http://cosparhq.cnes.fr Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law The United Nations Office for Outer Space Affairs is responsible for promoting international cooperation in the peaceful uses of outer space and assisting developing countries in using space science and technology. United Nations Office for Outer Space Affairs P. O. Box 500, 1400 Vienna, Austria Tel: (+43-1) 26060-4950 Fax: (+43-1) 26060-5830 E-mail: [email protected] URL: www.unoosa.org United Nations publication Printed in Austria USD 15 Sales No. E.11.I.3 ISBN 978-92-1-101236-1 ST/SPACE/57 *1180239* V.11-80239—January 2011—775 UNITED NATIONS OFFICE FOR OUTER SPACE AFFAIRS UNITED NATIONS OFFICE AT VIENNA Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law Progress in space science, technology and applications, international cooperation and space law UNITED NATIONS New York, 2011 UniTEd NationS PUblication Sales no.
    [Show full text]
  • The Annual Compendium of Commercial Space Transportation: 2012
    Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2012 February 2013 About FAA About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2013) NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. • i • Federal Aviation Administration’s Office of Commercial Space Transportation Dear Colleague, 2012 was a very active year for the entire commercial space industry. In addition to all of the dramatic space transportation events, including the first-ever commercial mission flown to and from the International Space Station, the year was also a very busy one from the government’s perspective. It is clear that the level and pace of activity is beginning to increase significantly.
    [Show full text]
  • Magisterarbeit
    MAGISTERARBEIT Titel der Magisterarbeit „How does China’s space program fit their development goals?“ Verfasser Manfred Steinkellner, Bakk. phil. angestrebter akademischer Grad Magister der Philosophie (Mag.phil.) Innsbruck, Juni 2009 Studienkennzahl lt. Studienblatt: A 066 811 Studienrichtung lt. Studienblatt: Sinologie Betreuer: Prof. Dr. Rüdiger Frank, Prof. Dr. Susanne Weigelin-Schwiedrzik Zusammenfassung Diese Diplomarbeit befasst sich mit dem chinesischen Weltraumprogramm und seiner Rolle im Kontext der chinesischen Entwicklungspolitik. Die Bedeutung ist einerseits durch Chinas wirtschaftlichen Aufstieg gegeben und andererseits durch das erhöhte strategische und kommerzielle Interesse am Weltraum. Der erste Teil dieser Arbeit versucht kurz den Weg Chinas zu seiner aktuellen Lage zu skizzieren. Die wichtigsten Entwicklungsschritte in Wirtschaft, Militär und Umwelt werden aufgezeigt um ein besseres Verständnis der Realität zu ermöglichen. Nach einer kurzen Analyse der aktuellen Situation werden die chinesischen Entwicklungspläne untersucht. Das Hauptaugenmerk liegt auf dem elften chinesischen Fünf-Jahres Plan, dem elften chinesischen Entwicklungsplan für Weltraum sowie dem Langzeit Entwicklungsplan für Wissenschaft und Technik. Die Analyse dieser Daten führt zu einem konkreteren Verständnis der aktuellen Ziele Chinas und ermöglicht somit eine Einordnung des Weltraumprogramms in die aktuelle chinesische Entwicklung. Der zweite Teil untersucht sechs Kernbereiche des chinesischen Weltraumprogramms. Es handelt sich dabei um das bemannte
    [Show full text]
  • The Progress of Fengyun Satellite Program and Its Applications
    The Progress of Fengyun Satellite Program and Its Applications Qifeng LU National Satellite Meteorological Center, China Meteorological Administration (NSMC/CMA) United Nations/China Forum on Space Solutions: Realizing the Sustainable Development Goals Outline Fengyun Program Overview Current Missions and Services Latest Progress Future Programs National Satellite Meteorological Center ,CMA 1. Fengyun Program Overview Chinese FENGYUN Meteorological Satellites Polar System Geostationary System First Generation First FY-1 A, B, C, D Generation FY-2 A, B, C, D, E, F, G, H Second Second Generation Generation FY-3 A, B, C, D FY-4 A FY-3E, F, G planned until 2025 FY-4B, C, D planned until 2025 2019/5/3 United Nations/China Forum on Space Solutions: Realizing the Sustainable Development Goals 3 Launched Satellites Since Jan. 1969, China began to develop his own meteorological Satellite Leo Launch Data Geo Launch Data FY-1A Sept. 7, 1988 FY-2A Jun. 10, 1997 FY-1B Sept. 3, 1990 FY-2B Jun. 25, 2000 FY-1C May 10, 1999 FY-2C Oct. 18, 2004 FY-1D May 15, 2002 FY-2D Dec. 8, 2006 FY-3A May 27, 2008 FY-2E Dec. 23, 2008 FY-3B Nov. 5, 2010 FY-2F Jan. 13, 2012 FY-3C Sept. 23, 2013 FY-2G Dec. 31, 2014 FY-3D Nov. 15, 2017 FY-4A Dec. 11, 2016 FY-2H Jun. 5, 2018 Overall Development Strategy (4 stages): 1) 1970 - 1990: Conducting satellite research and development 2) 1990 - 2000: Implementing transition from R&D to operational 3) 2000 - 2010: Implementing transition from 1st generation to 2nd generation 4) 2010 - 2020: Pursuing accuracy and precision of satellite measurements 2019/5/3 United Nations/China Forum on Space Solutions: Realizing the Sustainable Development Goals 4 International User Community Global Data Regional Data Kangerlussu Svalbard aq Lannion MaspalomaAthens s FY-3C sounding data have been assimilated into CMA GRAPES, ECMWF, EUMETSAT Advanced UK NWP model operationally.
    [Show full text]
  • January 2018 Satellite & Space Monthly Review
    February 5, 2018 Industry Brief Chris Quilty [email protected] January 2018 +1 (727)-828-7085 Austin Moeller Satellite & Space Monthly Review [email protected] +1 (727)-828-7601 January 11, 2018: Air force to utilize more smallsats for weather DMSP F19 Readying for Launch observation. Citing growing budget constraints, the US Air Force announced that is considering using small satellites in combination with next-gen software rather than procuring traditional multibillion-dollar, cost-plus spacecraft to replace/replenish its Defense Meteorological Satellite Program (DMSP). Despite awarding a $94 million contract to Ball Aerospace in November to design the Weather System Follow-on Microwave (WSF-M) satellite, the Air Force plans to begin launching small satellites equipped with infrared imaging and electro-optical instruments to monitor battlefield weather starting in 2021-2022. The Air Force is also considering augmenting their current capabilities with inactive NOAA GOES satellites in the near-term. These considerations parallel recent comments by USSTRATCOM commander Gen. John Hyten, who has repeatedly stated that the Air Force currently spends too much time and money developing large, high- cost satellites, and needs to invest in more small satellites for strategic Source: Lockheed Martin and budgetary reasons. Conclusion: Smallsats ready for a DoD growth spurt? With growing evidence of Russian/Chinese anti- satellite technology demonstrations, the Pentagon is becoming increasingly reluctant to spend billions of dollars on monolithic “Battlestar Galactica” satellite systems that place too many eggs in one basket. While not as robust or technologically-capable as high-end spacecraft built by traditional contractor, such as Lockheed Martin, small satellites are orders-of-magnitude less expensive to build, launch, and maintain.
    [Show full text]