Cover Story BOEING FRONTIERS
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Lockheed Martin Space Systems Company NASA SBIR Overview
Lockheed Martin Space Systems Company NASA SBIR Overview and Engagement Craig Owens Program Manager, SBIR Lockheed Martin Aeronautics Space Systems Company Portfolio Special Strategic & Missile Defense Civil Space Programs NASA Human Adv Programs Strategic Missiles Missile Defense Planetary Weather & Exploration Exploration Environment Military Space Mission Solutions Protected Narrowband Navigation Weather Early Space End-to-End Geospatial Comms Comms Warning Protection Mission Systems Technologies Commercial Space Advanced Technology Center Subsidiaries Remote Commercial Wind Energy Optics, RF Adv. Materials Space Sciences Sensing SATCOM Management & Photonics & Nano Systems & Instruments LM SBIR Team Mission 1. Collaborate with small businesses to get advanced technology to our customers 2. Build strategic, long term relationships with small businesses by leveraging Gov’t SBIR/STTR R&D funding 3. Understand what small business technologies are potentially coming to the market 4. Align discriminating small business technologies to LM programs and future opportunities to reduce cost and win new business 5. Complement our small business supply chain and support the Gov’t initiative to leverage small businesses © 2016 Lockheed Martin Corporation, All Rights Reserved LM SBIR Engagement • Strong engagement in the SBIR/STTR Program – Seeking technology maturation supporting program needs – 5-10 year outlook – TRL 6 needed for potential LM investment – Expect small businesses to be informed on LM • Benefits to LM – Innovation & Affordability – Strategic partnerships – Complements LM investments – Help drive innovation into next generation systems © 2016 Lockheed Martin Corporation, All Rights Reserved LMSSC Endorsement Process • LM SME’s assess all concepts • Leadership aware of engagements • Process allows for relationship building © 2016 Lockheed Martin Corporation, All Rights Reserved 5 6. -
Lockheed Martin Space Advanced Programs
Lockheed Martin Space Advanced Programs Requirements in NASA Science Missions © 2019 Lockheed Martin. All Rights Reserved Performance and Operational Measurement Requirements Emitted radiance Detect photons; Convert to e- Calibrate Data Science Data Quantized Photons Electrons Science Data Radiances § Orbit § Wavelength band § Detection § Science question § Signal photons § Integration time § Navigation analysis § Background scene § Quantum efficiency § Radiometric calibration § Field of View § Dark current § Resolution § Read noise § Solar intrusion Mission Requirements Performance Requirements • Duration • Environment • Electrical • Mechanical Iterate • Reliability • Operational • Thermal • Structural Evolve Requirements Constraints Resource Requirements • Spacecraft • Mass • Thermal interface • Power • Data rate • Launch vehicle • Size • Alignment Concept Design 2 Example Requirements Tree Implementing NASA Level 1s Institution/NASA Center Level 1 Reqts Program Level 2 Launch Environmental Mission Assurance Mission Reqts Doc Project Vehicle IRD Reqts Requirements (MAR) Flight System Level 3 Mission Ops & Element- Payload Spacecraft Flight to Ground Payload Reqts to SC ICDs Ground Developed, Requirements Doc ICD System Reqts Project Approved Payload/ Level 4 Spacecraft Ground Instrument Testbeds Element-Controlled Subsystems Subsystems Subsystems 3 Mars Atmosphere and Volatile EvolutioN (MAVEN) v Objective: Characterize Mars’ atmospheric escape v PI: Dr. Bruce Jakosky, CU LASP v Implementing Institution: NASA Goddard Space Flight Center v Spacecraft and Mission Ops: Lockheed Martin v Instruments: UCB SSL, CU/LASP, NASA GSFC, CNES v Mars relay: Jet Propulsion Laboratory v Launched November 18th 2013 v MOI September 22nd 2014 v Currently in third mission extension Image Credit: NASA/B. Ingalls 5 Science Missions Across the Solar System 6 © 2019 Lockheed Martin. All Rights Reserved. -
The Modern Broadcaster's Journey from Satellite to Ip
A CONCISE GUIDE TO… THE MODERN BROADCASTER’S JOURNEY FROM SATELLITE TO IP DELIVERY The commercial communication satellite will celebrate its 60th birthday next year but the concept is far from entering retirement. Nonetheless, as it moves into its seventh decade, the use of the satellite is rapidly evolving. As of 2020, approximately 1,400 communications satellites are orbiting the earth, delivering tens of thousands of TV channels and, increasingly, internet connectivity. Satellite communication is also a vital asset for the TV production industry, allowing live reportage to and from anywhere in the world – almost instantly. 1 Its place in the TV ecosystem is changing, much higher value. It was also well before the however, as it plays a reduced role in the on-demand content revolution. This trend delivery of video – a shift that several has led to the last major shift: the emergence underlying trends have accelerated. The first of multiplatform, over-the-top streaming is a massive proliferation of video content. over the last 15 years, which has eroded the dominance of the linear broadcaster. The Although satellite use in TV production rise of the streaming giants and specialist has been integral to high-profile live news platforms has forced broadcasters to increase and sports coverage, its role is waning. The their overall distribution capacity using last couple of decades has seen a massive Internet Protocol (IP)-centric methods. increase in live content from a broader range of leagues, niche sports, performance The trends impacting satellite’s role in events and 24-hour news networks. This the television landscape are forcing many expansion of content leads to the second broadcasters to look to their future and factor. -
Howard Hughes
Howard Hughes Howard Hughes September 24, 1905 Born Houston, Texas, USA April 5, 1976 (aged 70) Died Houston, Texas, USA Chairman, Hughes Aircraft; Occupation industrialist; aviator; engineer; film producer Net worth US$12.8 bn (1958 Forbes 400) Ella Rice (1925-1929) Spouse Terry Moore (1949-1976) Jean Peters (1957-1971) For the Welsh murderer, see Howard Hughes (murderer). Howard Robard Hughes, Jr. (September 24, 1905 – April 5, 1976) was, in his time, an aviator, engineer, industrialist, film producer and director, a palgrave, a playboy, an eccentric, and one of the wealthiest people in the world. He is famous for setting multiple, world air-speed records, building the Hughes H-1 Racer and H-4 Hercules airplanes, producing the movies Hell's Angels and The Outlaw, owning and expanding TWA, his enormous intellect[1], and for his debilitating eccentric behavior in later life. Early years Hughes was born in Houston, Texas, on 24 September or 24 December 1905. Hughes claimed his birthday was Christmas Eve, although some biographers debate his exact birth date, (according to NNDB.com, it was most likely "the more mundane date of September 24"[2] ). His parents were Allene Stone Gano Hughes (a descendant of Catherine of Valois, Dowager Queen of England, by second husband Owen Tudor) [3][4] and Howard R. Hughes, Sr., who patented the tri-cone roller bit, which 1 allowed rotary drilling for oil in previously inaccessible places. Howard R. Hughes, Sr. founded Hughes Tool Company in 1909 to commercialize this invention. Hughes grew up under the strong influence of his mother, who was obsessed with protecting her son from all germs and diseases. -
Low-Cost Wireless Internet System for Rural India Using Geosynchronous Satellite in an Inclined Orbit
Low-cost Wireless Internet System for Rural India using Geosynchronous Satellite in an Inclined Orbit Karan Desai Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Master of Science In Electrical Engineering Timothy Pratt, Chair Jeffrey H. Reed J. Michael Ruohoniemi April 28, 2011 Blacksburg, Virginia Keywords: Internet, Low-cost, Rural Communication, Wireless, Geostationary Satellite, Inclined Orbit Copyright 2011, Karan Desai Low-cost Wireless Internet System for Rural India using Geosynchronous Satellite in an Inclined Orbit Karan Desai ABSTRACT Providing affordable Internet access to rural populations in large developing countries to aid economic and social progress, using various non-conventional techniques has been a topic of active research recently. The main obstacle in providing fiber-optic based terrestrial Internet links to remote villages is the cost involved in laying the cable network and disproportionately low rate of return on investment due to low density of paid users. The conventional alternative to this is providing Internet access using geostationary satellite links, which can prove commercially infeasible in predominantly cost-driven rural markets in developing economies like India or China due to high access cost per user. A low-cost derivative of the conventional satellite-based Internet access system can be developed by utilizing an aging geostationary satellite nearing the end of its active life, allowing it to enter an inclined geosynchronous orbit by limiting station keeping to only east-west maneuvers to save fuel. Eliminating the need for individual satellite receiver modules by using one centrally located earth station per village and providing last mile connectivity using Wi-Fi can further reduce the access cost per user. -
Reorganization Strengthened Delco to Deal with a Challenging
reorganization strengthened Delco to deal business that is succeeding. Employee byes are with a challenging competitive environment. disrupted, customer relationships must be pre· making possible new steps toward rightsizing served. shareholders need to be assured and sat· and structural cost reductions, accelerated Isfied even as the need to do daily banlc with technology introduction into GM's North the competitIOn continues. /\merican Operanons, and a realignment of Yet. at each stage in our company's history. International operations to sharpen focus on Hughes has always been a place where people profitable growth accept change as challenge - a company that's been too busy defining the future to be afraid As the fastest growing segment of Hughes of it. We are confident the changes we're mak· Electronics, Telecommunications and Space ing in 1997 will serve to solidify the one con· posted a 33% growth rate in 1996 - with total stant through Hughes' long history - securing revenues of $4.1 billion. Hughes Space and this company's legacy as an industry leader for Communications increased revenues by 21 %, years to come. Hughes Nerwork Systems broke the $1 billion revenue threshold for the first time, while the PanAmSat merger announcement marked a major milestone on the path to a truly global C. Michael Armstrong communications service. DIRECTV in the Chairman of the Board and United States, attained a subscriber base of 2.5 Chief Executive Officer million in early 1997, making it equivalent in size to the nation's seventh largest cable televi sion company. Using technology, talent and investment to lead in markets, to build new businesses, to cre Charles H. -
Andrew Tsoi Lockheed Martin Space Systems Company University of Colorado Boulder (M.S
5 Years Later Shades of Blue Andrew Tsoi Lockheed Martin Space Systems Company University of Colorado Boulder (M.S. 2014) Heritage High School (Class of 2008) A LITTLE ABOUT ME › Born June 11th 1990 in Englewood CO › K-12 (Littleton Public Schools) – Runyon Elementary – Powell Middle School – Heritage High School › Clubs and Activities – Littleton Rotary/Interact Club – Destination Imagination – Club Inline Hockey – Varsity Lacrosse – Yearbook (Sports Editor) – National Honor Society MR. WARREN › Math teacher at Heritage H.S. – Advanced Algebra and Calculus › Key Lessons – “Use your imagination” – “Be creative” – “Think outside the box” › I chose to major in aerospace engineering my senior year THE LAST FIVE YEARS › University of Colorado at Boulder › Bachelors in Aerospace Engineering Sciences (ASEN) in May 2013 › Masters in ASEN/Structures and Materials in May 2014 • Clubs and Activities • Student Leadership Council • Student Success Center • Men’s Club Lacrosse • Zeta Beta Tau Fraternity WHAT IS ENGINEERING? SCIENCE IS THE WHAT/WHY ENGINEERING IS THE HOW Karman vortex sheet: repeating swirling vortices Boundary layer injection: injecting fluid into the caused by unsteady separation of flow of a fluid airstream to create turbulence such that more lift around blunt bodies. is generated along the wing. More lift means less fuel. Less fuel means more efficient airplanes. AEROSPACE ENGINEERING IS A BROAD FIELD AERONAUTICS ASTRODYNAMICS LAUNCH VEHICLES • Aircraft technologies • Spacecraft • Space Shuttle • Military and civilian technologies -
The Boeing Company 2002 Annual Report
The Boeing Company 200220022002 AnnualAnnualAnnual ReportReportReport Vision 2016: People working together as a global enterprise for aerospace leadership. Strategies Core Competencies Values Run healthy core businesses Detailed customer knowledge Leadership Leverage strengths into new and focus Integrity products and services Large-scale system integration Quality Open new frontiers Lean enterprise Customer satisfaction People working together A diverse and involved team Good corporate citizenship Enhancing shareholder value The Boeing Company Table of Contents Founded in 1916, Boeing evokes vivid images of the amazing products 1 Operational Highlights and services that define aerospace. Each day, more than three million 2 Message to Shareholders passengers board 42,300 flights on Boeing jetliners, more than 345 8 Corporate Essay satellites put into orbit by Boeing launch vehicles pass overhead, and 16 Corporate Governance 6,000 Boeing military aircraft stand guard with air forces of 23 countries 18 Commercial Airplanes and every branch of the U.S. armed forces. 20 Integrated Defense Systems We are the leading aerospace company in the world and a top U.S. 22 Boeing Capital Corporation exporter. We hold more than 6,000 patents, and our capabilities and 24 Air Traffic Management related services include formulation of system-of-systems solutions, 26 Phantom Works advanced information and communications systems, financial services, 28 Connexion by BoeingSM homeland security, defense systems, missiles, rocket engines, launch 30 Shared Services Group systems and satellites. 32 Financials But Boeing is about much more than statistics or products, no matter 88 Selected Products, how awe-inspiring. It’s also about the enterprising spirit of our people Programs and Services working together to provide customers the best solutions possible. -
PDF Download
October 2006 Volume V, Issue VI www.boeing.com/frontiers LOOKING AHEAD Meet the Advanced Systems organization A SKILLED BUILD 16 of IDS, where Boeing employees are Determinant assembly helps 777 line developing new-technology solutions to support its defense, security, space and THAT FEELS BETTER 28 new market customers A look at Boeing’s wellness resources A QUALITY DECISION 34 Streamlined process aids Boeing, suppliers October 2006 Volume V, Issue VI ON THE COVER: The A160 Hummingbird. Photo by Bob Ferguson O T O BOB FERGUSON PH COVER STORY MOVING AHEAD 12 Employees in the Advanced Systems organization of Integrated Defense Systems—such as those working on the Orbital Express ASTRO demonstration satellite in Huntington Beach, Calif. (above)—are developing future capabilities to support defense, security and other customers. What’s in your wellness toolkit? Boeing offers employees wellness FEELING 28 “tools” from information to services to fitness opportunities. These re- FEATURE sources allow employees to focus on the wellness of themselves and their fam- BETTER ily members. That helps employees be more productive at work and at home. STORY BOEING FRONTIERS October 2006 3 October 2006 Volume V, Issue VI O T O The new 777 Accurate Floor Grid–Determinant T PH Assembly Process gives mechanics easier access R during assembly. It also requires significantly less CKHA 16 O space than the previous three-story tooling struc- L N ture used to build up 777 floor grids. IA R MA COMMERCIAL AIRPLANES INTEGRATED DEFENSE SYSTEMS Parts of a tool What’s the big idea Members of the Manufacturing Engineering team Boeing is developing a high-capacity miniature 16 in Everett, Wash., came up with an idea to improve 20 satellite. -
Telecommunikation Satellites: the Actual Situation and Potential Future Developments
Telecommunikation Satellites: The Actual Situation and Potential Future Developments Dr. Manfred Wittig Head of Multimedia Systems Section D-APP/TSM ESTEC NL 2200 AG Noordwijk [email protected] March 2003 Commercial Satellite Contracts 25 20 15 Europe US 10 5 0 1995 1996 1997 1998 1999 2000 2001 2002 2003 European Average 5 Satellites/Year US Average 18 Satellites/Year Estimation of cumulative value chain for the Global commercial market 1998-2007 in BEuro 35 27 100% 135 90% 80% 225 Spacecraft Manufacturing 70% Launch 60% Operations Ground Segment 50% Services 40% 365 30% 20% 10% 0% 1 Consolidated Turnover of European Industry Commercial Telecom Satellite Orders 2000 30 2001 25 2002 3 (7) Firm Commercial Telecom Satellite Orders in 2002 Manufacturer Customer Satellite Astrium Hispasat SA Amazonas (Spain) Boeing Thuraya Satellite Thuraya 3 Telecommunications Co (U.A.E.) Orbital Science PT Telekommunikasi Telkom-2 Indonesia Hangar Queens or White Tails Orders in 2002 for Bargain Prices of already contracted Satellites Manufacturer Customer Satellite Alcatel Space New Indian Operator Agrani (India) Alcatel Space Eutelsat W5 (France) (1998 completed) Astrium Hellas-Sat Hellas Sat Consortium Ltd. (Greece-Cyprus) Commercial Telecom Satellite Orders in 2003 Manufacturer Customer Satellite Astrium Telesat Anik F1R 4.2.2003 (Canada) Planned Commercial Telecom Satellite Orders in 2003 SES GLOBAL Three RFQ’s: SES Americom ASTRA 1L ASTRA 1K cancelled four orders with Alcatel Space in 2001 INTELSAT Launched five satellites in the last 13 month average fleet age: 11 Years of remaining life PanAmSat No orders expected Concentration on cash flow generation Eutelsat HB 7A HB 8 expected at the end of 2003 Telesat Ordered Anik F1R from Astrium Planned Commercial Telecom Satellite Orders in 2003 Arabsat & are expected to replace Spacebus 300 Shin Satellite (solar-array steering problems) Korea Telecom Negotiation with Alcatel Space for Koreasat Binariang Sat. -
Probability of Collision in the Geostationary Orbit*
PROBABILITY OF COLLISION IN THE GEOSTATIONARY ORBIT* Raymond A. LeClair and Ramaswamy Sridharan MIT Lincoln Laboratory, 244 Wood Street, Lexington, Massachusetts 02420 USA, Email: [email protected] ABSTRACT/RESUME The initial Geosynchronous Encounter Analysis (GEA) CRDA spanned two years beginning in mid 1997. The advent of geostationary satellite communication During this period, Lincoln Laboratory provided timely 37 years ago, and the resulting continued launch activ- warning of encounters between Telstar 401 and partner ity, has created a population of active and inactive geo- satellites and precision orbits for these objects for use synchronous satellites which will interact, with genu- in avoidance maneuver planning [1]. In all, 32 en- ine possibility of collision, for the foreseeable future. counters between Telstar 401 and a partner satellite As a result of the failure of Telstar 401 three years ago, were supported in 24 months leading to nine avoidance MIT Lincoln Laboratory, in cooperation with commer- maneuvers incorporated into routine station keeping cial partners, began an investigation into this situation. and six dedicated avoidance maneuvers. This process Under the agreement, Lincoln worked to ensure a col- has led to a validated concept of operations for en- lision did not occur between Telstar 401 and partner counter support at Lincoln. satellites and to understand the scope and nature of the Active problem. The results of this cooperative activity and Satellites recent results to carefully characterize the actual prob- SOLIDARIDAD 02 ANIK E1 04-Oct-1999 ability of collision in the geostationary orbit are de- 114 SOLIDARIDAD 1 GOES 07 scribed. ANIK E2 112 MSAT M01 ) ANIK C1 110 GSTAR 04 deg USA 0114 1. -
Reading Comprehension
READING COMPREHENSION 4 Howard Hughes, The Aviator Read the text about the life of the billionaire Howard Hughes. • Then choose the correct answer (A, B, C or D) for questions 1–7. • Write your answers in the spaces provided. • The rst one (0) has been done for you. Howard Hughes, The Aviator by Jennifer Rosenberg Howard Hughes’ Childhood Though he grew up in a wealthy household, Howard Hughes Jr. had diffi culty focusing on school and changed schools often. Rather than sitting in a classroom, Hughes preferred to learn by tinkering with mechanical things. For instance, when his mother forbade him from having a motorcycle, he built one by building a motor and adding it to his bicycle. Hughes was a loner in his youth; with one notable exception, Hughes never really had any friends. Tragedy and Wealth When Hughes was just 16-years old, his doting mother passed away. And then not even two years later, his father also suddenly died. Howard Hughes received 75% of his father’s million-dollar estate; the other 25% went to relatives. Hughes immediately disagreed with his relatives over the running of Hughes Tool Company but being only 18-years old, Hughes could not do anything about it because he would not legally be considered an adult until age 21. Frustrated but determined, Hughes went to court and got a judge to grant him legal adulthood. He then bought out his relatives’ shares of the company. At age 19, Hughes became full owner of the company and also got married (to Ella Rice).