Modular and Flexible Payload Arrangements for Surface Ships with Reconfigurable Floors and Sliding Bulkheads
Total Page:16
File Type:pdf, Size:1020Kb
Master of Science in Mechanical Engineering June 2021 Modular and flexible payload arrangements for surface ships with reconfigurable floors and sliding bulkheads Haris Hodzic Liban Mohamed Hassan Faculty of Mechanical Engineering, Blekinge Institute of Technology, 371 79 Karlskrona, Sweden This thesis is submitted to the Faculty of Mechanical Engineering at Blekinge Institute of Technology to fulfill the requirements for the degree of Master of Science in Mechanical Engineering. The thesis was done in cooperation with Saab Kockums, Karlskrona. The authors declare that they are the sole authors of this thesis and that they have not used any sources other than those listed in the bibliography and identified as references. They further declare that they have not submitted this thesis at any other institution to obtain a degree. Contact Information: Authors: Haris Hodzic E-mail: [email protected] Liban Mohamed Hassan E-mail: [email protected] University advisor: Ph.D. Student Raj Jiten Machchhar Department of Mechanical engineering Faculty of Mechanical Engineering Internet: www.bth.se Blekinge Institute of Technology Phone: +46 455 38 50 00 SE–371 79 Karlskrona, Sweden Fax: +46 455 38 50 57 i Abstract Background The shipbuilding trends have changed from being single purpose ships only to using modular and flexible parts or systems to carry out multiple missions with as few ships as possible to minimize the ecological and economic impact. A flotilla can become smaller by having multiple ships capable of carrying out various missions instead of single-purpose ships. Objectives The objectives throughout the thesis are to provide an insight into how the trends today are affecting the market of surface ships and to study how a reconfigurable floor can be combined with a sliding bulkhead to be implemented into the cargo space. The developed concept needs to meet the regulations set by DNV-GL, which are an international classification society that is experts in risk management and quality assurance. This master’s thesis focuses on how to implement modularity and flexibility in payload arrangement for surface ships. Method The work process is based on the methodology design thinking’s four phases, which are initiation, inspiration, ideation, and implementation. Throughout the project, a trendwatching was conducted to determine the most impactful trends on the naval market. Using semi-structured interviews, techwatching and brainstorming iterations, a requirements list was defined to support the concept development. The concepts were weighed against each other, and the highest scoring was developed into a parametric CAD model. The model was later compared to the DNV-GL regulations to see whether the developed concept affects existing systems such as HVAC. Results Some of the top trends that have been affecting the naval market lately is modularity, flexibility, and unmanned surface vessels. The developed concept was a combination of a pallet loading floor and cargo floor rollers for reconfigurable floors and garage door-inspired bulkhead. The concept was visualized in Autodesk Inventor Professional 2020 to be further analyzed and display how the concept operates, its functions and how the system compares to DNV-GL regulations. Conclusions The top trends affecting the naval market are modularity, flexibility, and unmanned surface vessels to mention a few. Some of the regulations from DNV-GL that need to be considered when implementing a modular and flexible payload arrangement are fire protection and tightness requirements. However, the regulations can be stricter or changed depending on the role, design, and placement of the payload arrangement. Keywords: Trendwatching, DNV-GL, Parametric CAD model, Concept development, Cargo management ii Sammanfattning Bakgrund Användning av modulära och flexibla system eller delar är några trender inom skeppsbyggeri som har fått uppmärksamhet. En av anledningarna är den minskade ekonomiska samt ekologiska påverkan av att kunna utföra olika typer av uppdrag med så få fartyg som möjligt. Modulära och flexibla system kan leda till att en flottilj kan bestå av färre fartyg utan att påverka dess möjlighet till att genomföra uppdrag. Syfte Syftet med examensarbetet är att skapa en inblick i hur dagens trender påverkar ytfartygsmarknaden och hur en kombinerad lösning av konfigurerbara golv och glidande skott kan bli implementerat i lastutrymmet. Det utvecklade konceptet måste möta föreskrifterna satta av DNV-GL, som är ett internationellt klassificeringssällskap som är experter inom riskhantering och kvalitetsförsäkran. Detta examensarbete fokuserar på hur man kan implementera modularitet och flexibilitet i lastutrymmet för att kunna frakta diverse last samt utrustning. Metod Arbetsprocessen är baserat på metodiken Design Thinkings fyra faser, vilka är uppstart, inspiration, tankegång och implementering. För bättre förståelse utfördes en trendwatching för att definiera de trender som påverkar marinmarknaden. Med hjälp av semi-strukturerade intervjuer, techwatching och brainstorming iterationer, skapades en lista med krav för de genererade koncepten. Koncepten blev jämförda med varandra och det koncept med högst poäng blev vidareutvecklat till en parametrisk CAD modell. Den utvecklade modellen jämfördes senare gentemot regelverken från DNV-GL och huruvida den påverkar existerande system som till exempel uppvärmning, ventilation och luftkonditionering. Resultat Några av topptrenderna som har påverkat den marina marknaden på senaste tiden är modularitet, flexibilitet och obemannade ytfartyg. Det utvecklade konceptet var en kombination av lastpallsinspirerat golv och rullande lastgolv för konfigurerbart golv samt skott som inspirerade av garagedörrar. Konceptet visualiserades i Autodesk Inventor Professional 2020 för att utföra ytterligare analyser och demonstrera dess funktioner och hur systemet förhåller sig till DNV-GLs föreskrifter. Slutsatser De största trenderna som påverkar ytfartygsmarknaden är bland annat modularitet, flexibilitet och obemannade ytfartyg. Några föreskrifter som är ett krav från DNV-GL när ett modulärt och flexibelt lasthantering system ska implementeras är eldskydd och täthetskrav. Dessa förskrifter kan vara striktare eller bli förändrade beroende på typen, designen och placering av lasthanterings systemet. Nyckelord: Trendwatching. DNV-GL, Parametrisk CAD modell, Konceptutveckling, Lasthantering iii Acknowledgments We would like to thank Joakim Hill, Isabel Dreveborn, Magnus Olsson, Mårten Hansson, and other workers from Saab Kockums for helping us with excellent guidance on what aspects are essential, giving us feedback whenever necessary, and for helping us with supervision throughout this project. We would also like to thank our supervisor Raj Jiten Machchhar from Blekinge Institute of Technology, who helped us understand the importance of the master thesis and took the time to meet with us when we needed guidance. iv Contents List of figures ix List of tables x 1 Introduction 1 1.1 Background 1 1.1.1 Saab Group 1 1.1.2 Surface ships 1 1.2 Problem statement & objectives 2 1.3 Scope and aim 2 1.4 Delimitations 3 1.5 Thesis questions 3 1.6 Thesis outline 4 2 Theoretical backgrounds 5 2.1 Definition of Modularity & Flexibility 5 2.2 Design thinking 5 2.3 PDCA 6 2.4 Evaluation Matrix 6 2.5 Multi-purpose ships 8 2.5.1 MPS Life cycle costs 8 2.6 Bulkheads 9 2.7 Reconfiguration 9 2.8 Parametric CAD modeling 9 2.9 DNV-GL 10 2.9.1 DNV-GL Regulations 10 3 Method 12 3.2 Inspiration 12 3.2.1 Information gathering 12 3.2.2 Trendwatching 12 3.2.3 Techwatching 13 3.2.4 Semi-structured interviews and presentations 13 3.3 Ideation 13 3.3.1 Idea generation phase 13 3.3.2 Requirement list 14 v 3.3.3 Evaluation matrix 14 3.3.4 Pre-totypes 14 3.4 Implementation 15 3.4.1 Parametric CAD modeling 15 4 Results 17 4.1 Trendwatching 17 4.1.1 System trends 17 4.1.2 Design trends 18 4.2 Techwatching 20 4.2.1 HSwMS Visby-class corvette 20 4.2.2 Littoral combat ships 22 4.2.3 Mine Countermeasure ship 23 4.2.4 SAM 3 Minesweeping USV 23 4.2.5 Existing solutions 24 4.3 Ideation 25 4.3.1 Requirements list 25 4.3.2 Reconfigurable floor concepts 27 4.3.3 Sliding bulkheads concepts 30 4.3.4 Lifting mechanisms 31 4.3.5 Evaluation matrix 32 4.3.6 Combination of concepts 33 4.4 Implementation 34 4.4.1 Parametric CAD model 35 4.4.2 DNV-GL regulations 39 5 Discussion 40 5.1 Design thinking 40 5.2 Trendwatching 40 5.3 Techwatching 41 5.4 Ideation 42 5.5 Parametric CAD modeling 42 5.6 DNV-GL regulations 43 5.7 Analyzation of developed idea 44 5.7.1 Advantages 44 5.7.2 Disadvantages 44 6 Conclusion and future work 46 6.1 Conclusions 46 vi 6.2 Future work 47 References 48 vii Terminology 1. S.B. - Sliding bulkheads 2. Bulkhead - A bulkhead is an upright wall within the hull of a ship or container. It can also work to resist pressure or shut off water, fire, and gas. 3. R.F. - Reconfigurable floors 4. MPS - Multi-purpose ships 5. SPS - Single-purpose ships 6. DNV-GL - An international classification society that are experts in risk management and quality assurance. 7. ASW - Anti-submarine warfare 8. MCM - Mine countermeasures 9. LCS - Littoral combat ships 10. ASuW - Anti-surface warfare 11. HVAC - Heating, ventilation, and air condition 12. CAD - Computer Aided Design 13. PDCA - Plan, do, check, and act. 14. MPCV - Multi-purpose cargo vessel 15. CBO - Congressional Budget Office 16. W.T - Watertight 17. Pre-totypes - A pre-totype is a simplified version of an early prototype where it explains the functions in an overview description or a hand drawn sketch. 18. QFD - Quality Function Deployment 19. HoQ - House of Quality 20. USV - Unmanned surface vehicle 21. SAM - Self-propelled Acoustic Magnetic 22. SW - surface warfare 23. HSwMS - His Swedish Majesty’s ship 24. MCMV - Mine countermeasure vessel 25. MIW - Mine warfare 26. SUW - Surface warfare viii List of figures [1] Visby-class corvette | Saab’, Start.