United States Patent (19) (11) 4,138,477 Gaffar 45 Feb

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent (19) (11) 4,138,477 Gaffar 45 Feb United States Patent (19) (11) 4,138,477 Gaffar 45 Feb. 6, 1979 (54) COMPOSITION TO CONTROL MOUTH 3,956,480 5/1976 Dichter .................................. 424/49 ODOR 4,022,880 5/1977 Vinson ................................... 424/49 75) Inventor: Maria Corazon S. Gaffar, Somerset, OTHER PUBLICATIONS Websters Third New International Dictionary (un (73) Assignee: Colgate Palmolive Company, New abridged) 1963, p. 2174, "Sorbic Acid and/or Sorbate.” York, N.Y. Crisp et al., "Zinc Polycarboxylate Cements:' J. Dent res. 1976, 55, 2, pp. 299-308. (21) Appl. No.: 691,262 Begala et al., J. of Physical Chem., (1972), 76, 2, pp. 22 Filed: May 28, 1976 254-260. 51) Int. Cl.’......................... A61K 7/16; A61K 7/18; Primary Examiner-Shep K. Rose A61K9/68; A61K 31/315 Attorney, Agent, or Firm-Robert L. Stone; Murray M. 52 U.S. C. ........................................ 424/52; 424/48; Grill; Herbert S. Sylvester 424/49; 424/56; 424/78; 424/81; 424/83; 424/145; 424/289 57 ABSTRACT 58) Field of Search .................................... 424/48-58, A novel composition to prevent and control mouth 424/78-83, 145, 289 odor, which is also effective in preventing calculus, (56) References Cited plaque, caries and periodontal disease containing as the U.S. PATENT DOCUMENTS essential agent, a zinc-polymer combination formed by the reaction or interaction of a zinc compound with an 1,593,485 7/1926 Crosnier ................................. 424/76 anionic polymer containing carboxylic, sulfonic and/or 3,070,510 12/1962 Cooley .................. ... 424/52 phosphonic acid radicals. 3,429,963 2/1969 Shedlovsky et al ... 424/56 3,943,267 3/1976 Randol ................... ... 424/49 10 Claims, No Drawings 4,138,477 1. 2 and oral mucosa, thereby forming a reservoir of zinc COMPOSITION TO CONTROL MOUTH ODOR ions capable of being gradually released with time into This invention relates to novel oral formulations the oral environment. comprising a combination of a zinc compound and an Accordingly, it has now been found that mouth odor anionic polymer as an effective agent against mouth can be controlled by treating the oral cavity with a odor, plaque, calculus and periodontal disease. combination of a zinc compound and an anionic poly The prior art is replete with oral compositions con mer. Said zinc-polymer combinations provide both a taining zinc salts such as zinc chloride, zinc iodide, zinc means of attachment to the oral cavity as well as form a fluoride, zinc sulfide, zinc phenol sulfonate and the like reservoir of zinc ions which are gradually released over as antiseptic agents, and correctives of oral conditions 10 a protracted period of time as an effective means to such as pyorrhea. Zinc chloride has commonly been combat mouth odor, plaque, calculus, and periodontal used in oral formulations for its astringency properties. disease. In addition, the zinc-polymer combinations Zinc phenol sulfonate has been utilized in the prior art decrease the high astringency which is characteristic of dentifrice compositions as an anti-plaque and anti-cal zinc ions, thereby leaving a more pleasant taste in the culus agent as well as an odor inhibitor of fermentation 15 mouth. and putrefaction which occurs in the oral cavity. These It has been ascertained through equilibrium dialysis soluble zinc salts have the dual disadvantage of leaving studies against water that the zinc ions are bound to the an unpleasant astringent taste in the mouth as well as anionic polymer and are slowly released with time as having short-lived efficacy against plaque, calculus and clearly indicated by the results in Table I, wherein as an odor inhibitor. 20 0.025% zinc oxide plus 2% of a copolymer of vinyl Sparingly soluble zinc salts such as zinc citrate, zinc methyl ether and maleic anhydride having a molecular C14-alkyl maleate, zinc benzoate, zinc caproate, zinc weight of 250,000 (Gantrez 119) was tested against zinc carbonate, zinc citrate, etc. have been used in dentifrice oxide per se. formulations to prolong the anti-calculus and anti plaque effectiveness of the zinc ions due to the slow 25 Table I dissolution of the zinc salts in the saliva. The sparingly Equilibrium Dialysis Studies soluble characteristic of these zinc salts promotes lon Rate of Dissociation gevity of action against plaque and calculus at the ex Compound 10 Min Hr 24 Hrs pense of initial or immediate efficacy. Zn2+ Gantrez 119 0. 0 53 The use of a zinc complex of a specific diketone as an 30 Znt? Hot 2 70 100 agent for combating tartar and tooth discoloration is '0.025% zinc oxide -- 2%. Gantrez 119; pH adjusted to 6.5 with 3N NHOH also known, as set forth in German Patent No. "0.025% zinc oxide + 1N HCl; pH adjusted to 6.5 with 3N NHOH 2,229,466. Thus, it is apparent that zinc compounds generally are known to have deodorizing properties as The above table clearly shows that no zinc was de well as efficacy against plaque, calculus and possibly 35 tected in the dialysate (outside membrane) after 10 min periodontal disease. utes, and after 1 hour of dialysis; and only 53% zinc was Also known is the use of a water soluble sodium salt found in the dialysate after 24 hours dialysis. Whereas, of a linear anionic polymer as an anti-calculus agent, as in the absence of the polymer, 21% zinc was detected in set forth in U.S. Pat. No. 3,429,963 to Shedlovsky. This the dialysate after only 10 minutes, 70% zinc was found patent discloses that the hydrolyzed copolymers and/or 40 after only 1 hour and 100% zinc was found in the dialy polymers prevent the deposition of calculus by means of sate after 24 hours dialysis. In the presence of saliva their calcium sequestration properties. However, there salts, the zinc ions are bound to the polymer and are is no suggestion in this patent, nor in any of the known even more gradually released with time, with only 7% prior art, that a combination of a zinc salt and an anionic zinc being detected in the dialysate after 24 hours. In polymer is unusually effective in preventing and con 45 contrast, in the absence of the polymer, the zinc is dia trolling mouth odor while simultaneously preventing lyzed out 7% after 10 minutes; 50% after 1 hour; and calculus, plaque, caries and periodontal disease. 100% after 24 hours. Accordingly, it is an object of this invention to pro The anionic polymers are well known in the art. vide an oral composition containing as the mouth odor Preferably, the polymer is one which is linear and inhibitor, the reaction product of a zinc salt with an 50 water-soluble. For example, it may be soluble in water, anionic polymer. when in its sodium or ammonium salt form, at least to Another object of instant invention is to provide an the extent of the concentration in which it is employed oral composition effective in inhibiting mouth odor (0.1% to 10%). See for instance the anionic polymeric over a protracted period of time. materials described in U.S. Pat. Nos. 2,984,639, Still another object of this invention is to provide an 55 3,325,402, 3,429,963, the article on "Polyelectrolytes' in oral composition effective in inhibiting plaque, calculus, Vol. 10 of Encyclopedia of Polymer Science pages 781 caries and periodontal disease. ff, particularly pages 781, 782 and 784 listing various It has been found, through radioisotope studies, that polyelectrolytes. The anionic polymers employed anionic polymers can be adsorbed onto oral surfaces. herein preferably containionizable carboxyl, sulfonic or Accordingly, an effective method of controlling mouth phosphonic groups. A preferred type of polymers has odor entails the use of an oral composition comprising a its ionic substituents on a polymer chain which is hydro zinc polymer salt or complex formed by combining zinc carbon preferably aliphatic hydrocarbon (e.g. a vinyl compounds with anionic polymers. The positively polymer). Typical of such anionic polymers are copoly charged zinc ions can react with the polymeric car mers of an unsaturated polybasic carboxylic acid or boxyl, sulfonic orphosphonic acid groups of the anionic 65 anhydride thereof (preferably dibasic and having 4 car polymers to form zinc-polymer combinations. In the bon atoms per molecule) and of an olefin having 2 or presence of excess acidic groups, the zinc-polymer com more carbon atoms per molecule; polyolefin sulfonates; binations adsorb onto the oral surfaces such as the teeth polyolefin phosphonates; and polyolefin phosphates, 4,138,477 3. 4. the olefin group containing 2 or more carbon atoms. to 1.5 mg/ml zinc may be mixed with the anionic poly Suitable examples include: mer. Examples of suitable zinc compounds that may be 1. A copolyrner of maleic anhydride with ethylene, or employed include: styrene, or isobutylene, or polymethyl vinyl ether, or polyethylvinyl ether, having recurring groups: 5 zinc acetate zinc isovalerate zinc acetylacetonate zinc D-lactate -X-CH-CH zinc ammonium sulfate zinc DL-lactate zinc benzoate zinc laurate zinc bromide zinc hexafluorosilicate COOM COOM zinc beryllium orthosilicate zinc methacrylate 10 zinc borate zinc molybdate wherein M and M1 are individually hydrogen, sodium, zinc butylphthalate zinc naphthenate zinc butylxanthate zinc octoate potassium or ammonium and may be the same or differ zinc caprylate zinc oleate ent, and X is ethylene, styrene, isobutylene, methylvinyl zinc carbonate zinc orthosphosphate zinc chloroanilate zinc phenolsulfonate ether, and ethylvinyl ether. zinc chlorate zinc pyridine-2-thiol-1-oxide 2. A polyacrylic acid and polyacrylates thereof hav- 15 zinc chromate zinc pyrophosphate ing recurring groups: zinc citrate zinc resinate zinc cyclohexanebutyrate zinc salicylate zinc chloride zinc sulfate zinc gallate zinc nitrate zinc fluoride zinc selenide -H-CH-H-CH zinc alpha-glucoheptonate zinc stearate COOM COOM 20 zinc gluconate zinc sulfanilate .
Recommended publications
  • Chain-Length-Identification Strategy in Zinc Polyphosphate Glasses by Means of XPS and Tof-SIMS
    Research Collection Journal Article Chain-length-identification strategy in zinc polyphosphate glasses by means of XPS and ToF-SIMS Author(s): Crobu, Maura; Rossi, Antonella; Mangolini, Filippo; Spencer, Nicholas D. Publication Date: 2012 Permanent Link: https://doi.org/10.3929/ethz-b-000048615 Originally published in: Analytical and Bioanalytical Chemistry 403(5), http://doi.org/10.1007/s00216-012-5836-7 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Anal Bioanal Chem (2012) 403:1415–1432 DOI 10.1007/s00216-012-5836-7 ORIGINAL PAPER Chain-length-identification strategy in zinc polyphosphate glasses by means of XPS and ToF-SIMS Maura Crobu & Antonella Rossi & Filippo Mangolini & Nicholas D. Spencer Received: 10 September 2011 /Revised: 29 January 2012 /Accepted: 3 February 2012 /Published online: 27 March 2012 # Springer-Verlag 2012 Abstract The surface chemistry of amorphous zinc poly- linked through P–O–P bonds predominate in the metaphos- phosphates of different compositions (ranging from zinc meta- phate composition, while when the zinc content is increased, phosphate to zinc orthophosphate) has been investigated by the chains become shorter, ultimately being replaced by PO4 means of X-ray photoelectron spectroscopy (XPS) and time- monomers in the orthophosphate composition. of-flight secondary-ion mass spectroscopy (ToF-SIMS). The identification of the chain length of zinc polyphosphates by Keywords Polyphosphate glasses . X-ray photoelectron XPS was on the basis of the integrated intensity ratio of the spectroscopy. Time-of-flight secondary-ion mass bridging (P–O–P) and nonbridging (P0OandP–O–M) oxy- spectroscopy.
    [Show full text]
  • WO 2016/074683 Al 19 May 2016 (19.05.2016) W P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/074683 Al 19 May 2016 (19.05.2016) W P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12N 15/10 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/DK20 15/050343 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 11 November 2015 ( 11. 1 1.2015) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (25) Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: PA 2014 00655 11 November 2014 ( 11. 1 1.2014) DK (84) Designated States (unless otherwise indicated, for every 62/077,933 11 November 2014 ( 11. 11.2014) US kind of regional protection available): ARIPO (BW, GH, 62/202,3 18 7 August 2015 (07.08.2015) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (71) Applicant: LUNDORF PEDERSEN MATERIALS APS TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, [DK/DK]; Nordvej 16 B, Himmelev, DK-4000 Roskilde DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (DK).
    [Show full text]
  • Toxicological Profile for Zinc
    TOXICOLOGICAL PROFILE FOR ZINC U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Agency for Toxic Substances and Disease Registry August 2005 ZINC ii DISCLAIMER The use of company or product name(s) is for identification only and does not imply endorsement by the Agency for Toxic Substances and Disease Registry. ZINC iii UPDATE STATEMENT A Toxicological Profile for Zinc, Draft for Public Comment was released in September 2003. This edition supersedes any previously released draft or final profile. Toxicological profiles are revised and republished as necessary. For information regarding the update status of previously released profiles, contact ATSDR at: Agency for Toxic Substances and Disease Registry Division of Toxicology/Toxicology Information Branch 1600 Clifton Road NE Mailstop F-32 Atlanta, Georgia 30333 ZINC vi *Legislative Background The toxicological profiles are developed in response to the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public law 99-499) which amended the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA or Superfund). This public law directed ATSDR to prepare toxicological profiles for hazardous substances most commonly found at facilities on the CERCLA National Priorities List and that pose the most significant potential threat to human health, as determined by ATSDR and the EPA. The availability of the revised priority list of 275 hazardous substances was announced in the Federal Register on November 17, 1997 (62 FR 61332). For prior versions of the list of substances, see Federal Register notices dated April 29, 1996 (61 FR 18744); April 17, 1987 (52 FR 12866); October 20, 1988 (53 FR 41280); October 26, 1989 (54 FR 43619); October 17, 1990 (55 FR 42067); October 17, 1991 (56 FR 52166); October 28, 1992 (57 FR 48801); and February 28, 1994 (59 FR 9486).
    [Show full text]
  • High Purity Inorganics
    High Purity Inorganics www.alfa.com INCLUDING: • Puratronic® High Purity Inorganics • Ultra Dry Anhydrous Materials • REacton® Rare Earth Products www.alfa.com Where Science Meets Service High Purity Inorganics from Alfa Aesar Known worldwide as a leading manufacturer of high purity inorganic compounds, Alfa Aesar produces thousands of distinct materials to exacting standards for research, development and production applications. Custom production and packaging services are part of our regular offering. Our brands are recognized for purity and quality and are backed up by technical and sales teams dedicated to providing the best service. This catalog contains only a selection of our wide range of high purity inorganic materials. Many more products from our full range of over 46,000 items are available in our main catalog or online at www.alfa.com. APPLICATION FOR INORGANICS High Purity Products for Crystal Growth Typically, materials are manufactured to 99.995+% purity levels (metals basis). All materials are manufactured to have suitably low chloride, nitrate, sulfate and water content. Products include: • Lutetium(III) oxide • Niobium(V) oxide • Potassium carbonate • Sodium fluoride • Thulium(III) oxide • Tungsten(VI) oxide About Us GLOBAL INVENTORY The majority of our high purity inorganic compounds and related products are available in research and development quantities from stock. We also supply most products from stock in semi-bulk or bulk quantities. Many are in regular production and are available in bulk for next day shipment. Our experience in manufacturing, sourcing and handling a wide range of products enables us to respond quickly and efficiently to your needs. CUSTOM SYNTHESIS We offer flexible custom manufacturing services with the assurance of quality and confidentiality.
    [Show full text]
  • Chemical Names and CAS Numbers Final
    Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride
    [Show full text]
  • XPS Study of the Influence of Temperature on Zndtp Tribofilm
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RERO DOC Digital Library Tribology Letters, Vol. 25, No. 3, March 2007 (Ó 2006) 185 DOI: 10.1007/s11249-006-9166-9 XPS study of the influence of temperature on ZnDTP tribofilm composition Roman Heubergera, Antonella Rossia,b and Nicholas D. Spencera,* aLaboratory for Surface Science and Technology, Department of Materials, ETH Zurich, Wolfgang-Pauli-Strasse 10, Zurich, CH-8093, Switzerland bDipartimento di Chimica Inorganica ed Analitica, Universita` degli Studi di Cagliari, INSTM Research Unit, Cittadella Universitaria di Monserrato, Cagliari, I-09100, Italy Received 4 August 2006; accepted 17 October 2006; published online 30 November 2006 Antiwear additives, such as zinc dialkyldithiophosphate (ZnDTP), find application in many different industrial sectors. Although it is understood that certain ZnDTP concentrations need to be used to achieve an effective antiwear performance, there has been very little work published concerning the effect of temperature on the interactions of the additive and its adsorption mechanism on steel. In this article, 100Cr6 (52100) steel ball-on-disc experiments under solutions of zinc dialkyldithiophosphate (ZnDTP) in poly-a-olefin (PAO) were performed at different temperatures, ranging from 25 to 180 °C. The discs were analysed after the experiments by means of small-area, imaging and angle-resolved X-ray photoelectron spectroscopy (XPS). The composition of the reaction film was found to change as a function of the applied temperature and also to vary within the film as a function of depth: Longer polyphosphate chains were found at higher temperatures as well as towards the outer part of the reaction film.
    [Show full text]
  • Chain-Length-Identification Strategy in Zinc Polyphosphate Glasses by Means of XPS and Tof-SIMS
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RERO DOC Digital Library Anal Bioanal Chem (2012) 403:1415–1432 DOI 10.1007/s00216-012-5836-7 ORIGINAL PAPER Chain-length-identification strategy in zinc polyphosphate glasses by means of XPS and ToF-SIMS Maura Crobu & Antonella Rossi & Filippo Mangolini & Nicholas D. Spencer Received: 10 September 2011 /Revised: 29 January 2012 /Accepted: 3 February 2012 /Published online: 27 March 2012 # Springer-Verlag 2012 Abstract The surface chemistry of amorphous zinc poly- linked through P–O–P bonds predominate in the metaphos- phosphates of different compositions (ranging from zinc meta- phate composition, while when the zinc content is increased, phosphate to zinc orthophosphate) has been investigated by the chains become shorter, ultimately being replaced by PO4 means of X-ray photoelectron spectroscopy (XPS) and time- monomers in the orthophosphate composition. of-flight secondary-ion mass spectroscopy (ToF-SIMS). The identification of the chain length of zinc polyphosphates by Keywords Polyphosphate glasses . X-ray photoelectron XPS was on the basis of the integrated intensity ratio of the spectroscopy. Time-of-flight secondary-ion mass bridging (P–O–P) and nonbridging (P0OandP–O–M) oxy- spectroscopy. Fourier transform IR spectroscopy gen peaks used for fitting the oxygen 1s signal, the shift of the P2p3/2 signal towards lower binding energies and the modi- fied Auger parameter towards higher values as the zinc con- tent increases. The discrimination of the polyphosphate chain Introduction lengths was also achieved by ToF-SIMS, by comparing the intensities of selected characteristic phosphate fragments.
    [Show full text]
  • Analysis of Alternatives
    ANALYSIS OF ALTERNATIVES Legal name of applicants: AKZO Nobel Car Refinishes B.V. Habich GmbH; Henkel Global Supply Chain B.V.; Indestructible Paint Ltd.; Finalin GmbH; Mapaero; PPG Central (UK) Ltd in its legal capacity as Only Representative of PRC DeSoto International Inc. - OR5; PPG Industries (UK) Ltd; PPG Coatings SA; Aviall Services Inc. Submitted by: AKZO Nobel Car Refinishes B.V. Substance: Strontium chromate, EC No: 232-142-6, CAS No: 7789-06-2 Use title: Application of paints, primers and specialty coatings containing Strontium chromate in the construction of aerospace and aeronautical parts, including aeroplanes / helicopters, space craft, satellites, launchers, engines, and for the maintenance of such constructions, as well as for such aerospace and aeronautical parts, used elsewhere, where the supply chain and exposure scenarios are identical. Use number: 2 Use number: 2 Copy right protected - Property of Members of the CCST Consortium - No copying / use allowed. ANALYSIS OF ALTERNATIVES Disclaimer This document shall not be construed as expressly or implicitly granting a license or any rights to use related to any content or information contained therein. In no event shall applicant be liable in this respect for any damage arising out or in connection with access, use of any content or information contained therein despite the lack of approval to do so. ii Use number: 2 Copy right protected - Property of Members of the CCST Consortium - No copying / use allowed. ANALYSIS OF ALTERNATIVES CONTENTS 1. SUMMARY 1 2. INTRODUCTION 8 2.1. Substance 8 2.2. Uses of Cr(VI) containing substances 8 2.3. Purpose and benefits of Cr(VI) compounds 8 3.
    [Show full text]
  • Wo 2007/076001 A2
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (43) International Publication Date PCT (10) International Publication Number 5 July 2007 (05.07.2007) WO 2007/076001 A2 (51) International Patent Classification: Not classified (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, (21) International Application Number: AT,AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, PCT/US2006/048996 CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, (22) International Filing Date: JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, 19 December 2006 (19.12.2006) LT, LU, LV,LY,MA, MD, MG, MK, MN, MW, MX, MY, (25) Filing Language: English MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, (26) Publication Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 60/752,157 20 December 2005 (20.12.2005) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, (71) Applicant (for all designated States except US): THE ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), PROCTER & GAMBLE COMPANY [US/US]; One European (AT,BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, Procter & Gamble Plaza, Cincinnati, Ohio 45202 (US).
    [Show full text]
  • 2019 Trace Minerals
    United States Department of Agriculture Agricultural Marketing Service | National Organic Program Document Cover Sheet https://www.ams.usda.gov/rules-regulations/organic/national-list/petitioned Document Type: ☐ National List Petition or Petition Update A petition is a request to amend the USDA National Organic Program’s National List of Allowed and Prohibited Substances (National List). Any person may submit a petition to have a substance evaluated by the National Organic Standards Board (7 CFR 205.607(a)). Guidelines for submitting a petition are available in the NOP Handbook as NOP 3011, National List Petition Guidelines. Petitions are posted for the public on the NOP website for Petitioned Substances. ☒ Technical Report A technical report is developed in response to a petition to amend the National List. Reports are also developed to assist in the review of substances that are already on the National List. Technical reports are completed by third-party contractors and are available to the public on the NOP website for Petitioned Substances. Contractor names and dates completed are available in the report. Trace Minerals Livestock 1 Identification of Petitioned Substance 2 3 “Trace minerals” is a term for multiple nutritional elements added to livestock, poultry, and companion 4 animal diets in micro quantities only (i.e., measured in milligrams per pound or small units) (AAFCO 5 2019). While the Association of American Feed Control Officials (AAFCO) lists only cobalt, copper, iodine, 6 iron, manganese, and zinc as trace minerals added to animal feeds (AAFCO 2019), this technical report also 7 discusses chromium, molybdenum, and selenium, which are all commonly found in commercial trace 8 mineral products on the market for inclusion in animal feeds.
    [Show full text]
  • WO 2016/040564 Al 17 March 2016 (17.03.2016) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/040564 Al 17 March 2016 (17.03.2016) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C05F 11/00 (2006.01) C05D 9/02 (2006.01) kind of national protection available): AE, AG, AL, AM, C05G 3/00 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (21) Number: International Application DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/US20 15/049323 HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (22) International Filing Date: KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, 10 September 2015 (10.09.201 5) MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (25) Filing Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (26) Publication Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 62/049,399 12 September 2014 (12.09.2014) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, (71) Applicant: SUN CHEMICAL CORPORATION TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, [US/US]; 35 Waterview Boulevard, Parsippany, NJ 07054 TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, (US).
    [Show full text]
  • Database Full Listing
    16-Nov-06 OLI Data Base Listings for ESP version 7.0.46, Analyzers 2.0.46 and all current alliance products Data Base OLI Tag (ESP) Name IUPAC Name Formula CAS Registry Number Molecular Weight ALLOY AL2U 2-Aluminum uranium Al2U 291.98999 ALLOY AL3TH 3-Aluminum thorium Al3Th 312.982727 ALLOY AL3TI 3-Aluminum titanium Al3Ti 128.824615 ALLOY AL3U 3-Aluminum uranium Al3U 318.971527 ALLOY AL4U 4-Aluminum uranium Al4U 345.953064 ALLOY ALSB Aluminum antimony AlSb 148.731537 ALLOY ALTI Aluminum titanium AlTi 74.861542 ALLOY ALTI3 Aluminum 3-titanium AlTi3 170.621536 ALLOY AUCD Gold cadmium AuCd 309.376495 ALLOY AUCU Gold copper AuCu 260.512512 ALLOY AUCU3 Gold 3-copper AuCu3 387.604492 ALLOY AUSN Gold tin AuSn 315.676514 ALLOY AUSN2 Gold 2-tin AuSn2 434.386505 ALLOY AUSN4 Gold 4-tin AuSn4 671.806519 ALLOY BA2SN 2-Barium tin Ba2Sn 393.369995 ALLOY BI2U 2-Bismuth uranium Bi2U 655.987671 ALLOY BI4U3 4-Bismuth 3-uranium Bi4U3 1550.002319 ALLOY BIU Bismuth uranium BiU 447.007294 ALLOY CA2PB 2-Calcium lead Ca2Pb 287.355988 ALLOY CA2SI 2-Calcium silicon Ca2Si 108.241501 ALLOY CA2SN 2-Calcium tin Ca2Sn 198.865997 ALLOY CA3SB2 3-Calcium 2-antimony Ca3Sb2 363.734009 ALLOY CAMG2 Calcium 2-magnesium CaMg2 88.688004 ALLOY CAPB Calcium lead CaPb 247.278 ALLOY CASI Calcium silicon CaSi 68.163498 ALLOY CASI2 Calcium 2-silicon CaSi2 96.249001 ALLOY CASN Calcium tin CaSn 158.787994 ALLOY CAZN Calcium zinc CaZn 105.468002 ALLOY CAZN2 Calcium 2-zinc CaZn2 170.858002 ALLOY CD11U 11-Cadmium uranium Cd11U 1474.536865 ALLOY CD3AS2 3-Cadmium 2-arsenic As2Cd3 487.073212
    [Show full text]