Systematic Botany. Lecture 37

Total Page:16

File Type:pdf, Size:1020Kb

Systematic Botany. Lecture 37 BIOL 448.37 Systematic Botany. Lecture 37 Alexey Shipunov Minot State University December 2, 2011 BIOL 448.37 Outline Questions and answers Angiosperms Rosidae, part 1 BIOL 448.37 Outline Questions and answers Angiosperms Rosidae, part 1 I Answers may be different, but you needed to show which characters should be accepted as “advanced” BIOL 448.37 Questions and answers Previous final question: the answer What is a most advanced group of monocots? Why? BIOL 448.37 Questions and answers Previous final question: the answer What is a most advanced group of monocots? Why? I Answers may be different, but you needed to show which characters should be accepted as “advanced” BIOL 448.37 Questions and answers Germination rate in non-angiosperms BIOL 448.37 Questions and answers General phylogeny of angiosperms groups studied Rosidae and Asteridae Liliidae Piperales Laurales Magnoliales Ceratophyllales unplaced Ceratophyllales Chloranthales ANTITA BIOL 448.37 Questions and answers General phylogeny + liliid orders Rosidae and Asteridae Zingiberales Poales Arecales Liliales Alismatales Piperales Laurales Magnoliales Chloranthales ANTITA BIOL 448.37 Angiosperms Rosidae, part 1 Angiosperms Rosidae, part 1 BIOL 448.37 Angiosperms Rosidae, part 1 Ranunculales BIOL 448.37 Angiosperms Rosidae, part 1 Platanales and Dilleniales BIOL 448.37 Angiosperms Rosidae, part 1 Saxifragales BIOL 448.37 Angiosperms Rosidae, part 1 Vitales BIOL 448.37 Angiosperms Rosidae, part 1 Geraniales BIOL 448.37 Angiosperms Rosidae, part 1 Myrtales BIOL 448.37 Angiosperms Rosidae, part 1 General phylogeny + basal rosid orders other rosids Myrtales Geraniales Vitales Saxifragales Asteridae Dilleniales Platanales Ranunculales Liliidae Piperales Laurales Magnoliales Chloranthales ANTITA Give the short characteristic of any of 7 orders studied. BIOL 448.37 Angiosperms Rosidae, part 1 Final question (3 points) BIOL 448.37 Angiosperms Rosidae, part 1 Final question (3 points) Give the short characteristic of any of 7 orders studied. BIOL 448.37 Angiosperms Rosidae, part 1 For Further Reading Margulis and Chapman. 2009. Kingdoms and domains: an illustrated guide to the phyla of life on Earth. 4th edition..
Recommended publications
  • Clase 9 Magnoliidae-2015.Pdf
    Origen y Clasificación de las Angiospermas Son un grupo natural? Cuáles son las novedades evolutivas de las plantas con flor? Cuándo y dónde se originó el grupo? Cuáles son sus antecesores? Cómo eran las primeras plantas con flor? Cuáles son las relaciones con las restantes plantas vasculares? Dra. Susana E. Freire Prof. Titular - Botánica Sistemática II Fac. de Cs. Naturales y Museo, UNLP Filogenia de las Tracheophyta Progymnospermopsidas “Gimnospermae” † † † † Angiospermas Pteridospermopsidas Pinopsidas Rhyniopsidas Lycopsidas Psilophyton Monilophytas Gnetopsidas Gynkgopsidas Cycadopsidas Aneurophyytales Archaeopteridales Hojas retinervadas Doble fecundación / Endosperma Xilema con vasos Tubos cribos con células anexas semilla Óvulos con 2 tegumentos Carpelos cerrados heterosporía + Gametofitos reducidos xilema 2rio + Microsporofilos con 4 sacos polínicos megáfilos Perianto zoofilo ramificación monopodial traqueidas fuertemente engrosadas traqueidas Modificado de Judd et al 2002. Origen de las Angiospermas 130 millones de años Lugar y tiempo de Origen de las Angiospermas 130 millones de años a bajas latitudes Flora del Cretácico Bosques montañosos tropicales: (a) Araucaria (b) Taxodiáceas (c) Cycadáceas (d) Cycadeoideales (a) (e) Lycópsidas (h) (f) Helechos (g) Angiospermas (sa) (h) Angiospermas (h) (i) Gnetópsidas (h, a) (j) Angiospermas (A) Antecesores de las Angiospermas deAntecesores las Lyginopteridales s s e a a l s s i t a a m e r y t l r d e i h y a s t e a o p h s a p p i r o e o o p s o n l e g d d o s o f o u t i k í a t a
    [Show full text]
  • Apiales, Aquifoliales, Boraginales, , Brassicales, Canellales
    Kingdom: Plantae Phylum: Tracheophyta Class: Magnoliopsida Order: Apiales, Aquifoliales, Boraginales, , Brassicales, Canellales, Caryophyllales, Celastrales, Ericales, Fabales, Garryales, Gentianales, Lamiales, Laurales, Magnoliales, Malpighiales, Malvales, Myrtales, Oxalidales, Picramniales, Piperales, Proteales, Rosales, Santalales, Sapindales, Solanales Family: Achariaceae, Anacardiaceae, Annonaceae, Apocynaceae, Aquifoliaceae, Araliaceae, Bignoniaceae, Bixaceae, Boraginaceae, Burseraceae, Calophyllaceae, Canellaceae, Cannabaceae, Capparaceae, Cardiopteridaceae, Caricaceae, Caryocaraceae, Celastraceae, Chrysobalanaceae, Clusiaceae, Combretaceae, Dichapetalaceae, Ebenaceae, Elaeocarpaceae, Emmotaceae, Erythroxylaceae, Euphorbiaceae, Fabaceae, Goupiaceae, Hernandiaceae, Humiriaceae, Hypericaceae, Icacinaceae, Ixonanthaceae, Lacistemataceae, Lamiaceae, Lauraceae, Lecythidaceae, Lepidobotryaceae, Linaceae, Loganiaceae, Lythraceae, Malpighiaceae, Malvaceae, Melastomataceae, Meliaceae, Monimiaceae, Moraceae, Myristicaceae, Myrtaceae, Nyctaginaceae, Ochnaceae, Olacaceae, Oleaceae, Opiliaceae, Pentaphylacaceae, Phyllanthaceae, Picramniaceae, Piperaceae, Polygonaceae, Primulaceae, Proteaceae, Putranjivaceae, Rhabdodendraceae, Rhamnaceae, Rhizophoraceae, Rosaceae, Rubiaceae, Rutaceae, Sabiaceae, Salicaceae, Sapindaceae, Sapotaceae, Simaroubaceae, Siparunaceae, Solanaceae, Stemonuraceae, Styracaceae, Symplocaceae, Ulmaceae, Urticaceae, Verbenaceae, Violaceae, Vochysiaceae Genus: Abarema, Acioa, Acosmium, Agonandra, Aiouea, Albizia, Alchornea,
    [Show full text]
  • Well-Known Plants in Each Angiosperm Order
    Well-known plants in each angiosperm order This list is generally from least evolved (most ancient) to most evolved (most modern). (I’m not sure if this applies for Eudicots; I’m listing them in the same order as APG II.) The first few plants are mostly primitive pond and aquarium plants. Next is Illicium (anise tree) from Austrobaileyales, then the magnoliids (Canellales thru Piperales), then monocots (Acorales through Zingiberales), and finally eudicots (Buxales through Dipsacales). The plants before the eudicots in this list are considered basal angiosperms. This list focuses only on angiosperms and does not look at earlier plants such as mosses, ferns, and conifers. Basal angiosperms – mostly aquatic plants Unplaced in order, placed in Amborellaceae family • Amborella trichopoda – one of the most ancient flowering plants Unplaced in order, placed in Nymphaeaceae family • Water lily • Cabomba (fanwort) • Brasenia (watershield) Ceratophyllales • Hornwort Austrobaileyales • Illicium (anise tree, star anise) Basal angiosperms - magnoliids Canellales • Drimys (winter's bark) • Tasmanian pepper Laurales • Bay laurel • Cinnamon • Avocado • Sassafras • Camphor tree • Calycanthus (sweetshrub, spicebush) • Lindera (spicebush, Benjamin bush) Magnoliales • Custard-apple • Pawpaw • guanábana (soursop) • Sugar-apple or sweetsop • Cherimoya • Magnolia • Tuliptree • Michelia • Nutmeg • Clove Piperales • Black pepper • Kava • Lizard’s tail • Aristolochia (birthwort, pipevine, Dutchman's pipe) • Asarum (wild ginger) Basal angiosperms - monocots Acorales
    [Show full text]
  • Systematic Botany. Lecture 38
    BIOL 448.38 Systematic Botany. Lecture 38 Alexey Shipunov Minot State University December 5, 2011 BIOL 448.38 Outline Questions and answers Angiosperms Rosidae, part 2 BIOL 448.38 Outline Questions and answers Angiosperms Rosidae, part 2 I The goal was to remember the key characters, plus (possibly) some representatives BIOL 448.38 Questions and answers Previous final question: the answer Give the short characteristic of any of 7 orders studied. BIOL 448.38 Questions and answers Previous final question: the answer Give the short characteristic of any of 7 orders studied. I The goal was to remember the key characters, plus (possibly) some representatives BIOL 448.38 Questions and answers General phylogeny of angiosperms groups studied so far other rosids Myrtales Geraniales Vitales Saxifragales Asteridae Dilleniales Platanales Ranunculales Liliidae Piperales Laurales Magnoliales Chloranthales ANTITA BIOL 448.38 Angiosperms Rosidae, part 2 Angiosperms Rosidae, part 2 BIOL 448.38 Angiosperms Rosidae, part 2 BIOL 448.38 Angiosperms Rosidae, part 2 BIOL 448.38 Angiosperms Rosidae, part 2 BIOL 448.38 Angiosperms Rosidae, part 2 BIOL 448.38 Angiosperms Rosidae, part 2 BIOL 448.38 Angiosperms Rosidae, part 2 BIOL 448.38 Angiosperms Rosidae, part 2 BIOL 448.38 Angiosperms Rosidae, part 2 BIOL 448.38 Angiosperms Rosidae, part 2 General phylogeny + all rosids Malpighiales Oxalidales Celastrales Cucurbitales Fagales Rosales Fabales Malvales Brassicales Sapindales Myrtales Geraniales Vitales Saxifragales Asteridae Dilleniales Platanales Ranunculales Liliidae Piperales Laurales Magnoliales Chloranthales ANTITA Give the short characteristic of any of orders studied. BIOL 448.38 Angiosperms Rosidae, part 2 Final question (3 points) BIOL 448.38 Angiosperms Rosidae, part 2 Final question (3 points) Give the short characteristic of any of orders studied.
    [Show full text]
  • A Visual Guide to Collecting Plant Tissues for DNA
    A visual guide to collecting plant tissues for DNA Collecting kit checklist Silica gel1 Permanent marker and pencil Resealable bags, airtight plastic container Razor blade / Surgical scissors Empty tea bags or coffee filters Ethanol and paper tissue or ethanol wipes Tags or jewellers tags Plant press and collecting book 1. Selection and preparation of fresh plant tissue: Sampling avoided. Breaking up leaf material will bruise the plant tissue, which will result in enzymes being released From a single plant, harvest 3 – 5 mature leaves, or that cause DNA degradation. Ideally, leaf material sample a piece of a leaf, if large (Picture A). Ideally should be cut into smaller fragments with thick a leaf area of 5 – 10 cm2 should be enough, but this midribs being removed (Picture C). If sampling robust amount should be adjusted if the plant material is leaf tissue (e.g. cycads, palms), use a razor blade or rich in water (e.g. a succulent plant). If leaves are surgical scissors (Picture D). small (e.g. ericoid leaves), sample enough material to equate a leaf area of 5 – 10 cm2. If no leaves are Succulent plants available, other parts can be sampled such as leaf buds, flowers, bracts, seeds or even fresh bark. If the If the leaves are succulent, use a razor blade to plant is small, select the biggest specimen, but never remove epidermal slices or scoop out parenchyma combine tissues from different individuals. tissue (Picture E). Cleaning Ideally, collect clean fresh tissues, however if the leaf or plant material is dirty or shows potential contamination (e.g.
    [Show full text]
  • Heterodichogamy.Pdf
    Research Update TRENDS in Ecology & Evolution Vol.16 No.11 November 2001 595 How common is heterodichogamy? Susanne S. Renner The sexual systems of plants usually Heterodichogamy differs from normal (Zingiberales). These figures probably depend on the exact spatial distribution of dichogamy, the temporal separation of underestimate the frequency of the gamete-producing structures. Less well male and female function in flowers, in heterodichogamy. First, the phenomenon known is how the exact timing of male and that it involves two genetic morphs that is discovered only if flower behavior is female function might influence plant occur at a 1:1 ratio. The phenomenon was studied in several individuals and in mating. New papers by Li et al. on a group discovered in walnuts and hazelnuts5,6 natural populations. Differential of tropical gingers describe differential (the latter ending a series of Letters to movements and maturation of petals, maturing of male and female structures, the Editor about hazel flowering that styles, stigmas and stamens become such that half the individuals of a began in Nature in 1870), but has gone invisible in dried herbarium material, population are in the female stage when almost unnoticed7. Indeed, its recent and planted populations deriving from the other half is in the male stage. This discovery in Alpinia was greeted as a vegetatively propagated material no new case of heterodichogamy is unique new mechanism, differing ‘from other longer reflect natural morph ratios. The in involving reciprocal movement of the passive outbreeding devices, such as discovery of heterodichogamy thus styles in the two temporal morphs. dichogamy…and heterostyly in that it depends on field observations.
    [Show full text]
  • Phylogenomic Approach
    Toward the ultimate phylogeny of Magnoliaceae: phylogenomic approach Sangtae Kim*1, Suhyeon Park1, and Jongsun Park2 1 Sungshin University, Korea 2 InfoBoss Co., Korea Mr. Carl Ferris Miller Founder of Chollipo Arboretum in Korea Chollipo Arboretum Famous for its magnolia collection 2020. Annual Meeting of Magnolia Society International Cholliop Arboretum in Korea. April 13th~22th, 2020 http://WWW.Chollipo.org Sungshin University, Seoul, Korea Dr. Hans Nooteboom Dr. Liu Yu-Hu Twenty-one years ago... in 1998 The 1st International Symposium on the Family Magnoliaceae, Gwangzhow Dr. Hiroshi Azuma Mr. Richard Figlar Dr. Hans Nooteboom Dr. Qing-wen Zeng Dr. Weibang Sun Handsome young boy Dr. Yong-kang Sima Dr. Yu-wu Law Presented ITS study on Magnoliaceae - never published Ten years ago... in 2009 Presented nine cp genome region study (9.2 kbp) on Magnoliaceae – published in 2013 2015 1st International Sympodium on Neotropical Magnoliaceae Gadalajara, 2019 3rd International Sympodium and Workshop on Neotropical Magnoliaceae Asterales Dipsacales Apiales Why magnolia study is Aquifoliales Campanulids (Euasterids II) Garryales Gentianales Laminales Solanales Lamiids important in botany? Ericales Asterids (Euasterids I) Cornales Sapindales Malvales Brassicales Malvids Fagales (Eurosids II) • As a member of early-diverging Cucurbitales Rosales Fabales Zygophyllales Celestrales Fabids (Eurosid I) angiosperms, reconstruction of the Oxalidales Malpighiales Vitales Geraniales Myrtales Rosids phylogeny of Magnoliaceae will Saxifragales Caryphyllales
    [Show full text]
  • Full of Beans: a Study on the Alignment of Two Flowering Plants Classification Systems
    Full of beans: a study on the alignment of two flowering plants classification systems Yi-Yun Cheng and Bertram Ludäscher School of Information Sciences, University of Illinois at Urbana-Champaign, USA {yiyunyc2,ludaesch}@illinois.edu Abstract. Advancements in technologies such as DNA analysis have given rise to new ways in organizing organisms in biodiversity classification systems. In this paper, we examine the feasibility of aligning two classification systems for flowering plants using a logic-based, Region Connection Calculus (RCC-5) ap- proach. The older “Cronquist system” (1981) classifies plants using their mor- phological features, while the more recent Angiosperm Phylogeny Group IV (APG IV) (2016) system classifies based on many new methods including ge- nome-level analysis. In our approach, we align pairwise concepts X and Y from two taxonomies using five basic set relations: congruence (X=Y), inclusion (X>Y), inverse inclusion (X<Y), overlap (X><Y), and disjointness (X!Y). With some of the RCC-5 relationships among the Fabaceae family (beans family) and the Sapindaceae family (maple family) uncertain, we anticipate that the merging of the two classification systems will lead to numerous merged solutions, so- called possible worlds. Our research demonstrates how logic-based alignment with ambiguities can lead to multiple merged solutions, which would not have been feasible when aligning taxonomies, classifications, or other knowledge or- ganization systems (KOS) manually. We believe that this work can introduce a novel approach for aligning KOS, where merged possible worlds can serve as a minimum viable product for engaging domain experts in the loop. Keywords: taxonomy alignment, KOS alignment, interoperability 1 Introduction With the advent of large-scale technologies and datasets, it has become increasingly difficult to organize information using a stable unitary classification scheme over time.
    [Show full text]
  • Phylogeny of the SE Australian Clade of Hibbertia Subg. Hemistemma (Dilleniaceae)
    Phylogeny of the SE Australian clade of Hibbertia subg. Hemistemma (Dilleniaceae) Ihsan Abdl Azez Abdul Raheem School of Earth and Environmental Sciences The University of Adelaide A thesis submitted for the degree of Doctor of Philosophy of the University of Adelaide June 2012 The University of Adelaide, SA, Australia Declaration I, Ihsan Abdl Azez Abdul Raheem certify that this work contains no materials which has been accepted for the award of any other degree or diploma in any universities or other tertiary institution and, to the best of my knowledge and belief, contains no materials previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis, when deposited in the University Library, being made available for photocopying, subject to the provisions of the Copyright Act 1968. I also give permission for the digital version of my thesis to be made available on the web, via the University digital research repository, the Library catalogue, the Australian Digital Thesis Program (ADTP) and also through web search engine, unless permission has been granted by the University to restrict access for a period of time. ii This thesis is dedicated to my loving family and parents iii Acknowledgments The teacher who is indeed wise does not bid you to enter the house of his wisdom but rather leads you to the threshold of your mind--Khalil Gibran First and foremost, I wish to thank my supervisors Dr John G. Conran, Dr Terry Macfarlane and Dr Kevin Thiele for their support, encouragement, valuable feedback and assistance over the past three years (data analyses and writing) guiding me through my PhD candidature.
    [Show full text]
  • Reconstructing the Basal Angiosperm Phylogeny: Evaluating Information Content of Mitochondrial Genes
    55 (4) • November 2006: 837–856 Qiu & al. • Basal angiosperm phylogeny Reconstructing the basal angiosperm phylogeny: evaluating information content of mitochondrial genes Yin-Long Qiu1, Libo Li, Tory A. Hendry, Ruiqi Li, David W. Taylor, Michael J. Issa, Alexander J. Ronen, Mona L. Vekaria & Adam M. White 1Department of Ecology & Evolutionary Biology, The University Herbarium, University of Michigan, Ann Arbor, Michigan 48109-1048, U.S.A. [email protected] (author for correspondence). Three mitochondrial (atp1, matR, nad5), four chloroplast (atpB, matK, rbcL, rpoC2), and one nuclear (18S) genes from 162 seed plants, representing all major lineages of gymnosperms and angiosperms, were analyzed together in a supermatrix or in various partitions using likelihood and parsimony methods. The results show that Amborella + Nymphaeales together constitute the first diverging lineage of angiosperms, and that the topology of Amborella alone being sister to all other angiosperms likely represents a local long branch attrac- tion artifact. The monophyly of magnoliids, as well as sister relationships between Magnoliales and Laurales, and between Canellales and Piperales, are all strongly supported. The sister relationship to eudicots of Ceratophyllum is not strongly supported by this study; instead a placement of the genus with Chloranthaceae receives moderate support in the mitochondrial gene analyses. Relationships among magnoliids, monocots, and eudicots remain unresolved. Direct comparisons of analytic results from several data partitions with or without RNA editing sites show that in multigene analyses, RNA editing has no effect on well supported rela- tionships, but minor effect on weakly supported ones. Finally, comparisons of results from separate analyses of mitochondrial and chloroplast genes demonstrate that mitochondrial genes, with overall slower rates of sub- stitution than chloroplast genes, are informative phylogenetic markers, and are particularly suitable for resolv- ing deep relationships.
    [Show full text]
  • Bilirubin: an Animal Pigment in the Zingiberales and Diverse Angiosperm Orders Cary L
    Florida International University FIU Digital Commons FIU Electronic Theses and Dissertations University Graduate School 11-5-2010 Bilirubin: an Animal Pigment in the Zingiberales and Diverse Angiosperm Orders Cary L. Pirone Florida International University, [email protected] DOI: 10.25148/etd.FI10122201 Follow this and additional works at: https://digitalcommons.fiu.edu/etd Part of the Biochemistry Commons, and the Botany Commons Recommended Citation Pirone, Cary L., "Bilirubin: an Animal Pigment in the Zingiberales and Diverse Angiosperm Orders" (2010). FIU Electronic Theses and Dissertations. 336. https://digitalcommons.fiu.edu/etd/336 This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. FLORIDA INTERNATIONAL UNIVERSITY Miami, Florida BILIRUBIN: AN ANIMAL PIGMENT IN THE ZINGIBERALES AND DIVERSE ANGIOSPERM ORDERS A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in BIOLOGY by Cary Lunsford Pirone 2010 To: Dean Kenneth G. Furton College of Arts and Sciences This dissertation, written by Cary Lunsford Pirone, and entitled Bilirubin: An Animal Pigment in the Zingiberales and Diverse Angiosperm Orders, having been approved in respect to style and intellectual content, is referred to you for judgment. We have read this dissertation and recommend that it be approved. ______________________________________ Bradley C. Bennett ______________________________________ Timothy M. Collins ______________________________________ Maureen A. Donnelly ______________________________________ John. T. Landrum ______________________________________ J. Martin Quirke ______________________________________ David W. Lee, Major Professor Date of Defense: November 5, 2010 The dissertation of Cary Lunsford Pirone is approved.
    [Show full text]
  • Phylogeny of Rosids! ! Rosids! !
    Phylogeny of Rosids! Rosids! ! ! ! ! Eurosids I Eurosids II Vitaceae Saxifragales Eurosids I:! Eurosids II:! Zygophyllales! Brassicales! Celastrales! Malvales! Malpighiales! Sapindales! Oxalidales! Myrtales! Fabales! Geraniales! Rosales! Cucurbitales! Fagales! After Jansen et al., 2007, Proc. Natl. Acad. Sci. USA 104: 19369-19374! Phylogeny of Rosids! Rosids! ! ! ! ! Eurosids I Eurosids II Vitaceae Saxifragales Eurosids I:! Eurosids II:! Zygophyllales! Brassicales! Celastrales! Malvales! Malpighiales! Sapindales! Oxalidales! Myrtales! Fabales! Geraniales! Rosales! Cucurbitales! Fagales! After Jansen et al., 2007, Proc. Natl. Acad. Sci. USA 104: 19369-19374! Alnus - alders A. rubra A. rhombifolia A. incana ssp. tenuifolia Alnus - alders Nitrogen fixation - symbiotic with the nitrogen fixing bacteria Frankia Alnus rubra - red alder Alnus rhombifolia - white alder Alnus incana ssp. tenuifolia - thinleaf alder Corylus cornuta - beaked hazel Carpinus caroliniana - American hornbeam Ostrya virginiana - eastern hophornbeam Phylogeny of Rosids! Rosids! ! ! ! ! Eurosids I Eurosids II Vitaceae Saxifragales Eurosids I:! Eurosids II:! Zygophyllales! Brassicales! Celastrales! Malvales! Malpighiales! Sapindales! Oxalidales! Myrtales! Fabales! Geraniales! Rosales! Cucurbitales! Fagales! After Jansen et al., 2007, Proc. Natl. Acad. Sci. USA 104: 19369-19374! Fagaceae (Beech or Oak family) ! Fagaceae - 9 genera/900 species.! Trees or shrubs, mostly northern hemisphere, temperate region ! Leaves simple, alternate; often lobed, entire or serrate, deciduous
    [Show full text]