Ambloplites Cavifrons)

Total Page:16

File Type:pdf, Size:1020Kb

Ambloplites Cavifrons) Georgia Southern University Digital Commons@Georgia Southern Electronic Theses and Dissertations Graduate Studies, Jack N. Averitt College of Spring 2017 Assessing the Genetic Status and Factors Leading to the Decline of the Roanoke Bass (Ambloplites Cavifrons) Jackman C. Eschenroeder Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd Part of the Ecology and Evolutionary Biology Commons Recommended Citation Eschenroeder, J.C. Assessing the genetic status and factors leading to the decline of the Roanoke bass (Ambloplites cavifrons). MS thesis. Georgia Southern University, 2017. This thesis (open access) is brought to you for free and open access by the Graduate Studies, Jack N. Averitt College of at Digital Commons@Georgia Southern. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact [email protected]. ASSESSING THE GENETIC STATUS AND FACTORS LEADING TO THE DECLINE OF THE ROANOKE BASS (AMBLOPLITES CAVIFRONS) by JACKMAN ESCHENROEDER (Under the direction of James H. Roberts) ABSTRACT Although numerous factors have led to the staggering declines in freshwater biodiversity throughout the United States and the world, habitat alteration and introduced species pose some of the greatest challenges to conservation efforts. Learning more about how these two factors lead to the decline of an endemic organism could help prevent the future loss of unique species and the premature conclusion of evolutionary trajectories. Roanoke bass (Ambloplites cavifrons) is a sport fish endemic to portions of the Roanoke, Chowan, Tar, and Neuse river basins of North Carolina and Virginia. This species has been in decline for many years, and it is believed that their continued existence is threatened by competition, and potentially hybridization and introgression with their introduced relative, the rock bass (Ambloplites rupestris). In addition to interactions with this invasive species, significant alteration of habitat is likely also a contributing factor in the decline of A. cavifrons. This study seeks to evaluate the relative contributions of these various factors to the decline of A. cavifrons. I utilized a combination of nuclear markers and mitochondrial sequence data to address the question of whether or not the two species are hybridizing in areas of syntopy, and furthermore to determine whether hybrids are fertile and able to breed back with the parental species. In addition, I identified extant populations of A. cavifrons throughout their historic range, and evaluated the genetic diversity of these populations and correlated these values with changes to the landscape in the form of alterations to watershed land use and the construction of impoundments. My results indicate large portions of the historic range of A. cavifrons no longer contain the species, and that remaining populations occur at the stream level and exist in isolation from one another. Obtaining this information allows for a better understanding of the current state of this unique species, provides information that may help managers prevent its disappearance from its native range, and affords insight into the interactions of an introduced and a native species in a landscape that has been heavily altered by human activity. INDEX WORDS: Hybridization, Conservation genetics, Invasive species ASSESSING THE GENETIC STATUS AND FACTORS LEADING TO THE DECLINE OF THE ROANOKE BASS (AMBLOPLITES CAVIFRONS) by JACKMAN ESCHENROEDER B.S. University of Missouri, 2014 A Thesis Submitted to the Graduate Faculty of Georgia Southern University in Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE STATESBORO, GEORGIA © 2017 JACKMAN ESCHENROEDER All Rights Reserved 1 ASSESSING THE GENETIC STATUS AND FACTORS LEADING TO THE DECLINE OF THE ROANOKE BASS (AMBLOPLITES CAVIFRONS) by JACKMAN ESCHENROEDER Major Professor: James H. Roberts Committee: Stephen P. Vives John S. Harrison Electronic Version Approved: May 2017 2 ACKNOWLEDGEMENTS My work would not have been possible without the support and assistance of numerous colleagues, friends, and family members. I am proud of the work I have conducted in my time as a master’s student, but my thesis is truly an accomplishment to be shared with everyone who helped me along the way. Many thanks are owed to the people who helped bring this project to fruition before I even became a part of it. Mike Pinder was instrumental to the realization of this project, and provided invaluable assistance with field work and logistics. The collection of samples from Virginia was also made possible through the cheerful assistance of Rob Adams, Eric Brittle, Preston Chrisman, Nicole Kmetz, Brian Parks, Brandon Plunkett, Scott Smith, and Derek Wheaton. Paul Angermeier kindly provided equipment resources for field studies. Obtaining North Carolina samples was made possible through the hard work of Corey Oakley, who also has the distinction of being the fishing guide who helped me catch my very first Roanoke bass. Over the course of my two years at Georgia Southern, I have had the good fortune of working with excellent lab mates. Many thanks to Alex Wendt, Garrett Strickland, and Becky Scott for the numerous times they helped me to struggle my way through troubleshooting software programs and molecular techniques, and also for providing a wonderful lab community in which to work. I am glad to have had the opportunity to work and learn with each of them. I would also like to thank Scott Harrison and Stephen Vives for serving as members on my thesis committee. Their insightful comments and suggestions aided my research and in the creation of a meaningful and scientifically sound thesis. Additional thanks are due to Scott Harrison for allowing me use of the equipment in his laboratory to process my samples and for providing assistance and advice that greatly contributed to the achievement of genetic objectives. 3 I cannot over emphasize the thanks owed to my advisor, Jamie Roberts. Under his mentorship I have learned more about molecular analysis, conservation genetics, and fish ecology than I thought possible. His guidance has allowed me to develop into the scientist I want to be, and my current and future success as a biologist I largely attribute to him. I am proud to have been his first graduate student, and I will always consider him not only a colleague but also a friend. My most profound thanks to my family and friends, who tirelessly provided me with the support (and occasional prodding) necessary to help me accomplish my goals. Thanks to my mother Kelly, father Richard, and sisters Corinne and Grace who believe me to be much smarter than I am, and who never doubted my capability. Finally, a special thanks to my partner Shelby Rudolph, whose continuous love, encouragement, and patience gave me the strength I needed to persevere and succeed. 4 TABLE OF CONTENTS ACKNOWLEDGEMENTS ............................................................................................................ 2 LIST OF TABLES .......................................................................................................................... 6 GENERAL INTRODUCTION ..................................................................................................... 12 REFERENCES ............................................................................................................................. 17 CHAPTER 1 ................................................................................................................................. 20 ABSTRACT .................................................................................................................................. 20 INTRODUCTION ........................................................................................................................ 21 METHODS ................................................................................................................................... 28 Sample Collection ................................................................................................................................................... 28 Laboratory Methods ............................................................................................................................................... 29 Data Analysis .......................................................................................................................................................... 29 RESULTS ..................................................................................................................................... 33 DISCUSSION ............................................................................................................................... 38 REFERENCES ............................................................................................................................. 47 CHAPTER 2 ................................................................................................................................. 64 ABSTRACT .................................................................................................................................. 64 INTRODUCTION ........................................................................................................................ 65 METHODS ..................................................................................................................................
Recommended publications
  • Ambloplites Constellatus, a New Species of Rock Bass from the Ozark Upland of Arkansas and Missouri with a Review of Western Rock Bass Populations
    Ambloplites constellatus, a New Species of Rock Bass from the Ozark Upland of Arkansas and Missouri with a Review of Western Rock Bass Populations ROBERT C. CASHNER and ROYAL D. SUTTKUS V Reprinted from THE AMERICAN MIDLAND NATURALIST Vol. 98, No. 1, July, 1977, pp. 147-161 University of Notre Dame Press Notre Dame, Indiana Ambloplites constellatus, a New Species of Rock Bass from the Ozark Upland of Arkansas and Missouri with a Review of Western Rock Bass Populations' ROBERT C. CASHNER Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana 70122 and ROYAL D. SUTTKUS Tulane University, Museum of Natural History, Belle Chasse, Louisiana 70037 ABSTRACT: A new species of rock bass, Ambloplites constellatus, is described from the upland section of the White River in Arkansas and Missouri. It is compared with the closely related northern rock bass (A. rupestris) from Missouri and Meramec river populations, the southern rock bass (A. ariommus) from the Ouachita and Little river drainages, and with other western rock bass populations of undetermined status. Ambloplites constellatus is distinguished from its congeners by its freckled color pattern and slender body form. Ambloplites constellatus occurs throughout the upper White River. There are two records of the species from the Osage River drainage in Missouri. INTRODUCTION In his study of Missouri fishes, Pflieger (1971) noted that rock bass from the upper White River system differed strikingly in color pattern from other Missouri populations. Based on our examination of mate- rial from throughout the Ozark Upland province, as well as other western rock bass populations, we describe the upper White River population as a new species, Ambloplites constellatus, the Ozark rock bass.
    [Show full text]
  • Information on the NCWRC's Scientific Council of Fishes Rare
    A Summary of the 2010 Reevaluation of Status Listings for Jeopardized Freshwater Fishes in North Carolina Submitted by Bryn H. Tracy North Carolina Division of Water Resources North Carolina Department of Environment and Natural Resources Raleigh, NC On behalf of the NCWRC’s Scientific Council of Fishes November 01, 2014 Bigeye Jumprock, Scartomyzon (Moxostoma) ariommum, State Threatened Photograph by Noel Burkhead and Robert Jenkins, courtesy of the Virginia Division of Game and Inland Fisheries and the Southeastern Fishes Council (http://www.sefishescouncil.org/). Table of Contents Page Introduction......................................................................................................................................... 3 2010 Reevaluation of Status Listings for Jeopardized Freshwater Fishes In North Carolina ........... 4 Summaries from the 2010 Reevaluation of Status Listings for Jeopardized Freshwater Fishes in North Carolina .......................................................................................................................... 12 Recent Activities of NCWRC’s Scientific Council of Fishes .................................................. 13 North Carolina’s Imperiled Fish Fauna, Part I, Ohio Lamprey .............................................. 14 North Carolina’s Imperiled Fish Fauna, Part II, “Atlantic” Highfin Carpsucker ...................... 17 North Carolina’s Imperiled Fish Fauna, Part III, Tennessee Darter ...................................... 20 North Carolina’s Imperiled Fish Fauna, Part
    [Show full text]
  • Endangered Species
    FEATURE: ENDANGERED SPECIES Conservation Status of Imperiled North American Freshwater and Diadromous Fishes ABSTRACT: This is the third compilation of imperiled (i.e., endangered, threatened, vulnerable) plus extinct freshwater and diadromous fishes of North America prepared by the American Fisheries Society’s Endangered Species Committee. Since the last revision in 1989, imperilment of inland fishes has increased substantially. This list includes 700 extant taxa representing 133 genera and 36 families, a 92% increase over the 364 listed in 1989. The increase reflects the addition of distinct populations, previously non-imperiled fishes, and recently described or discovered taxa. Approximately 39% of described fish species of the continent are imperiled. There are 230 vulnerable, 190 threatened, and 280 endangered extant taxa, and 61 taxa presumed extinct or extirpated from nature. Of those that were imperiled in 1989, most (89%) are the same or worse in conservation status; only 6% have improved in status, and 5% were delisted for various reasons. Habitat degradation and nonindigenous species are the main threats to at-risk fishes, many of which are restricted to small ranges. Documenting the diversity and status of rare fishes is a critical step in identifying and implementing appropriate actions necessary for their protection and management. Howard L. Jelks, Frank McCormick, Stephen J. Walsh, Joseph S. Nelson, Noel M. Burkhead, Steven P. Platania, Salvador Contreras-Balderas, Brady A. Porter, Edmundo Díaz-Pardo, Claude B. Renaud, Dean A. Hendrickson, Juan Jacobo Schmitter-Soto, John Lyons, Eric B. Taylor, and Nicholas E. Mandrak, Melvin L. Warren, Jr. Jelks, Walsh, and Burkhead are research McCormick is a biologist with the biologists with the U.S.
    [Show full text]
  • Low-Head Dams Facilitate Round Goby Neogobius Melanostomus Invasion
    Biol Invasions (2018) 20:757–776 https://doi.org/10.1007/s10530-017-1573-3 ORIGINAL PAPER Low-head dams facilitate Round Goby Neogobius melanostomus invasion Dustin Raab . Nicholas E. Mandrak . Anthony Ricciardi Received: 9 July 2017 / Accepted: 23 September 2017 / Published online: 3 October 2017 Ó Springer International Publishing AG 2017 Abstract Round Goby Neogobius melanostomus inclusion of both reservoir-associated abiotic variables invasion of the Grand River (Ontario, Canada) and Round Goby abundance as model terms. To presents an opportunity to assess the role of abiotic determine establishment potential of the uninvaded gradients in mediating the establishment and impact of reach immediately upstream, four environmental nonnative benthic fishes in rivers. In this system, habitat characteristics were used in discriminant sequential low-head dams delineate uninvaded and function analysis (DFA) to predict three potential invaded river reaches and create upstream gradients of outcomes of introduction: non-invaded and either increasing water velocity. We hypothesized that flow lower or higher Round Goby abundance (low and high refugia created by impounded reservoirs above low- invasion status, respectively) than the median number head dams enhance local Round Goby abundance. of Round Goby at invaded sites. Our DFA function Round Goby influence on the native fish community correctly classified non-invaded and high-abundance was determined by variance partitioning, and we used invasion status sites [ 85% of the time, with lower generalized additive models to identify small-bodied (73%) success in classifying low-abundance invasion benthic fish species most likely to be impacted by status sites, and the spatial pattern of our results Round Goby invasion.
    [Show full text]
  • Summary Report of Freshwater Nonindigenous Aquatic Species in U.S
    Summary Report of Freshwater Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 4—An Update April 2013 Prepared by: Pam L. Fuller, Amy J. Benson, and Matthew J. Cannister U.S. Geological Survey Southeast Ecological Science Center Gainesville, Florida Prepared for: U.S. Fish and Wildlife Service Southeast Region Atlanta, Georgia Cover Photos: Silver Carp, Hypophthalmichthys molitrix – Auburn University Giant Applesnail, Pomacea maculata – David Knott Straightedge Crayfish, Procambarus hayi – U.S. Forest Service i Table of Contents Table of Contents ...................................................................................................................................... ii List of Figures ............................................................................................................................................ v List of Tables ............................................................................................................................................ vi INTRODUCTION ............................................................................................................................................. 1 Overview of Region 4 Introductions Since 2000 ....................................................................................... 1 Format of Species Accounts ...................................................................................................................... 2 Explanation of Maps ................................................................................................................................
    [Show full text]
  • Species of Greatest Conservation Need
    APPENDIX A. VIRGINIA SPECIES OF GREATEST CONSERVATION NEED Taxa Common Scientific Name Tier Cons. Opp. Habitat Descriptive Habitat Notes Name Ranking Amphibians Barking Hyla gratiosa II a Forest Forests near or within The Virginia Fish and Wildlife Information System indicates treefrog shallow wetlands the loss suitable wetlands constitute the greatest threats to this species. DGIF recommends working to maintain or restore forested buffers surrounding occupied wetlands. These needs are consistent with action plan priorities to conserve and restore wetland habitats and associated buffers. Recently discovered populations within its known range, may indicate this species is more abundant than previously believed. An in-depth investigation into its status may warrant delisting. This species will be prioritized as Tier 2a. Amphibians Blue Ridge Desmognathus IV c Forest High elevation seeps, This species' distribution is very limited. Other than limiting dusky orestes streams, wet rock faces, logging activity in the occupied areas, no conservation salamander and riparian forests actions have been identified. Unless other threats or actions are identified, this species will be listed as Tier 4c. Amphibians Blue Ridge Eurycea III a Wetland Mountain streams and The needs of this species are consistent with priorities for two-lined wilderae adjacent riparian areas maintaining and enhancing riparian forests and aquatic salamander with mixed hardwood or habitats. This species will be listed as Tier 3a. spruce-fir forests up to 6000 feet. Amphibians Carpenter Lithobates III a Wetland Freshwater wetlands with The needs of this species are consistent with action plan frog virgatipes sphagnum moss priorities to preserve and restore aquatic and wetland habitats and water quality.
    [Show full text]
  • Basinwide Assessment Report Roanoke River Basin
    BASINWIDE ASSESSMENT REPORT ROANOKE RIVER BASIN NORTH CAROLINA DEPARTMENT OF ENVIRONMENT AND NATURAL RESOURCES Division of Water Quality Environmental Sciences Section December 2010 This Page Left Intentionally Blank 2 TABLE OF CONTENTS Section Page LIST OF APPENDICES ...............................................................................................................................3 LIST OF TABLES.........................................................................................................................................3 LIST OF FIGURES.......................................................................................................................................4 INTRODUCTION TO PROGRAM METHODS..............................................................................................5 BASIN DESCRIPTION..................................................................................................................................6 ROA RIVER HUC 03010103—DAN RIVER HEADWATERS.......................................................................7 River and Stream Assessment .......................................................................................................7 ROA RIVER HUC 03010104—DAN RIVER……………………………………………………………………...9 River and Stream Assessment……………………………………………………………………….…..9 ROA RIVER HUC 03010102—JOHN H. KERR RESERVOIR………………………………………………..11 River and Stream Assessment………………………………………………………………………….11 ROA RIVER HUC 03010106—LAKE GASTON………………………………………………………………..13 River and Stream Assessment………………………………………………………………………….13
    [Show full text]
  • Summary Report of Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 5
    Summary Report of Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 5 Summary Report of Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 5 Prepared by: Amy J. Benson, Colette C. Jacono, Pam L. Fuller, Elizabeth R. McKercher, U.S. Geological Survey 7920 NW 71st Street Gainesville, Florida 32653 and Myriah M. Richerson Johnson Controls World Services, Inc. 7315 North Atlantic Avenue Cape Canaveral, FL 32920 Prepared for: U.S. Fish and Wildlife Service 4401 North Fairfax Drive Arlington, VA 22203 29 February 2004 Table of Contents Introduction ……………………………………………………………………………... ...1 Aquatic Macrophytes ………………………………………………………………….. ... 2 Submersed Plants ………...………………………………………………........... 7 Emergent Plants ………………………………………………………….......... 13 Floating Plants ………………………………………………………………..... 24 Fishes ...…………….…………………………………………………………………..... 29 Invertebrates…………………………………………………………………………...... 56 Mollusks …………………………………………………………………………. 57 Bivalves …………….………………………………………………........ 57 Gastropods ……………………………………………………………... 63 Nudibranchs ………………………………………………………......... 68 Crustaceans …………………………………………………………………..... 69 Amphipods …………………………………………………………….... 69 Cladocerans …………………………………………………………..... 70 Copepods ……………………………………………………………….. 71 Crabs …………………………………………………………………...... 72 Crayfish ………………………………………………………………….. 73 Isopods ………………………………………………………………...... 75 Shrimp ………………………………………………………………….... 75 Amphibians and Reptiles …………………………………………………………….. 76 Amphibians ……………………………………………………………….......... 81 Toads and Frogs
    [Show full text]
  • Shearon Harris SEIS License Renewal
    Index of References - Shearon Harris SEIS License Renewal City of Raleigh 2004 -------------------------------------------------------------------------------------Page 3 City of Sanford 2005 -------------------------------------------------------------------------------------Page 9 Claggett, S. R. 1996 -------------------------------------------------------------------------------------Page 10 CP&L 1996------------------------------------------------------------------------------------------------- Page 15 CP&L 1997 -------------------------------------------------------------------------------------------------Page 21 CPC 2007 -------------------------------------------------------------------------------------------------- Page 29 CRACM 2007a --------------------------------------------------------------------------------------------Page 33 CRACM 2007b --------------------------------------------------------------------------------------------Page 34 DOE 2007 --------------------------------------------------------------------------------------------------Page 39 DOE EIA 2007a -------------------------------------------------------------------------------------------Page 41 Employment Security Commission NC 2007 ------------------------------------------------------Page 43 EPA 2007 ---------------------------------------------------------------------------------------------------Page 47 EPA 2007a -------------------------------------------------------------------------------------------------Page 53 Fuquay-Varina 2006 -------------------------------------------------------------------------------------Page
    [Show full text]
  • Factors Influencing Stream Fish Recovery Following a Large-Scale Disturbance WILLIAM E
    Transactions of the American Fisheries Society 126:895-907, 1997 © Copyright by ihe American Fisheries Society 1997 Factors Influencing Stream Fish Recovery Following a Large-Scale Disturbance WILLIAM E. ENSIGN' and KEVIN N. LEFTwiCH2 Department Fisheriesof Wildlifeand Sciences, Virginia Tech Blackshitrg, Virginia 24061-0321, USA PAUL L. ANGERMEIER U.S. Geological Survey, Biological Resources Division Virginia Cooperative Fish and Wildlife Research Unit,* Virginia Tech, Blacksburg, Virginia 24061-0321.USA . ANDREC W DOLLOFF U.S. Forest Sen'ice, Southern Research Station, Virginia Tech Blacksburg, Virginia 24061-0321. USA Abstract.—We examined fish distribution and abundance in erosional habitat units in South Fork Roanoke River, Virginia, following a fish kill by using a reachwide sampling approach for 3 species and a representative-reach sampling approach for 10 species. Qualitative (presence-absence) and quantitative (relative abundance) estimate f distributioso abundancd nan e provided consistent mea- sure f fiso s h specie 3 reachwide recover f th o speciet 0 2 a s1 r f yfo o e srepre 8 e scal ath d t an e- sentative-reach scale. Combining results across scales and estimator types showed that distributions and abundance f 1o 1 5 specie reace f so th hn i s affecte kile th l y werdb e simila thoso rt e observed in unaffected upstrea downstread man m reaches 8-11 months following the perturbation. Differ- ence distribution i s abundancd an n e betwee e affectenth d reac unaffected han d reaches indicate f tha1o 1 t full4 tspecie no yd recovereha s d durin same gth e time period; results were equivocal fo othe2 r r species attribute W .
    [Show full text]
  • Ecomorphology of Centrarchid Fishes D
    Cooke Jayshree c13 V1-12/10/2008 11:37pm P.70 Chapter 3 Ecomorphology of centrarchid fishes D. C. Collar and P. C. Wainwright 3.1 Introduction From the ecologist’s perspective, centrarchid fishes are widely recognized as a model system for investigating the role of phenotypic variation in shaping ecological patterns. To the ichthyologist, this group is considered among the most morphologically and ecologically diverse of North America’s freshwater ichthyofauna. This chapter is intended to bring these perspectives together, highlighting the contributions of studies linking resource use patterns to morphology in order to make sense of the ecological, functional, and morphological diversity exhibited within the Centrarchidae. We review literature on feeding and on locomotion. Historically, the diversity represented within this radiation helped inspire the development of ecomorphology, a research perspective that investigates hypothesized associations between organismal design and ecology. Working independently, Werner (1974, 1977) and Keast (1978, 1985; Keast and Webb 1967) were among the first to point out a general associa- tion between head and body form and resource use in centrarchid species. Using bluegill sunfish (Lepomis macrochirus), green sunfish (Lepomis cyanellus), and largemouth bass (Micropterus salmoides) to represent the range of ecologi- cal and morphological diversity in centrarchids, Werner and coworkers developed the first mechanistic insights into the implications of variation in body and head morphology. The diversity of form and feeding habits represented by bluegill, largemouth bass, black crappie (Pomoxis nigromaculatus), and rock bass (Ambloplites rupestris) motivated Keast’s proposal that different suites of morphological features confer varying prey capture and habitat use capabil- ities on these species and that these differences underlie the capacity for these species to coexist in sympatry.
    [Show full text]
  • Aquatic Species Mapping in North Carolina Using Maxent
    Aquatic Species Mapping in North Carolina Using Maxent Mark Endries U.S. Fish and Wildlife Service, Ecological Services Field Office, Asheville North Carolina INTRODUCTION The mission of the U.S. Fish and Wildlife Service (Service) is to work with others to conserve, protect, and enhance fish, wildlife, and plants and their habitats for the continuing benefit of the American people. The Service is the lead governmental agency involved in the recovery of federally endangered and threatened species in freshwater and terrestrial habitats. To meet its recovery and protection goals, the Service: (1) works with other federal agencies to minimize or eliminate impacts to fish, wildlife, and plants from projects they authorize, fund, or carry out; (2) supports the improvement of fish and wildlife habitat on private land through technical and financial assistance; and (3) provides scientific knowledge and analyses to help guide the conservation, development, and management of the Nation’s fish and wildlife resources. Freshwater ecosystems present unique management challenges due to their linear spatial orientation and their association with upland habitat variables. On broad scales, the movement of aquatic species within the stream environment is limited to upstream and downstream migration. The inability of aquatic species to circumnavigate man-made obstacles causes them to be particularly vulnerable to habitat fragmentation. Habitat fragmentation has a major influence on species distribution and complicates distribution mapping. To better understand the spatial distributions of freshwater aquatic species in North Carolina, the Service created predictive habitat maps for 226 different aquatic species using geographic information systems (GIS) and maximum entropy (Maxent) modeling. These maps were derived by comparing known species occurrences with a suite of stream- or land-cover-derived environmental variables.
    [Show full text]