The Relationship Between Target-Class and the Physicochemical Properties of Antibacterial Drugs ⇑ Grace Mugumbate, John P

Total Page:16

File Type:pdf, Size:1020Kb

The Relationship Between Target-Class and the Physicochemical Properties of Antibacterial Drugs ⇑ Grace Mugumbate, John P CORE Metadata, citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Bioorganic & Medicinal Chemistry 23 (2015) 5218–5224 Contents lists available at ScienceDirect Bioorganic & Medicinal Chemistry journal homepage: www.elsevier.com/locate/bmc The relationship between target-class and the physicochemical properties of antibacterial drugs ⇑ Grace Mugumbate, John P. Overington European Molecular Biology Laboratory—European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, CB10 1SD, United Kingdom article info abstract Article history: The discovery of novel mechanism of action (MOA) antibacterials has been associated with the concept Received 30 January 2015 that antibacterial drugs occupy a differentiated region of physicochemical space compared to human- Revised 20 April 2015 targeted drugs. With, in broad terms, antibacterials having higher molecular weight, lower logP and Accepted 22 April 2015 higher polar surface area (PSA). By analysing the physicochemical properties of about 1700 approved Available online 28 April 2015 drugs listed in the ChEMBL database, we show, that antibacterials for whose targets are riboproteins (i.e., composed of a complex of RNA and protein) fall outside the conventional human ‘drug-like’ chemical Keywords: space; whereas antibacterials that modulate bacterial protein targets, generally comply with the ‘rule- Antibacterials of-five’ guidelines for classical oral human drugs. Our analysis suggests a strong target-class association Physicochemical properties Drug targets for antibacterials—either protein-targeted or riboprotein-targeted. There is much discussion in the liter- Ribosome ature on the failure of screening approaches to deliver novel antibacterial lead series, and linkage of this poor success rate for antibacterials with the chemical space properties of screening collections. Our anal- ysis suggests that consideration of target-class may be an underappreciated factor in antibacterial lead discovery, and that in fact bacterial protein-targets may well have similar binding site characteristics to human protein targets, and questions the assumption that larger, more polar compounds are a key part of successful future antibacterial discovery. Ó 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 1. Introduction together cause close to a million deaths every year.5,6 To curb the development of resistance to rifampicin, multidrug therapy The discovery of antibacterial agents, such as the aminoglyco- (MDT) is often used, where the drug is used in combination with sides, streptogramins, tetracyclines, b-lactams, and quinolones, other antibacterials. MDT has been successful as evidenced by from the 1930s onwards1 brought significant relief to the health the decrease in the number of reported leprosy or TB cases but it burden caused by pathogenic bacteria worldwide. Nevertheless, increases the drug burden on the patient, and could lead to non- the success of antibacterial chemotherapy is now being signifi- compliance and the eventual emergence of resistance. In the indus- cantly challenged by the emergence of drug-resistant bacterial trialised Northern hemisphere drug resistance, for example with strains, poor hit rates from genomics/target-led screens2 and high hospital-acquired methicillin-resistant Staphylococcus aureus drug failure rates in late clinical development.3 Treatment of bac- (MRSA), is also perceived as a major societal threat. The aforemen- terial infectious diseases is also often complicated by comorbidity, tioned challenges call for continual discovery and development of for example, co-infection with human immunodeficiency virus new mechanism differentiated antibacterials. These drugs would (HIV), extended duration of chemotherapy and diagnostic delays.4 potentially be less prone to resistance (or at least have Drug-resistant strains have a direct impact on the clinical treat- distinguished resistance profiles), have new modes of action and/or ment of diseases such as leprosy, Staphylococcus, Strepto- and targets and with the capability to reduce drug load. Enterococcus, Clostridia, and Pseudomonas, and arguably most sig- Advances in technologies in genomics and sequencing, high- nificantly on tuberculosis (TB). throughput screening (HTS), automated chemical synthesis and Tuberculosis and leprosy are mycobacterial diseases affecting structural biology, have so far had limited direct impact on the dis- substantial parts Africa, the Americas, South-East Asia, the covery of new classes of drugs; it has taken more than four decades Eastern Mediterranean and the Western Pacific Regions and for the novel linezolid class of antibacterial drugs (2000), to be approved7,1, and more recently bedaquiline (2012) for treatment of drug-resistant tuberculosis.8 This productivity challenge has ⇑ Corresponding author. Tel.: +44 (0) 1223 494467. drawn researchers in industry and academia, and more recently E-mail address: [email protected] (J.P. Overington). http://dx.doi.org/10.1016/j.bmc.2015.04.063 0968-0896/Ó 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). G. Mugumbate, J. P. Overington / Bioorg. Med. Chem. 23 (2015) 5218–5224 5219 funding agencies and public bodies, to propose and develop new proteins or riboproteins and non-antibacterials targeting specifi- approaches to antibacterial discovery. Examples include identifica- cally human proteins, using analysis routines implemented in tion of whole cell-based methods to identify antibacterial leads with Pipeline Pilot (Biovia).18 The goal was to determine the association the ability to penetrate the bacterial cell wall, in conjunction with of physicochemical properties of antibacterials and their target- currently used target-based approaches. Furthermore, the consider- class. Bioactive compounds that target human proteins generally ation of the physicochemical properties of the chemical compounds fall within the established parameter range for Lipinski ‘drug-like’ during the early stages of drug discovery process9,1,10 has helped to compounds and were therefore used as comparator benchmarks. avoid failure in Phases II/III of clinical development. Experimental and computational approaches have therefore been used to analyse 2. Methods the historical physicochemical properties of drugs and to develop models used in determining drug-like compounds, and in some 2.1. Source of target-ligand pairs cases, propose biased or focussed properties for antibacterials.11 Study of the properties of approved drug structures in the All compound and target data used in this work was obtained 1990’s led to the concept of a restricted range of physicochemical from the ChEMBL database19,20 an Open Access database of bioac- parameters that appeared optimal for orally administered drugs— tive small molecules and activity data. ChEMBL version 19, holds 12 many researchers have used the ‘rule of five’ as a guide for 1.4 million distinct bioactive small molecules, 10 thousand ‘drug-like’ compounds during screening and structure modification annotated targets, and more than 12 million activities. The data of leads to optimise their potency, metabolism and exposure. The has been manually extracted from about 57,000 publications and ‘rule of five’ states that good absorption is more likely when an curated by experienced chemistry and biology curators. orally administered compound has less than five hydrogen-bond donors, molecular weight <500 Da, clogP <5, and less than 10 2.2. Drugs and their targets dataset hydrogen-bond acceptors.12,13 Later it was also observed that polar surface area (PSA) and alogP could predict with 95% confidence A dataset containing more than 1700 drugs including bioactiv- that a test compound would have high or low (90% or 30%, ity information was retrieved from ChEMBL version 19 using a respectively) intestinal absorption in humans.14 For high absorp- Pipeline Pilot protocol (Biovia).18 An SQL query was written to pull tion the upper limits were, PSA 131.6 Å2, and alogP of 5.88. out information for distinct approved drugs and their annotated Veber et al.15 suggested that compounds with 10 or less rotatable targets. The criteria used included extraction of simple drug mole- bonds and PSA less than or equal to 140 Å2 (or 12 or fewer hydro- cules that were approved drugs, and had a specified therapeutic gen-bond donors or acceptors) would have good oral availability in application (therapeutic flag 1). rats. A number of authors subsequently reported that approved antibacterial agents often violated Lipinski’s ‘rule of five’, with antibacterials occupying a different region of physicochemical 2.3. Physicochemical properties and analysis space7,9,16, some of which are dosed parenterally or topically and are more polar and have high aqueous solubility.8 The dataset was split into two, the first subset consisted of Recently the physicochemical space of antibacterials has been drugs that act through human targets and the second one had classified based on bacteria classes by O’Shea et al.7 For 147 active those that act through bacterial targets. The bacterial target subset antibacterial compounds analysed, it was shown that Gram-posi- was further divided into two specific sub-subsets; namely (i) bac- tive and Gram-negative antibacterials have different physicochem- terial-proteins (where the molecular target is a simple
Recommended publications
  • Analysis of Mutations Leading to Para-Aminosalicylic Acid Resistance in Mycobacterium Tuberculosis
    www.nature.com/scientificreports OPEN Analysis of mutations leading to para-aminosalicylic acid resistance in Mycobacterium tuberculosis Received: 9 April 2019 Bharati Pandey1, Sonam Grover2, Jagdeep Kaur1 & Abhinav Grover3 Accepted: 31 July 2019 Thymidylate synthase A (ThyA) is the key enzyme involved in the folate pathway in Mycobacterium Published: xx xx xxxx tuberculosis. Mutation of key residues of ThyA enzyme which are involved in interaction with substrate 2′-deoxyuridine-5′-monophosphate (dUMP), cofactor 5,10-methylenetetrahydrofolate (MTHF), and catalytic site have caused para-aminosalicylic acid (PAS) resistance in TB patients. Focusing on R127L, L143P, C146R, L172P, A182P, and V261G mutations, including wild-type, we performed long molecular dynamics (MD) simulations in explicit solvent to investigate the molecular principles underlying PAS resistance due to missense mutations. We found that these mutations lead to (i) extensive changes in the dUMP and MTHF binding sites, (ii) weak interaction of ThyA enzyme with dUMP and MTHF by inducing conformational changes in the structure, (iii) loss of the hydrogen bond and other atomic interactions and (iv) enhanced movement of protein atoms indicated by principal component analysis (PCA). In this study, MD simulations framework has provided considerable insight into mutation induced conformational changes in the ThyA enzyme of Mycobacterium. Antimicrobial resistance (AMR) threatens the efective treatment of tuberculosis (TB) caused by the bacteria Mycobacterium tuberculosis (Mtb) and has become a serious threat to global public health1. In 2017, there were reports of 5,58000 new TB cases with resistance to rifampicin (frst line drug), of which 82% have developed multidrug-resistant tuberculosis (MDR-TB)2. AMR has been reported to be one of the top health threats globally, so there is an urgent need to proactively address the problem by identifying new drug targets and understanding the drug resistance mechanism3,4.
    [Show full text]
  • Reseptregisteret 2012–2016 the Norwegian Prescription Database 2012–2016
    2017:2 LEGEMIDDELSTATISTIKK Reseptregisteret 2012–2016 The Norwegian Prescription Database 2012–2016 ISSN 1890-9647 Reseptregisteret 2012–2016 The Norwegian Prescription Database 2012–2016 Christian Lie Berg (redaktør) Hege Salvesen Blix Olaug Fenne Kari Furu Vidar Hjellvik Kari Jansdotter Husabø Per Olav Kormeset Solveig Sakshaug Hanne Strøm Sissel Torheim Utgitt av Folkehelseinstituttet / Published by the Norwegian Institute of Public Health Området for Psykisk og fysisk helse Avdeling for Legemiddelepidemiologi April 2017 Tittel/Title: Legemiddelstatistikk 2017:2 Reseptregisteret 2012–2016 / The Norwegian Prescription Database 2012–2016 Forfattere/Authors: Christian Lie Berg (redaktør) Hege Salvesen Blix Olaug Fenne Kari Furu Vidar Hjellvik Kari Jansdotter Husabø Per Olav Kormeset Solveig Sakshaug Hanne Strøm Sissel Torheim Bestilling/Order: Rapporten kan lastes ned som pdf på Folkehelseinstituttets nettsider: www.fhi.no/ The report is available as pdf format only and can be downloaded from www.fhi.no Layout omslag: www.fetetyper.no Layout/design, innhold: Houston 911 Kontaktinformasjon/Contact information: Folkehelseinstituttet/Norwegian Institute of Public Health P.O.Box 4404 Nydalen N-0403 Oslo Tel: +47 21 07 70 00 ISSN: 1890-9647 ISBN 978-82-8082-824-8 elektronisk utgave Sitering/Citation: Berg, C (red), Reseptregisteret 2012–2016 [The Norwegian Prescription Database 2012–2016] Legemiddelstatistikk 2017:2, Oslo, Norge: Folkehelseinstituttet, 2017. Tidligere utgaver / Previous editions: 2008: Reseptregisteret 2004–2007 / The Norwegian
    [Show full text]
  • Estonian Statistics on Medicines 2016 1/41
    Estonian Statistics on Medicines 2016 ATC code ATC group / Active substance (rout of admin.) Quantity sold Unit DDD Unit DDD/1000/ day A ALIMENTARY TRACT AND METABOLISM 167,8985 A01 STOMATOLOGICAL PREPARATIONS 0,0738 A01A STOMATOLOGICAL PREPARATIONS 0,0738 A01AB Antiinfectives and antiseptics for local oral treatment 0,0738 A01AB09 Miconazole (O) 7088 g 0,2 g 0,0738 A01AB12 Hexetidine (O) 1951200 ml A01AB81 Neomycin+ Benzocaine (dental) 30200 pieces A01AB82 Demeclocycline+ Triamcinolone (dental) 680 g A01AC Corticosteroids for local oral treatment A01AC81 Dexamethasone+ Thymol (dental) 3094 ml A01AD Other agents for local oral treatment A01AD80 Lidocaine+ Cetylpyridinium chloride (gingival) 227150 g A01AD81 Lidocaine+ Cetrimide (O) 30900 g A01AD82 Choline salicylate (O) 864720 pieces A01AD83 Lidocaine+ Chamomille extract (O) 370080 g A01AD90 Lidocaine+ Paraformaldehyde (dental) 405 g A02 DRUGS FOR ACID RELATED DISORDERS 47,1312 A02A ANTACIDS 1,0133 Combinations and complexes of aluminium, calcium and A02AD 1,0133 magnesium compounds A02AD81 Aluminium hydroxide+ Magnesium hydroxide (O) 811120 pieces 10 pieces 0,1689 A02AD81 Aluminium hydroxide+ Magnesium hydroxide (O) 3101974 ml 50 ml 0,1292 A02AD83 Calcium carbonate+ Magnesium carbonate (O) 3434232 pieces 10 pieces 0,7152 DRUGS FOR PEPTIC ULCER AND GASTRO- A02B 46,1179 OESOPHAGEAL REFLUX DISEASE (GORD) A02BA H2-receptor antagonists 2,3855 A02BA02 Ranitidine (O) 340327,5 g 0,3 g 2,3624 A02BA02 Ranitidine (P) 3318,25 g 0,3 g 0,0230 A02BC Proton pump inhibitors 43,7324 A02BC01 Omeprazole
    [Show full text]
  • Preliminary Results of Bedaquiline As Salvage Therapy for Patients with Nontuberculous Mycobacterial Lung Disease
    [ Original Research Chest Infections ] Preliminary Results of Bedaquiline as Salvage Th erapy for Patients With Nontuberculous Mycobacterial Lung Disease Julie V. Philley , MD ; Richard J. Wallace Jr , MD , FCCP ; Jeana L. Benwill , MD ; Varsha Taskar , MD ; Barbara A. Brown-Elliott , MS , MT(ASCP)SM ; Foram Thakkar , MBBS ; Timothy R. Aksamit , MD , FCCP ; and David E. Griffi th , MD , FCCP BACKGROUND: Bedaquiline is an oral antimycobacterial agent belonging to a new class of drugs called diarylquinolines. It has low equivalent minimal inhibitory concentration s for Mycobacterium tuberculosis and nontuberculous mycobacterial (NTM) lung disease , especially Mycobacterium avium complex (MAC) and Mycobacterium abscessus (Mab). Bedaquiline appears to be eff ective for the treatment of multidrug-resistant TB but has not been tested clinically for NTM disease. METHODS: We describe a case series of off -label use of bedaquiline for treatment failure lung disease caused by MAC or Mab. Only patients whose insurance would pay for the drug were included. Fift een adult patients were selected, but only 10 (six MAC, four Mab) could obtain bedaquiline. Th e 10 patients had been treated for 1 to 8 years, and all were on treatment at the start of bedaquiline therapy. Eighty percent had macrolide-resistant isolates (eight of 10). Th e patients were treated with the same bedaquiline dosage as that used in TB trials and received the best available companion drugs (mean, 5.0 drugs). All patients completed 6 months of therapy and remain on bedaquiline. RESULTS: Common side eff ects included nausea (60%), arthralgias (40%), and anorexia and subjective fever (30%). No abnormal ECG fi ndings were observed with a mean corrected QT interval lengthening of 2.4 milliseconds at 6 months.
    [Show full text]
  • BMJ Open Is Committed to Open Peer Review. As Part of This Commitment We Make the Peer Review History of Every Article We Publish Publicly Available
    BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available. When an article is published we post the peer reviewers’ comments and the authors’ responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to. The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript. BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (http://bmjopen.bmj.com). If you have any questions on BMJ Open’s open peer review process please email [email protected] BMJ Open Pediatric drug utilization in the Western Pacific region: Australia, Japan, South Korea, Hong Kong and Taiwan Journal: BMJ Open ManuscriptFor ID peerbmjopen-2019-032426 review only Article Type: Research Date Submitted by the 27-Jun-2019 Author: Complete List of Authors: Brauer, Ruth; University College London, Research Department of Practice and Policy, School of Pharmacy Wong, Ian; University College London, Research Department of Practice and Policy, School of Pharmacy; University of Hong Kong, Centre for Safe Medication Practice and Research, Department
    [Show full text]
  • Treatment of Multidrug-Resistant and Extensively Drug-Resistant Tuberculosis in Children: the Role of Bedaquiline and Delamanid
    microorganisms Review Treatment of Multidrug-Resistant and Extensively Drug-Resistant Tuberculosis in Children: The Role of Bedaquiline and Delamanid Francesco Pecora, Giulia Dal Canto, Piero Veronese and Susanna Esposito * Pediatric Clinic, Department of Medicine and Surgery, Pietro Barille Children’s Hospital, University Hospital of Parma, 43126 Parma, Italy; [email protected] (F.P.); [email protected] (G.D.C.); [email protected] (P.V.) * Correspondence: [email protected] Abstract: Multidrug-resistant (MDR) tuberculosis (TB) has been emerging at an alarming rate over the last few years. It has been estimated that about 3% of all pediatric TB is MDR, meaning about 30,000 cases each year. Although most children with MDR-TB can be successfully treated, up to five years ago effective treatment was associated with a high incidence of severe adverse effects and patients with extensively drug-resistant (XDR) TB had limited treatment options and no standard regimen. The main objective of this manuscript is to discuss our present knowledge of the management of MDR- and XDR-TB in children, focusing on the characteristics and available evidence on the use of two promising new drugs: bedaquiline and delamanid. PubMed was used to search for all of the studies published up to November 2020 using key words such as “bedaquiline” and “delamanid” and “children” and “multidrug-resistant tuberculosis” and “extensively drug-resistant tuberculosis”. The search was limited to articles published in English and providing evidence-based Citation: Pecora, F.; Dal Canto, G.; data. Although data on pediatric population are limited and more studies are needed to confirm Veronese, P.; Esposito, S.
    [Show full text]
  • THE PRICE of BEDAQUILINE by Lindsay Mckenna | Edited By: Erica Lessem, Mike Frick, and Marcus Low
    [email protected] THE PRICE OF BEDAQUILINE By Lindsay McKenna | Edited by: Erica Lessem, Mike Frick, and Marcus Low INTRODUCTION In December 2012, bedaquiline (Sirturo) became the first new tuberculosis (TB) drug from a new drug class to receive approval by the U.S. Food and Drug Administration (FDA) in 40 years. Since then, uptake of this important drug has been far below the global need. An August 2018 update to the World Health Organization (WHO) guidelines designated bedaquiline as a core component of treatment regimens for rifampicin-resistant and multidrug-resistant TB (RR-/MDR-TB).1 As a result, even broader access to bedaquiline is now needed. Among barriers to bedaquiline access, affordability is a major concern, as the global donation program set up by the drug’s sponsor, Janssen, a subsidiary of Johnson & Johnson, ends in March 2019. THE PRICE OF BEDAQUILINE (AND ITS EVOLUTION) Pre-donation program: Janssen initially established a tiered pricing structure for bedaquiline. The price for a six-month course of bedaquiline was different for low-, middle-, and high-income countries (US$900, $3,000, and $30,000, respectively). Donation program: In 2014, to facilitate the uptake of bedaquiline, Janssen and the U.S. Agency for International Development (USAID) set up a temporary global donation program. Under this donation program, most countries eligible to receive funding from the Global Fund could procure bedaquiline for free, via the Global Drug Facility (GDF). The program initially covered 30,000 treatment courses, all of which were claimed by July 2018. USAID and Janssen then made an additional 30,000 courses available until March 2019 (or when those 30,000 courses are claimed, whichever came first).
    [Show full text]
  • Frequently Asked Questions on The
    Frequently asked questions on the WHO treatment guidelines for isoniazid-resistant tuberculosis Version: 24 April 2018 The advice in this document has been prepared by the Global TB Programme of the World Health Organization (WHO) and is to be read alongside the WHO treatment guidelines for isoniazid-resistant tuberculosis and its online annexes. See Further reading ​ ​ at end for additional resources. Who are the new WHO treatment guidelines for isoniazid-resistant tuberculosis intended for ? ​ ​ The WHO treatment guidelines for isoniazid-resistant tuberculosis are targeted at health care ​ professionals (doctors, nurses) and other staff involved in TB care in both low and high resource settings. The possibility of drug-resistant disease now needs to be entertained whenever treating TB patients. These guidelines provide technical detail which is helpful in making the best-informed decision in clinical practice and programme management. The answers to the frequently asked questions (FAQ) in this document intend to help implementers with common, practical issues that arise when adopting the new guidance. This document complements the WHO guidelines by elaborating further on certain aspects of ​ implementation that were beyond the scope of the guideline itself. What are the main recommendations of these new guidelines ? The new guidelines recommend that patients with confirmed isoniazid-resistant and rifampicin susceptible tuberculosis (abbreviated to Hr-TB) are treated for 6 months with a regimen composed of ​ ​ rifampicin (R), ethambutol (E), pyrazinamide (Z) and levofloxacin (Lfx). The exclusion of rifampicin resistance ahead of start of this regimen is critical. It is further recommended not to add streptomycin (S) or other injectable agents to the treatment regimen.
    [Show full text]
  • Mycobactericidal Activity of Bedaquiline Plus Rifabutin Or Rifampin in Ex Vivo Whole Blood Cultures of Healthy Volunteers: a Randomized Controlled Trial
    UCSF UC San Francisco Previously Published Works Title Mycobactericidal activity of bedaquiline plus rifabutin or rifampin in ex vivo whole blood cultures of healthy volunteers: A randomized controlled trial. Permalink https://escholarship.org/uc/item/34d22401 Journal PloS one, 13(5) ISSN 1932-6203 Authors Wallis, Robert S Good, Caryn E O'Riordan, Mary A et al. Publication Date 2018 DOI 10.1371/journal.pone.0196756 Peer reviewed eScholarship.org Powered by the California Digital Library University of California RESEARCH ARTICLE Mycobactericidal activity of bedaquiline plus rifabutin or rifampin in ex vivo whole blood cultures of healthy volunteers: A randomized controlled trial Robert S. Wallis1,2,3*, Caryn E. Good2, Mary A. O'Riordan2, Jeffrey L. Blumer4, Michael R. Jacobs2, J. McLeod Griffiss5, Amanda Healan2, Robert A. Salata2 a1111111111 1 Aurum Institute, Johannesburg, South Africa, 2 School of Medicine, Case Western Reserve University and University Hospitals Cleveland Medical Center, Cleveland, Ohio, United States of America, 3 ACT for TB/ a1111111111 HIV, Johannesburg, South Africa, 4 University of Toledo, Toledo, Ohio, United States of America, 5 Clinical a1111111111 Research Management, Inc, Hinckley, Ohio, United States of America a1111111111 a1111111111 * [email protected], [email protected] Abstract OPEN ACCESS Background Citation: Wallis RS, Good CE, O'Riordan MA, Blumer JL, Jacobs MR, Griffiss JMLeod, et al. Bedaquiline, an antimycobacterial agent approved for drug-resistant tuberculosis, is metab- (2018) Mycobactericidal activity of bedaquiline plus olized by CYP3A4, an hepatic enzyme strongly induced by rifampin, an essential part of rifabutin or rifampin in ex vivo whole blood cultures drug-sensitive tuberculosis treatment. We examined the pharmacokinetic interactions of of healthy volunteers: A randomized controlled trial.
    [Show full text]
  • Evaluation of the Pharmacokinetic Interaction Between Repeated Doses of Rifapentine Or Rifampin and a Single Dose of Bedaquiline in Healthy Adult Subjects
    Evaluation of the Pharmacokinetic Interaction between Repeated Doses of Rifapentine or Rifampin and a Single Dose of Bedaquiline in Healthy Adult Subjects Helen Winter,a* Erica Egizi,a Stephen Murray,a Ngozi Erondu,a* Ann Ginsberg,a* Doris J. Rouse,b Diana Severynse-Stevens,b Elliott Paulib Global Alliance for TB Drug Development, New York, New York, USAa; RTI International, Research Triangle Park, North Carolina, USAb This study assessed the effects of rifapentine or rifampin on the pharmacokinetics of a single dose of bedaquiline and its M2 me- tabolite in healthy subjects using a two-period single-sequence design. In period 1, subjects received a single dose of bedaquiline (400 mg), followed by a 28-day washout. In period 2, subjects received either rifapentine (600 mg) or rifampin (600 mg) from day Downloaded from 20 to day 41, as well as a single bedaquiline dose (400 mg) on day 29. The pharmacokinetic profiles of bedaquiline and M2 were compared over 336 h after the administration of bedaquiline alone and in combination with steady-state rifapentine or rifampin. Coadministration of bedaquiline with rifapentine or rifampin resulted in lower bedaquiline exposures. The geometric mean ra- tios (GMRs) and 90% confidence intervals (CIs) for the maximum observed concentration (Cmax), area under the concentration- time curve to the last available concentration time point (AUC0–t), and AUC extrapolated to infinity (AUC0–inf) of bedaquiline were 62.19% (53.37 to 72.47), 42.79% (37.77 to 48.49), and 44.52% (40.12 to 49.39), respectively, when coadministered with rifap- entine. Similarly, the GMRs and 90% CIs for the Cmax, AUC0–t, and AUC0–inf of bedaquiline were 60.24% (51.96 to 69.84), http://aac.asm.org/ 41.36% (37.70 to 45.36), and 47.32% (41.49 to 53.97), respectively, when coadministered with rifampin.
    [Show full text]
  • Estonian Statistics on Medicines 2013 1/44
    Estonian Statistics on Medicines 2013 DDD/1000/ ATC code ATC group / INN (rout of admin.) Quantity sold Unit DDD Unit day A ALIMENTARY TRACT AND METABOLISM 146,8152 A01 STOMATOLOGICAL PREPARATIONS 0,0760 A01A STOMATOLOGICAL PREPARATIONS 0,0760 A01AB Antiinfectives and antiseptics for local oral treatment 0,0760 A01AB09 Miconazole(O) 7139,2 g 0,2 g 0,0760 A01AB12 Hexetidine(O) 1541120 ml A01AB81 Neomycin+Benzocaine(C) 23900 pieces A01AC Corticosteroids for local oral treatment A01AC81 Dexamethasone+Thymol(dental) 2639 ml A01AD Other agents for local oral treatment A01AD80 Lidocaine+Cetylpyridinium chloride(gingival) 179340 g A01AD81 Lidocaine+Cetrimide(O) 23565 g A01AD82 Choline salicylate(O) 824240 pieces A01AD83 Lidocaine+Chamomille extract(O) 317140 g A01AD86 Lidocaine+Eugenol(gingival) 1128 g A02 DRUGS FOR ACID RELATED DISORDERS 35,6598 A02A ANTACIDS 0,9596 Combinations and complexes of aluminium, calcium and A02AD 0,9596 magnesium compounds A02AD81 Aluminium hydroxide+Magnesium hydroxide(O) 591680 pieces 10 pieces 0,1261 A02AD81 Aluminium hydroxide+Magnesium hydroxide(O) 1998558 ml 50 ml 0,0852 A02AD82 Aluminium aminoacetate+Magnesium oxide(O) 463540 pieces 10 pieces 0,0988 A02AD83 Calcium carbonate+Magnesium carbonate(O) 3049560 pieces 10 pieces 0,6497 A02AF Antacids with antiflatulents Aluminium hydroxide+Magnesium A02AF80 1000790 ml hydroxide+Simeticone(O) DRUGS FOR PEPTIC ULCER AND GASTRO- A02B 34,7001 OESOPHAGEAL REFLUX DISEASE (GORD) A02BA H2-receptor antagonists 3,5364 A02BA02 Ranitidine(O) 494352,3 g 0,3 g 3,5106 A02BA02 Ranitidine(P)
    [Show full text]
  • WO 2018/048944 Al 15 March 2018 (15.03.2018) W !P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/048944 Al 15 March 2018 (15.03.2018) W !P O PCT (51) International Patent Classification: A61K38/1 7 (2006.01) C07K 14/575 (2006.01) A61P 3/00 (2006.01) A61K 38/22 (2006.01) (21) International Application Number: PCT/US2017/050334 (22) International Filing Date: 06 September 2017 (06.09.2017) (25) Filing Language: English (26) Publication Language: English (30) Priority Data: 62/383,957 06 September 2016 (06.09.2016) US (71) Applicant: LA JOLLA PHARMCEUTICAL COMPA¬ NY [US/US]; 10182 Telesis Court, 6th Floor, San Diego, CA 92121 (US). (72) Inventors: TD3MARSH, George; 45 Tintern Lane, Porto- la Valley, CA 94028 (US). CHAWLA, Lakhmir; 10586 Abalone Landing Ter, San Diego, CA 92 130 (US). = (74) Agent: HALSTEAD, David, P. et al; Foley Hoag LLP, = 155 Seaport Boulevard, Boston, MA 02210-2600 (US). (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, = AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, = CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, = DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, = HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, = KR, KW,KZ, LA, LC, LK, LR, LS, LU, LY,MA, MD, ME, = MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, = OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, = SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, ≡ TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]