Thales Alenia Space Experience on Plasma Propulsion

Total Page:16

File Type:pdf, Size:1020Kb

Thales Alenia Space Experience on Plasma Propulsion Thales Alenia Space Experience on Plasma Propulsion IEPC-2007-301 Presented at the 30th International Electric Propulsion Conference, Florence, Italy September 17-20, 2007 Michel LYSZYK* and Laurent LECARDONNEL.† Thales Alenia Space, Cannes, 06150, France Abstract: Thales Alenia Space experience on plasma propulsion has been developed in the frame of Stentor, Astra 1K and GEI programs with plasma propulsion systems using SPT100 thrusters manufactured by Fakel and commercialized by Snecma . The PPS (plasma propulsion system) use in house equipments such as Power Processing Unit (PPU) manufactured by TAS-ETCA in Charleroi and the Thruster Orientation Mechanism (TOM) manufactured by TAS-France in Cannes . The PPS subsystem is used on board our SpaceBus satellite family to perform North-South station keeping. The on going activity on the XPS (Xenon Propulsion System) is devoted to the next European platform Alphabus currently under joint development by Thales Alenia Space and Astrium with CNES and ESA support. The XPS uses also the PPU manufactured by TAS-ETCA , the TOM manufactured by TAS-France and the Xe tank developed by TAS-Italy ; it use also the PPS1350 thruster under qualification by Snecma , a xenon regulator and a latch valve under development at Marotta Ireland. I. Introduction HIS document describes the Thales Alenia Space experience gained through Stentor , Astra 1K , GEI, T Spacebus and Alphabus programs on plasma Hall effect thrusters propulsion subsystems . For Spacebus application a description of the subsystem is given together with the general achieved performances . For Alphabus application a general status of the on going activities is given . * Head of electric propulsion section, Propulsion Department, [email protected]. † Head of propulsion department, Propulsion Department , [email protected] . 1 The 30th International Electric Propulsion Conference, Florence, Italy September 17-20, 2007 Thales Alenia Space Experience on Plasma Propulsion ..................................................................1 I. Introduction ...........................................................................................................................1 II. SpaceBus Plasma Propulsion Subsystem.................................................................................3 III. PPS DESCRIPTION...........................................................................................................4 A. GAS MODULE ...............................................................................................................4 B. PLASMA THRUSTER MODULES.................................................................................5 C. POWER PROCESSING UNIT........................................................................................6 D. LAYOUT ........................................................................................................................6 E. KEY FEATURES............................................................................................................7 IV. Stentor application..............................................................................................................7 F. PROPULSION SYSTEM DESIGN .....................................................................................8 G. Satellite Assembly Integration and Tests Flow chart ........................................................9 H. Synthesis of Stentor ground qualification experience .......................................................9 V. ASTRA 1K application .....................................................................................................10 I. SPT100 Cold Starts...........................................................................................................11 J. Thruster Module / PPU Coupled Test: ..............................................................................11 VI. ALPHABUS application....................................................................................................12 VII. Conclusion ........................................................................................................................13 Acknowledgments........................................................................................................................13 References ...................................................................................................................................13 2 The 30th International Electric Propulsion Conference, Florence, Italy September 17-20, 2007 II. SpaceBus Plasma Propulsion Subsystem The function of the Plasma Propulsion Subsystem is to provide inclination and eccentricity control for North/South station keeping and in addition it allows unloading of reaction wheels. For SPACEBUS platform, the technology retained is based on the use of SPT 100 thrusters which offer an in- orbit great experience as they have been flying since beginning of 1994 on GALS satellites in Russia. They also offer great advantage because of their good compromise between a good specific impulse (1510 s), a high thrust level (80mN) and a decent-sized electrical power needs in comparison with the other electrical thrusters. The Plasma Propulsion Subsystem uses Xenon as propellant. It includes all devices to store and supply Xenon to the electrical thrusters, four Stationary Plasma Thrusters (SPT100) which are accommodated by pairs on two orientation mechanisms, electronic units required to manage and provide power to the thrusters and the orientation mechanisms. As shown in the following Figure , the PPS can be divided in three main parts : · The Gas Module (GM) · The Power Processing Unit (PPU), which includes one Thruster Selection Unit (TSU). Two PPU are provided, one nominal and one redundant. · The Thruster Module (TM), with two SPT’s and associated Xenon Flow Controller (XFC), an orientation mechanism bearing and canting the SPT’s. Two thruster modules are provided, one for the North maneuvers and one for the South maneuvers, each one including a nominal and a redundant thruster. The North (resp. South) module is implemented on the anti-earth face on the north (resp. south) face of the satellite and is used for South (resp. North) Station keeping maneuvers. Figures 1 : STENTOR AND ASTRA 1K GAS MODULE INTEGRATED ON JIG 3 The 30th International Electric Propulsion Conference, Florence, Italy September 17-20, 2007 Figure 2 : ASTRA1K PPS GAS MODULE ON THE SATELLITE III. PPS DESCRIPTION A. GAS MODULE The Gas Module is required to store Xenon and isolate the Xenon storage from the Plasma thrusters during prelaunch, launch and orbit raising phases in safe conditions. During on-orbit phase, it will then supply Xenon to the Thruster Modules at the required regulated pressure and cleanliness level. The Plasma Gas Module includes the following equipments : · two Xenon tank to store Xenon up to 150 bar, · a high pressure fill and drain valve to pressurize the tanks, · a normally closed pyro valve isolating the storage volume during ground integration activities and launch, · two high pressure transducers for Xenon gauging, · associated titanium feed lines (1/4” diameter). · Three fill and drain valves located upstream and downstream the pressure regulator. These valves are used for ground tests, · two valves in parallel in order to provide isolation of the distribution assembly in case of abnormal external leakage, · a filter in order to protect all the downstream components of any abnormal particulate cleanliness, · a mechanical pressure regulator which is fully series redundant. Each stage is capable of delivering Xenon at a regulated pressure to the thruster module over the complete range of temperature, inlet pressure and flow rate during thruster operation and it provides leak tightness between two thruster operations. · two low pressure transducers used to tightly monitored the level of the regulated pressure at the outlet of the pressure regulator. · titanium feed lines up to the thruster modules and titanium-stainless steel connection which ensure leak- tightness of the subsystem as a whole and minimizes mass. The arrangement of the high pressure transducers (upstream) and of the low pressure transducers (downstream) provide a full redundancy and allows to measure: 4 The 30th International Electric Propulsion Conference, Florence, Italy September 17-20, 2007 · the pressures in the tanks and in the feed lines for general monitoring. · the pressure delivered by the pressure regulator for general monitoring. · the pressure accumulated downstream of the pressure regulator in worst case of leakage (if any) to prevent over pressure. · the pressure conditions at the XFC inlet for general monitoring. · the needed measured pressures for propellant gauging purposes. The PGM is kept clear of any liquid Xenon. The Thermal Control Subsystem (TCS) provides thermistors and heaters to control accurately the Xenon temperatures and state inside the tank and at the puppet level of the pressure regulator. B. PLASMA THRUSTER MODULES Each Thruster Module consists of the following elements: · Two SPT-100 plasma thrusters, one nominal and one redundant, · Two Xenon Flow Controllers (XFC) associated to each thruster. Each XFC are feeding each the cathode and the anode and providing by the way redundancy. The XFC includes a thermo throttle which allows to control the Xenon mass flow-rate. · Two Filter Unit (FU). The filter unit is located upstream each SPT in order to limit electromagnetic conduction
Recommended publications
  • APSCC Monthly E-Newsletter
    APSCC Monthly e‐Newsletter June 2021 The Asia‐Pacific Satellite Communications Council (APSCC) e‐Newsletter is produced on a monthly basis as part of APSCC’s information services for members and professionals in the satellite industry. Subscribe to the APSCC monthly newsletter and be updated with the latest satellite industry news as well as APSCC activities! To renew your subscription, please visit www.apscc.or.kr. To unsubscribe, send an email to [email protected] with a title “Unsubscribe.” News in this issue has been collected from May 1 to May 31. INSIDE APSCC APSCC 2021 Webinar Series: LIVE Every Tuesday 9AM HK l Singapore Time The most frequent and largest ongoing virtual conference in the Asia Pacific satellite community – the APSCC 2021 Webinar Series incorporates industry veterans, local players, as well as new market entrants in a single event to reach a wide-ranging audience. The APSCC 2021 Webinar Series continues to play a vital role in supporting the industry in the Asia Pacific region and beyond with a brand-new format, a lengthened timeline, and a potentially unlimited reach. Register now and get access to the complete APSCC 2021 Webinar Series with a single password. To register go to https://apsccsat.com. APSCC Welcomes Kymeta as New Platinum Member May 24, 2021 - The Asia-Pacific Satellite Communications Council (APSCC) announced that antenna innovator Kymeta has joined the association, further broadening the industry group’s participation from manufacturing sector of the space and satellite industry. “APSCC is delighted to welcome Kymeta as our newest member,” said APSCC President Gregg Daffner.
    [Show full text]
  • DDP VS24 Édition 1 (EN)
    LAUNCH KIT November 2020 VS24 FalconEye VS24 FalconEye FLIGHT VS24: ARIANESPACE AT THE SERVICE OF AN EARTH OBSERVATION PROGRAM FOR THE BENEFIT OF THE UNITED ARAB EMIRATES For its eighth launch of the year and the third Soyuz flight of 2020, Arianespace will orbit the FalconEye satellite. FalconEye is a high performance optical Earth observation satellite system for the Armed Forces of the United Arab Emirates (UAEAF) manufactured by the consortium of Airbus Defence and Space and Thales Alenia Space. FalconEye The satellite is equipped with an Earth observation payload, with very-high-resolution CONTENTS optical capabilities and completed by a ground system for monitoring, receiving and processing images. It will be controlled and managed by Emirati operators. > THE LAUNCH The FalconEye satellite, to be orbited by Flight VS24, will be the space component of the system, and will have a dual mission: support the needs of UAE Armed Forces and VS24 mission provide commercial imagery for the market. Weighing approximately 1,190 kg at launch, Pages 2-3 it will be placed in a Sun-synchronous orbit at 611km from the Earth. > FURTHER INFORMATION FalconEye will be the 98th Earth observation satellite launched by Arianespace. Earth observation missions represent more than 13% of the total number of satellites Soyuz launch vehicle launched by Arianespace. Pages 4-5 Countdown and flight FalconEye is built by a the consortium led by Airbus Defence and Space and Thales sequence Alenia Space Page 6 As industrial prime contractor prime contractor, Airbus Defence and Space was in charge of the platform and satellite design, integration and tests.
    [Show full text]
  • Thales Alenia Space Germany 2 // ADS-B at a Glance
    Seminar on Space-Based ADS-B Singapore, November 11, 2014 www.thalesgroup.com Space Based ADS-B Satellite Payloads for World-wide Air Traffic Surveillance H S Griebel Thales Alenia Space Germany 2 // ADS-B at a Glance Existing Technology Ground infrastructure exists to handle ADS-B data Majority of all international airliners already fitted* Automatic data broadcast every second Identity Position Velocity Altitude Unexpected disruption indicative of critical event Becomes mandatory over the next 6 years US, Europe, Australia, China ADS-B is an established air traffic surveillance standard *Airservices Australia 3 // Satellite ADS-B at a Glance Takes ADS-B-technology to space For global radar-like coverage With an update interval of 10-15 seconds Providing data in near real time Invented by Thales Alenia Space Deutschland patented in most countries US, Europe, Russia, Australia Existing ADS-B transponders are fully compatible with space-based ADS-B 4 // Satellite ADS-B Key Benefits Almost 100% global coverage Turns non-radar airspace into radar like airspace Brings surveillance to oceans and scarcely populated areas More efficient use of airspace to save fuel and reduce emissions More efficient ATC operations and improved situational awareness Improves safety and security through global flight tracking World air traffic routes Additional safety layer and infrastructure expansion with integration into existing ATM systems Aircraft traffic density 5 // System Architecture Space Segment Air g in ist s Segment Ex m ste Sy
    [Show full text]
  • Health of the U.S. Space Industrial Base and the Impact of Export Controls
    PRE -DECISIONAL - NOT FOR RELEASE Briefing of the Working Group on the Health of the U.S. Space Industrial Base and the Impact of Export Controls February 2008 1 PRE -DECISIONAL - NOT FOR RELEASE Preamble • “In order to increase knowledge, discovery, economic prosperity, and to enhance the national security, the United States must have robust, effective, and efficient space capabilities. ” - U.S. National Space Policy (August 31, 2006). 2 PRE -DECISIONAL - NOT FOR RELEASE Statement of Task • Empanel an expert study group to [1] review previous and ongoing studies on export controls and the U.S. space industrial base and [2] assess the health of the U.S. space industrial base and determine if there is any adverse impact from export controls, particularly on the lower -tier contractors. • The expert study group will review the results of the economic survey of the U.S. space industrial base conducted by the Department of Commerce and analyzed by the Air Force Research Laboratory (AFRL). • Integrate the findings of the study group with the result of the AFRL / Department of Commerce survey to arrive at overall conclusions and recommendations regarding the impact of export controls on the U.S. space industrial base. • Prepare a report and briefing of these findings 3 PRE -DECISIONAL - NOT FOR RELEASE Working Group 4 PRE -DECISIONAL - NOT FOR RELEASE Methodology • Leveraged broad set of interviews and data from: – US government • Department of State, Department of Defense (OSD/Policy, OSD/AT&L, DTSA, STRATCOM, General Council), NRO, Department
    [Show full text]
  • Globalstar Annual Report 2007
    Globalstar Annual Report 2007 Globalstar, Inc. 461 S Milpitas Blvd. Milpitas, CA 95035 USA +1.408.933.4000 www.globalstar.com Executive Office Board of Directors Steven Bell Senior Vice President, Globalstar, Inc. James Monroe III International Sales, Chairman of the Board and Marketing and Customer Care 461 S. Milpitas Blvd. Chief Executive Officer Milpitas, CA 95035 USA Robert D. Miller (408) 933-4000 Peter J. Dalton Senior Vice President, Chief Executive Officer Engineering and Ground World Wide Web Dalton Partners Inc. Operations (Management Firm) Home Page William F. Adler Kenneth E. Jones Vice President, Legal and www.globalstar.com Chairman, Globe Wireless, Regulatory Affairs Inc. Stockholder (Maritime Communications) Paul A. Monte Information Vice President, Engineering James F. Lynch and Product Development Managing Director For further information about Thermo Capital Partners, Martin E. Neilsen the company, additional hard L.L.C. Vice President, New Business copies of this report, SEC (Private Equity Investment) filings, and other published Ventures corporate information please J. Patrick McIntyre visit the Company website President and Chief Common Stock noted above or call Operating Officer (408) 933-4006. Lauridsen Group The Company’s stock is Incorporated traded on The NASDAQ Transfer Agent (Nutritional Functional Global Select Market under Proteins) the symbol GSAT. On March Computershare Shareholder 26, 2008, the company had Services, Inc. Richard S. Roberts approximately 85,199,777 250 Royall Street VP & General Counsel shares outstanding and 305 Canton, MA 02021 Thermo Development Inc. holders of record. (781) 575-4238 (Management Firm) www.computershare.com Notice of Annual Executive Officers Meeting Independent Auditors James Monroe III Chairman of the Board and May 13, 2008, 10:00 a.m.
    [Show full text]
  • BR-248 Part of Our Daily Lives
    BR-248 8/19/05 11:18 AM Page 3 BR-248 August 2005 Part of Our Daily Lives 3 BR-248 8/19/05 11:18 AM Page 1 Contents Satellite Telecommunications – Part of Our Daily Lives Satellite Telecommunications – What For? 2 Advantages over Terrestrial Systems 3 Orbits 4 The Satcom Market 5 Role of the European Space Agency 6 ESA Telecom Department 7 More Than 30 Years of Satcom Experience 8 Investing in New Technology 9 Broadcasting 10 SATMODE – A New Dimension for Interactive Satellite-based TV 11 Mobile Communications 12 Telemedicine – Medical Care from Space 13 Distance Learning via Satellite 14 Satellites Save Lives 15 Bridging the Digital Divide 16 AlphaBus, the New European Platform for the Next Generation of Telecommunications Satellites 17 AmerHis – The First Switchboard in Space 18 The Future of Satellite Telecommunications 19 1 BR-248 8/19/05 11:18 AM Page 2 Satellite Telecommunications – What For? Without us realising it, satellite communications permeate our lives. Many everyday events that we take for granted happen because telecommunications satellites are in orbit, 36 000 km above our heads - they are reliable and can be used in a plethora of ways. • Did you know that many news- • Did you know that when you make papers and magazines are a call from an aircraft or cruise boat, produced centrally, but printed it is transferred via satellite? locally? The content of the paper is sent to the printing plants using • Did you know that satellites are satellite links. being used for tele-education, telemedicine and video-confer- • Did you
    [Show full text]
  • SES Beam Magazine
    BEAM MAGAZINE No. 01 | 2012 SATELLITES AND THE MEDIA The opportunities arising from ever-changing consumer demands TAKING THE LEAD Benefi tting from the varying markets of Europe EMERGING AUDIENCES The informed and increasingly a uent viewers of Asia TRANSMITTING MEDIA INNOVATION Keeping pace with the explosion in consumer devices EDITORIAL | BEAM NO. 01 STRENGTHENING PARTNERSHIPS DEAR READER, Partnering with our customers in order to support their de ve l- We are pushing for exciting, innovative satellite services and opment and growth plans: this is the core concept that drives our applications. Earlier this year, we unveiled SAT>IP: this ground- commitment to customer service. breaking technology allows satellite signals to be distributed in SES operates one of the world’s finest telecommunications the IP protocol to tablet computers, PCs and other smart devices. satellite fleets. With 51 satellites and a coverage area of 99% of the SAT>IP allows for mobile satellite reception on multiple screens world’s population, SES provides a major link in the global com- in the home. It represents a true breakthrough. And we are munications chain. moving closer to the launch of the O3b Networks constellation, This fleet, now featuring more than 1,400 transponders, is the which SES supports as a major strategic shareholder. This innova- world’s leading media broadcasting platform via satellite. Today, tive new medium earth orbit satellite system will provide highly we transmit more than 5,800 TV and radio channels – more than competitive high throughput broadband capacity for trunking, any other satellite system. Our spacecraft carry more than mobile backhaul and satellite applications in the maritime as 1,300 HDTV channels and our attractive satellite neighbour- well as the oil and gas sectors.
    [Show full text]
  • PORTUGUESE SPACE CATALOGUE PORTUGUESE SPACE CATALOGUE Fundação Para a Ciência E a Tecnologia (FCT) Is the National Funding Agency for Science and Research in Portugal
    PORTUGUESE SPACE CATALOGUE PORTUGUESE SPACE CATALOGUE Fundação para a Ciência e a Tecnologia (FCT) is the national funding agency for science and research in Portugal. FCT promotes internationally competitive and high impact science, technology and innovation across all areas of knowledge, including exact, natural and health sciences, engineering, social sciences and humanities. The FCT Space Office addresses all space related issues. It is strongly committed to strengthening the participation of Portuguese researchers and entrepreneurs in space-related activities and in bringing the benefits of developing space sciences, technologies and its applications to Portuguese citizens. Please reach us through [email protected] and on our website www.fct.pt. Towards the end of 2000, Portugal became a member state of the European Space Agency, thus paving the way to full participation in ESA technology and applications programmes. The success achieved by Portuguese companies and research institutes in the European Union programmes, namely in FP7, Copernicus (formerly known as GMES) and Galileo is proof that Portuguese companies and academia are both competitive and reliable partners. Indeed, Portugal contributes to most European Space programmes, covering key domains of space applications, ranging from satellite telecommunications, global navigation systems, Earth observation, space technology, space sciences and robotic exploration. The Portuguese Space Community is an active member of international networks, developing complex space technologies and participating in space science and exploration missions. This community is made up of innovative, knowledge- intensive companies, specialised research institutes and modern public institutions, all strongly engaged in advancing space science, technologies and their application in non-space sectors. Indeed, one of the success factors of the Portuguese Space Community is precisely the close links between companies and academia.
    [Show full text]
  • Telecommunikation Satellites: the Actual Situation and Potential Future Developments
    Telecommunikation Satellites: The Actual Situation and Potential Future Developments Dr. Manfred Wittig Head of Multimedia Systems Section D-APP/TSM ESTEC NL 2200 AG Noordwijk [email protected] March 2003 Commercial Satellite Contracts 25 20 15 Europe US 10 5 0 1995 1996 1997 1998 1999 2000 2001 2002 2003 European Average 5 Satellites/Year US Average 18 Satellites/Year Estimation of cumulative value chain for the Global commercial market 1998-2007 in BEuro 35 27 100% 135 90% 80% 225 Spacecraft Manufacturing 70% Launch 60% Operations Ground Segment 50% Services 40% 365 30% 20% 10% 0% 1 Consolidated Turnover of European Industry Commercial Telecom Satellite Orders 2000 30 2001 25 2002 3 (7) Firm Commercial Telecom Satellite Orders in 2002 Manufacturer Customer Satellite Astrium Hispasat SA Amazonas (Spain) Boeing Thuraya Satellite Thuraya 3 Telecommunications Co (U.A.E.) Orbital Science PT Telekommunikasi Telkom-2 Indonesia Hangar Queens or White Tails Orders in 2002 for Bargain Prices of already contracted Satellites Manufacturer Customer Satellite Alcatel Space New Indian Operator Agrani (India) Alcatel Space Eutelsat W5 (France) (1998 completed) Astrium Hellas-Sat Hellas Sat Consortium Ltd. (Greece-Cyprus) Commercial Telecom Satellite Orders in 2003 Manufacturer Customer Satellite Astrium Telesat Anik F1R 4.2.2003 (Canada) Planned Commercial Telecom Satellite Orders in 2003 SES GLOBAL Three RFQ’s: SES Americom ASTRA 1L ASTRA 1K cancelled four orders with Alcatel Space in 2001 INTELSAT Launched five satellites in the last 13 month average fleet age: 11 Years of remaining life PanAmSat No orders expected Concentration on cash flow generation Eutelsat HB 7A HB 8 expected at the end of 2003 Telesat Ordered Anik F1R from Astrium Planned Commercial Telecom Satellite Orders in 2003 Arabsat & are expected to replace Spacebus 300 Shin Satellite (solar-array steering problems) Korea Telecom Negotiation with Alcatel Space for Koreasat Binariang Sat.
    [Show full text]
  • Trade Studies Towards an Australian Indigenous Space Launch System
    TRADE STUDIES TOWARDS AN AUSTRALIAN INDIGENOUS SPACE LAUNCH SYSTEM A thesis submitted for the degree of Master of Engineering by Gordon P. Briggs B.Sc. (Hons), M.Sc. (Astron) School of Engineering and Information Technology, University College, University of New South Wales, Australian Defence Force Academy January 2010 Abstract During the project Apollo moon landings of the mid 1970s the United States of America was the pre-eminent space faring nation followed closely by only the USSR. Since that time many other nations have realised the potential of spaceflight not only for immediate financial gain in areas such as communications and earth observation but also in the strategic areas of scientific discovery, industrial development and national prestige. Australia on the other hand has resolutely refused to participate by instituting its own space program. Successive Australian governments have preferred to obtain any required space hardware or services by purchasing off-the-shelf from foreign suppliers. This policy or attitude is a matter of frustration to those sections of the Australian technical community who believe that the nation should be participating in space technology. In particular the provision of an indigenous launch vehicle that would guarantee the nation independent access to the space frontier. It would therefore appear that any launch vehicle development in Australia will be left to non- government organisations to at least define the requirements for such a vehicle and to initiate development of long-lead items for such a project. It is therefore the aim of this thesis to attempt to define some of the requirements for a nascent Australian indigenous launch vehicle system.
    [Show full text]
  • Global Satellite Communications Technology and Systems
    International Technology Research Institute World Technology (WTEC) Division WTEC Panel Report on Global Satellite Communications Technology and Systems Joseph N. Pelton, Panel Chair Alfred U. Mac Rae, Panel Chair Kul B. Bhasin Charles W. Bostian William T. Brandon John V. Evans Neil R. Helm Christoph E. Mahle Stephen A. Townes December 1998 International Technology Research Institute R.D. Shelton, Director Geoffrey M. Holdridge, WTEC Division Director and ITRI Series Editor 4501 North Charles Street Baltimore, Maryland 21210-2699 WTEC Panel on Satellite Communications Technology and Systems Sponsored by the National Science Foundation and the National Aeronautics and Space Administration of the United States Government. Dr. Joseph N. Pelton (Panel Chair) Dr. Charles W. Bostian Mr. Neil R. Helm Institute for Applied Space Research Director, Center for Wireless Deputy Director, Institute for George Washington University Telecommunications Applied Space Research 2033 K Street, N.W., Rm. 304 Virginia Tech George Washington University Washington, DC 20052 Blacksburg, VA 24061-0111 2033 K Street, N.W., Rm. 340 Washington, DC 20052 Dr. Alfred U. Mac Rae (Panel Chair) Mr. William T. Brandon President, Mac Rae Technologies Principal Engineer Dr. Christoph E. Mahle 72 Sherbrook Drive The Mitre Corporation (D270) Communications Satellite Consultant Berkeley Heights, NJ 07922 202 Burlington Road 5137 Klingle Street, N.W. Bedford, MA 01730 Washington, DC 20016 Dr. Kul B. Bhasin Chief, Satellite Networks Dr. John V. Evans Dr. Stephen A. Townes and Architectures Branch Vice President Deputy Manager, Communications NASA Lewis Research Center and Chief Technology Officer Systems and Research Section MS 54-2 Comsat Corporation Jet Propulsion Laboratory 21000 Brookpark Rd.
    [Show full text]
  • Power Processing Unit Activities at Thales Alenia Space Belgium (ETCA)
    Power Processing Unit Activities at Thales Alenia Space Belgium (ETCA) IEPC-2013-213 Presented at the 33rd International Electric Propulsion Conference, The George Washington University • Washington, D.C. • USA October 6 – 10, 2013 Eric Bourguignon1, Stéphane Fraselle2 and Thierry Scalais3 Thales Alenia Space Belgium (ETCA), B-6032 Charleroi, Belgium Abstract: Since 1996, Thales Alenia Space Belgium (ETCA) designs, develops and produces Power Processing Unit (PPU) to supply Hall Effect Thrusters: SPT-100 from Fakel and PPS1350-G from Snecma. The first qualification model, developed for the 50V bus Stentor program, has supplied during 8900 hours an SPT-100 thruster in a vacuum chamber simulating space environment. Qualified for the SpaceBus 4000 platform, with a 100V regulated bus, the SB4000 PPU and Filter Unit EQM have cumulated 6300 hours ground operation with a PPS1350-G thruster. Twenty three PPU flight models were delivered for the Stentor, Astra-1K, Smart-1, Intelsat, Inmarsat, Eutelsat, Yahsat satellites. In October 2005, the Smart-1 spacecraft reached the Moon after 4958 hours of cumulated operation of the PPU and its PPS1350-G thruster. Fourteen PPU’s currently in flight for North South Station Keeping on seven telecom satellites have cumulated more than 20900 hours flight operation. Following the selection of the PPS1350-G as baseline thruster for the AlphaBus platform, the AlphaBus PPU was developed and two flight models were delivered for AlphaSat, launched in July 2013. The flight validation of the AlphaBus electrical propulsion has been performed successfully in August 2013. On the SmallGEO platform, one EPTA branch has to drive one out of four SPT-100 thrusters.
    [Show full text]