Telecommunikation Satellites: the Actual Situation and Potential Future Developments
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Traitor Tracing Scheme Based on RSA for Fast Decryption
A Traitor Tracing Scheme Based on RSA for Fast Decryption John Patrick McGregor, Yiqun Lisa Yin, and Ruby B. Lee Princeton Architecture Laboratory for Multimedia and Security (PALMS) Department of Electrical Engineering Princeton University {mcgregor,yyin,rblee}@princeton.edu Abstract. We describe a fully k-resilient traitor tracing scheme that uti- lizes RSA as a secret-key rather than public-key cryptosystem. Traitor tracing schemes deter piracy in broadcast encryption systems by enabling the identification of authorized users known as traitors that contribute to unauthorized pirate decoders. In the proposed scheme, upon the confis- cation of a pirate decoder created by a collusion of k or fewer authorized users, contributing traitors can be identified with certainty. Also, the scheme prevents innocent users from being framed as traitors. The pro- posed scheme improves upon the decryption efficiency of past traitor tracing proposals. Each authorized user needs to store only a single de- cryption key, and decryption primarily consists of a single modular expo- nentiation operation. In addition, unlike previous traitor tracing schemes, the proposed scheme employs the widely deployed RSA algorithm. 1 Introduction Broadcast encryption is beneficial in scenarios where a content provider wishes to securely distribute the same information to many users or subscribers. The broadcast content is protected with encryption, and only legitimate users should possess the information (e.g., decryption keys) necessary to access the content. These keys can be embedded in software or in tamper-resistant hardware devices such as smart cards. Current tamper-resistant hardware is vulnerable to a variety of attacks [1], however. Furthermore, truly tamper-resistant software, which includes programs that resist unauthorized tampering or inspection of code and data, has yet to be developed. -
Health of the U.S. Space Industrial Base and the Impact of Export Controls
PRE -DECISIONAL - NOT FOR RELEASE Briefing of the Working Group on the Health of the U.S. Space Industrial Base and the Impact of Export Controls February 2008 1 PRE -DECISIONAL - NOT FOR RELEASE Preamble • “In order to increase knowledge, discovery, economic prosperity, and to enhance the national security, the United States must have robust, effective, and efficient space capabilities. ” - U.S. National Space Policy (August 31, 2006). 2 PRE -DECISIONAL - NOT FOR RELEASE Statement of Task • Empanel an expert study group to [1] review previous and ongoing studies on export controls and the U.S. space industrial base and [2] assess the health of the U.S. space industrial base and determine if there is any adverse impact from export controls, particularly on the lower -tier contractors. • The expert study group will review the results of the economic survey of the U.S. space industrial base conducted by the Department of Commerce and analyzed by the Air Force Research Laboratory (AFRL). • Integrate the findings of the study group with the result of the AFRL / Department of Commerce survey to arrive at overall conclusions and recommendations regarding the impact of export controls on the U.S. space industrial base. • Prepare a report and briefing of these findings 3 PRE -DECISIONAL - NOT FOR RELEASE Working Group 4 PRE -DECISIONAL - NOT FOR RELEASE Methodology • Leveraged broad set of interviews and data from: – US government • Department of State, Department of Defense (OSD/Policy, OSD/AT&L, DTSA, STRATCOM, General Council), NRO, Department -
Ka-Band Satellite Consumer Triple-Play and Professional Video Services
Ka-Band Satellite Consumer Triple-Play and Professional Video Services Guillaume Benoit, Hector Fenech, Stefano Pezzana, and Alessia Tomatis Eutelsat, 70 rue Balard, 75015 Paris, France +33 1 53 98 47 47 {gbenoit,hfenech,spezzana,atomatis}@eutelsat.fr Abstract. This article presents Eutelsat European Ka-band implementation of the broadband ToowayTM service and its evolution through a dedicated Ka-band exclusive satellite (KA-SAT). It also explains Eutelsat’s choice in se- lecting the Ka-band for interactive services, broadcast video and IPTV ser- vices, demonstrating the optimal consumer service synergy between existing Ku-band and new Ka-band services. KA-SAT satellite is not focusing only on consumer triple-play services. In- deed, Eutelsat strategy consists in offering also professional video and data services in Ka-band (video distribution, video contribution, e-cinema, file transport) sharing the same transparent satellite bandwidth and the same ground segment infrastructure. For those professional video applications the last content processing (SVC) and satellite transport (DVB-S2 ACM) techniques are under deployment and this paper will present simulation results and link budgets estimations for a large number of future commercial applications. 1 Introduction Eutelsat operates 25 satellites in the geostationary arc from 15°W to 70.5°E offering a variety of services from corporate networks to broadcasting. The HOT BIRD™ con- stellation at 13°E constitutes the prime position for DTH (Direct to Home) and cable broadcasting, utilizing the full Ku-band spectrum from 10.70 GHz to 12.75 GHz. There are 102 transponders delivering about 1400 TV channels. The HOT BIRD™ service area reaches some 120 million satellite and cable households. -
EUTELSAT's W3C SATELLITE in FULL COMMERCIAL SERVICE New W3C and ATLANTIC BIRD™ 7 Satellites Inject Additional Resources
PR/72/11 EUTELSAT’s W3C SATELLITE IN FULL COMMERCIAL SERVICE New W3C and ATLANTIC BIRD™ 7 satellites inject additional resources and flexibility into Eutelsat’s fleet Paris, 9 November 2011 Eutelsat Communications (Euronext Paris: ETL) today announced the full entry into commercial service of the powerful W3C satellite at 16° East. The transfer of all traffic, including over 480 television channels, onto W3C from the EUROBIRD™ 16, W2M and SESAT 1 satellites was completed this morning by Eutelsat’s control centre, working in close collaboration with clients and providers of uplink services. With the high-capacity W3C going on-line at 16° Eas t, Eutelsat is further equipped to service dynamic satellite broadcasting markets in Central Europe and Indian Ocean islands. Over 11 million homes in Central Europe and 500,000 in Indian Ocean islands are already equipped to receive broadcast services from this longstanding Eutelsat neighbourhood. Pay-TV platforms and public and private broadcasters using W3C include SBB, Digitalb, TV Max, Tring and TV Romania that are addressing Central Europe via a high-power footprint optimised for the region. A second regional footprint centred over Madagascar and Indian Ocean islands is serving the Canal+ Overseas, Parabole Réunion and Orange platforms as well as France Télévisions to support digital switchover in Reunion Island and Mayotte. SBB, operator of Total TV, the leading DTH platform in the Adriatic region, is taking immediate benefit from W3C’s increased capacity to add two transponders to the six already leased at 16° East. SBB's additional capaci ty, leased to 2020, will be used to support a number of new channels in all of Total TV's markets. -
Ariane-DP GB VA209 ASTRA 2F & GSAT-10.Indd
A DUAL LAUNCH FOR DIRECT BROADCAST AND COMMUNICATIONS SERVICES Arianespace will orbit two satellites on its fifth Ariane 5 launch of the year: ASTRA 2F, which mainly provides direct-to-home (DTH) broadcast services for the Luxembourg-based operator SES, and the GSAT-10 communications satellite for the Indian Space Research Organization, ISRO. The choice of Arianespace by the world’s leading space communications operators and manufacturers is clear international recognition of the company’s excellence in launch services. Based on its proven reliability and availability, Arianespace continues to confirm its position as the world’s benchmark launch system. Ariane 5 is the only commercial satellite launcher now on the market capable of simultaneously launching two payloads and handling a complete range of missions, from launches of commercial satellites into geostationary orbit, to dedicated launches into special orbits. Arianespace and SES have developed an exceptional relationship of mutual trust over more than 20 years. ASTRA 2F will be the 36th satellite from the SES group (Euronext Paris and Luxembourg Bourse: SESG) to use an Ariane launcher. SES operates the leading direct-to-home (DTH) TV broadcast system in Europe, based on its Astra satellites, serving more than 135 million households via DTH and cable networks. Built by Astrium using a Eurostar E3000 platform, ASTRA 2F will weigh 6,000 kg at launch. Fitted with active Ku- and Ka-band transponders, ASTRA 2F will be positioned at 28.2 degrees East. It will deliver new-generation DTH TV broadcast services to Europe, the Middle East and Africa, and offers a design life of about 15 years. -
European Space Surveillance and Tracking
2ndEuropean EU SST Webinar: Space Operations in Space Surveillance and Tracking 16Surveillance November 2020 –and14h CETTracking The EU SST activities received funding from the European Union programmes, notably from the Horizon 2020 research and innovation programme under grant agreements No 760459, No 785257, No 713630, No 713762 and No 634943, and the Copernicus and Galileo programme under grant agreements No 299/G/GRO/COPE/19/11109, No 237/GRO/COPE/16/8935 and No 203/G/GRO/COPE/15/7987. This Portal reflects only the SST Cooperation’s actions and the European Commission and the Research Executive Agency are not responsible for any use that may be made of the information it contains. 2nd EU SST Webinar Operations in Space Surveillance and Tracking Speakers Pascal María Antonia Cristina Florian João FAUCHER (CNES) RAMOS (CDTI) PÉREZ (CDTI) DELMAS (CNES) ALVES (EU SatCen) Pier Luigi Lt. Moreno Juan Christophe Rodolphe RIGHETTI PERONI (IT MoD) ESCALANTE MORAND (EEAS) MUÑOZ (EUMETSAT) (EC – DG ECHO) (EC-DG DEFIS) 2nd EU SST Webinar: Operations in Space Surveillance and Tracking 16 November 2020 3 Agenda (1/2) 14h00-14h10: Welcome to the 2nd EU SST Webinar [Moderator: Mr Oliver Rajan (EU SatCen)] 14h10-14h50: SST Support Framework: Safeguarding European space infrastructure • Overview, governance model, security relevance and future perspectives [SST Cooperation Chair: Dr Pascal Faucher (CNES)] EU SST Architecture & Service Provision Model • Sensors network • Database and Catalogue precursor • Services [Chair of the SST Technical Committee: -
Thales Alenia Space Experience on Plasma Propulsion
Thales Alenia Space Experience on Plasma Propulsion IEPC-2007-301 Presented at the 30th International Electric Propulsion Conference, Florence, Italy September 17-20, 2007 Michel LYSZYK* and Laurent LECARDONNEL.† Thales Alenia Space, Cannes, 06150, France Abstract: Thales Alenia Space experience on plasma propulsion has been developed in the frame of Stentor, Astra 1K and GEI programs with plasma propulsion systems using SPT100 thrusters manufactured by Fakel and commercialized by Snecma . The PPS (plasma propulsion system) use in house equipments such as Power Processing Unit (PPU) manufactured by TAS-ETCA in Charleroi and the Thruster Orientation Mechanism (TOM) manufactured by TAS-France in Cannes . The PPS subsystem is used on board our SpaceBus satellite family to perform North-South station keeping. The on going activity on the XPS (Xenon Propulsion System) is devoted to the next European platform Alphabus currently under joint development by Thales Alenia Space and Astrium with CNES and ESA support. The XPS uses also the PPU manufactured by TAS-ETCA , the TOM manufactured by TAS-France and the Xe tank developed by TAS-Italy ; it use also the PPS1350 thruster under qualification by Snecma , a xenon regulator and a latch valve under development at Marotta Ireland. I. Introduction HIS document describes the Thales Alenia Space experience gained through Stentor , Astra 1K , GEI, T Spacebus and Alphabus programs on plasma Hall effect thrusters propulsion subsystems . For Spacebus application a description of the subsystem is given together with the general achieved performances . For Alphabus application a general status of the on going activities is given . * Head of electric propulsion section, Propulsion Department, [email protected]. -
The ASTRA Satellite System the ASTRA Satellite System at 19.2° East Services on ASTRA (September 2000)
Société Européenne des Satellites SES in brief (I) u Operator of ASTRA, the leading DTH satellite system in Europe u Satellite fleet: è 9 satellites in operation (7 at 19.2° East, 2 at 28.2° East) è 4 additional satellites until end of year 2001 u ASTRA carries more than 600 digital and analogue TV services and 389 radio services of leading European and international broadcasters for Europe's main language markets u ASTRA audience exceeds 79 million households in 22 European countries SES in brief (II) u Company listed on Luxembourg and Frankfurt Stock Exchanges èinstitutional and private shareholders èLuxembourg State holds 16.67 % of equity è33% of capital floated on Stock Exchange u Operating under a concession agreement with the Luxembourg State u 426 employees of 20 different nations u Turnover 1999: EUR 725.2 million H1 2000: EUR 403.0 million The ASTRA Satellite System The ASTRA Satellite System at 19.2° East Services on ASTRA (September 2000) 19.2° East u 85 analogue TV services for the German, English and pan- European market u 324 digital TV services for the French, German, More than -to-air Spanish, Dutch, Polish, Italian, Luxembourgish 75 free and pan-European market TV services u 313 analogue and digital radio services 28.2° East u 207 digital TV services for the UK and Ireland u 72 digital audio services for the UK and Ireland ASTRA coverage in Europe* (Mid Year 1992 to 2000) 90 80 70 60 50 40 30 20 ASTRA Households in Mill. 10 0 1992 1993 1994 1995 1996 1997 1998 1999 2000 DTH&SMATV 9.77 13.87 16.71 21.43 22.03 23.57 25.83 27.92 29.04 Cable 26.98 31.33 36.44 37.49 41.97 44.70 47.61 49.05 50.20 *22 European countries within the ASTRA footprint Source: SES/ASTRA, Satellite Monitors SES/ASTRA, Market Information Group, August 2000 Forecast of European DTH/SMATV Households 1997 – 2010 DTH/SMATV Households in Mill. -
PNT Symposium Paper -- Sirius 5 EGNOS -- Pavloff
21 October 2009 SES SIRIUS European Geostationary Navigation Overlay Service (EGNOS) Capability on Sirius 5 Satellite for SES Mike Pavloff, Executive Director, Space Systems/Loral Information included herein is deemed non-ITAR. 1 “Use or disclosure of the data contained on this sheet is subject to the restrictions on the title page.” Agenda Overview EGNOS SES SS/L Sirius 5 program EGNOS system description Sirius 5 EGNOS implementation Summary 2 “Use or disclosure of the data contained on this sheet is subject to the restrictions on the title page.” Overview 3 “Use or disclosure of the data contained on this sheet is subject to the restrictions on the title page.” Introduction – EGNOS Background EGNOS – European Geostationary Navigation Overlay System Part of the world-wide Satellite-Based Augmentation Systems (SBAS) to the U.S. Global Positioning System (GPS), the Russian GLONASS System and European Galileo system An initiative of the European Commission (EC) and the European Space Agency (ESA) to build a civilian component to the military navigation systems of GPS and GLONASS Provide integrity and high availability and continuity to the (aeronautical) users; improve accuracy of single-frequency navigation receivers Other SBAS elements are WAAS (US, Canada Anik 1R) and MSAS (Japan MTSAT-1R, 2) Three GEO satellites providing EGNOS signals are currently on orbit (Inmarsat 3F2, Inmarsat 4F2 and ESA Artemis satellite) Ground infrastructure deployed EGNOS Satellite operations Autonomous network of monitoring stations located -
SES Beam Magazine
BEAM MAGAZINE No. 01 | 2012 SATELLITES AND THE MEDIA The opportunities arising from ever-changing consumer demands TAKING THE LEAD Benefi tting from the varying markets of Europe EMERGING AUDIENCES The informed and increasingly a uent viewers of Asia TRANSMITTING MEDIA INNOVATION Keeping pace with the explosion in consumer devices EDITORIAL | BEAM NO. 01 STRENGTHENING PARTNERSHIPS DEAR READER, Partnering with our customers in order to support their de ve l- We are pushing for exciting, innovative satellite services and opment and growth plans: this is the core concept that drives our applications. Earlier this year, we unveiled SAT>IP: this ground- commitment to customer service. breaking technology allows satellite signals to be distributed in SES operates one of the world’s finest telecommunications the IP protocol to tablet computers, PCs and other smart devices. satellite fleets. With 51 satellites and a coverage area of 99% of the SAT>IP allows for mobile satellite reception on multiple screens world’s population, SES provides a major link in the global com- in the home. It represents a true breakthrough. And we are munications chain. moving closer to the launch of the O3b Networks constellation, This fleet, now featuring more than 1,400 transponders, is the which SES supports as a major strategic shareholder. This innova- world’s leading media broadcasting platform via satellite. Today, tive new medium earth orbit satellite system will provide highly we transmit more than 5,800 TV and radio channels – more than competitive high throughput broadband capacity for trunking, any other satellite system. Our spacecraft carry more than mobile backhaul and satellite applications in the maritime as 1,300 HDTV channels and our attractive satellite neighbour- well as the oil and gas sectors. -
2010 Commercial Space Transportation Forecasts
2010 Commercial Space Transportation Forecasts May 2010 FAA Commercial Space Transportation (AST) and the Commercial Space Transportation Advisory Committee (COMSTAC) HQ-101151.INDD 2010 Commercial Space Transportation Forecasts About the Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA/AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 49 United States Code, Subtitle IX, Chapter 701 (formerly the Commercial Space Launch Act). FAA/AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA/AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA/AST’s web site at http://ast.faa.gov. Cover: Art by John Sloan (2010) NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. • i • Federal Aviation Administration / Commercial Space Transportation Table of Contents Executive Summary . 1 Introduction . 4 About the CoMStAC GSo Forecast . .4 About the FAA NGSo Forecast . .4 ChAracteriStics oF the CommerCiAl Space transportAtioN MArket . .5 Demand ForecastS . .5 COMSTAC 2010 Commercial Geosynchronous Orbit (GSO) Launch Demand Forecast . 7 exeCutive Summary . .7 BackGround . .9 Forecast MethoDoloGy . .9 CoMStAC CommerCiAl GSo Launch Demand Forecast reSultS . -
DRM) Technology in Contemporary Copyright
The Role of Digital Rights Management (DRM) Technology in Contemporary Copyright Joseph Straus Munich International Forum on the Centennial of Chinese Copyright Legislation Renmin University of China, Beijing October 15, 2010 © J. Straus 2010 -1- Points to Consider • Copyright & technology – two old companions – dialectic relationship • Technology promoter of (re)production and distribution of works & challenge of copyright • Digitization – new quantitative & qualitative challenge • Legal & technical response • Where is the right balance of interests: creators & publishers v. users, hardware manufacturers, etc. → social progress? © J. Straus 2010 -2- Copyright & Technology – Two Old Companions China, the Technological Frontrunner • 105 AD - Lun Cai invents paper manufacturing technique • 1041 AD – Sheng Bi invents movable type printing • No legal impact – due to social/intellectual environment [no revolution] and due fragmented to agricultural economy [Chao Xu] © J. Straus 2010 -3- Copyright & Technology – Two Old Companions Europe – the Late(r) Commer • 1439 – Johannes Gutenberg invents movable type printing • 1469 – Johann von Speyer granted printing privilege by the city of Venice • Etching technique (copper engraving) invented – privileges for reproduction granted (Albrecht Dürer) • 15th-17th Century – numerous such privileges granted in Europe Social Revolution (Renaissance, humanism, reformation) & technology & market → protection against copying → printers & publishers, i.e. industry prime beneficiary • Idea of intellectual property