Diverse Allochthonous Resource Quality Effects on Headwater Stream Communities Through Insect-Microbe Interactions

Total Page:16

File Type:pdf, Size:1020Kb

Diverse Allochthonous Resource Quality Effects on Headwater Stream Communities Through Insect-Microbe Interactions DIVERSE ALLOCHTHONOUS RESOURCE QUALITY EFFECTS ON HEADWATER STREAM COMMUNITIES THROUGH INSECT-MICROBE INTERACTIONS By Courtney Larson A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of Entomology—Doctor of Philosophy Ecology, Evolutionary Biology and Behavior—Dual Major 2020 ABSTRACT DIVERSE ALLOCHTHONOUS RESOURCE QUALITY EFFECTS ON HEADWATER STREAM COMMUNITIES THROUGH INSECT-MICROBE INTERACTIONS By Courtney Larson Freshwater resources are vital to environmental sustainability and human health; yet, they are inundated by multiple stressors, leaving aquatic communities to face unknown consequences. Headwater streams are highly reliant on allochthonous sources of energy. Riparian trees shade the stream, limiting primary production, causing macroinvertebrates to consume an alternative food source. Traditionally, leaf litter fallen from riparian trees is the primary allochthonous resource, but other sources, such as salmon carrion associated with annual salmon runs, may also be important. An alteration in the quantity or quality of these sources may have far reaching effects not only on the organisms that directly consume the allochthonous resource (shredders), but also on other functional feeding groups. Allochthonous resources directly and indirectly change stream microbial communities, which are used by consumers with potential changes to their life histories and behavior traits. The objective of my research was to determine the influence allochthonous resources have on stream communities of macroinvertebrates and microbes using two systems: salmon carrion decomposition and emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae) invasion. It was hypothesized that with an alteration in allochthonous resource quantity and/or quality, the aquatic community would be altered. When salmon carcasses, a heterotrophic allochthonous resource, are introduced to a stream, the macroinvertebrate and microbial (bacteria and microeukaryotes) communities changed compared to a control stream reach without salmon carcasses over time. Specifically, Heptagenia (Heptageniidae: grazer) density was five times higher in the salmon reach compared to the control. In the salmon reach during year one, Stramenopiles (i.e., eukaryotic microbes) decreased in biofilm communities after two weeks of decomposition. Although unique microbial taxa, introduced to the naïve stream via salmon carrion, persisted in biofilms on benthic substrate and internal to insects during both years, those taxa represented <2% of the relative abundance in microbial communities. These results highlight the importance of allochthonous carrion resources in the microbial ecology of lotic biofilms and macroinvertebrates. Mortality of ash trees along stream corridors as a result of EAB invasion can result in canopy light gaps, which potentially alter subsequent organic matter subsidies into streams. We characterized the coarse woody debris, leaf litter and their associated bacterial communities (terrestrial and aquatic), and macroinvertebrate communities upstream, downstream, and at the center of one EAB-related canopy gap in six headwater streams of Michigan. Downstream locations had significantly lower dissolved oxygen and macroinvertebrate diversity, but we did not detect watershed and gap location effects on aquatic leaf litter. These findings reveal EAB invasion impacts stream ecosystems through indirect routes downstream of canopy gaps, yet leaf litter subsidies are resilient. Decomposition rates and macroinvertebrate colonization in leaf packs of four species (ash, oak, buckthorn, and cotton control) upstream, downstream, and at the center of one EAB-related canopy gap were assessed. There was no gap effect on decomposition rates. Shredder genera were more abundant on ash compared to buckthorn leaves, and macroinvertebrate diversity was significantly higher in the gap, compared to upstream and downstream. Our findings suggest a shift in macroinvertebrate communities in response to EAB by indirect routes of leaf litter subsidies and light availability. From these results, it can be concluded that allochthonous resources were a significant contributor to stream biodiversity patterns, and my dissertation research represents a significant contribution of knowledge on community assembly in streams. Dedicated to my father, Loren Larson, and my friend, Shengpan Lin, who both showed me the joy found in lakes, streams, and rivers. iv ACKNOWLEDGEMENTS First, I would like to thank my advisor, Eric Benbow, on his inspiration and guidance throughout my degree. I also thank my graduate committee; Michael Kaufman, Deborah McCullough, Jennifer Pechal, and Jan Stevenson; for their support through my studies. Additionally, gratitude is expressed to Rich Merritt for reviewing materials and sharing advice learned over years of studying Michigan’s streams. I would like to thank Patrick Engelken for his work on riparian forests affected by EAB, without which this research would not be possible. For funding this work I thank the National Science Foundation Graduate Research Fellowship Program; Great Lakes Fishery Trust; Hutson Memorial Endowment Fund; Gordon E. Guyer Endowed Fellowship in Aquatic Entomology; Merritt Endowed Fellowship in Entomology; MSU EEBB Summer Fellowship; KBS Graduate Student Research Fellowship; T. Wayne and Kathryn Porter Scholarship; Society for Freshwater Science General Endowment Fund; MSU CANR; AgBioResearch; and the College of Osteopathic Medicine. Countless MSU student employees and volunteers contributed to this work including Caleb Armstrong, Nicholas Babcock, Benjamin Bejek, McKinley Brewer, Nikki Cavalieri, Hepsiba Chepngeno, Saavas Constantinou, Rebecca Drenth, Emmy Fedor, Juanjuan Guo, Rachel Harvey, Daniel Hulbert, Katie Kierczynski, Heather Kittredge, Kelsie Kroll, Shengpan Lin, Sydney Manning, Jason Matlock, Mack McGinn, Nell McGuan, Robert Mobley Jr., Michael Orbain, Rachel Osborn, Emilie Parkansky, Dustin Phelps, Joseph Receveur, Connie Rojas, Katelyn Smiles, Brianna Timmons, Ariana Troia, Ryan Walquist, Courtney Weatherbee, Nicole Wonderlin, Allie Yackley, and Alison Zahorec, for assistance with fieldwork, lab work, and copy editing. Finally, I would like to thank my friends and family for their support. v PREFACE In this preface, I must address the current events that are challenging our world and hindering the goals of this dissertation. As of submission, There are 20.9 million cases of COVID- 19 caused by SARS-CoV-2, resulting in 760,000 deaths, and society has drawn to a halt to stop the spread (WHO, 2020). The MSU community was under a “Stay at home, stay safe” executive order from March 24 – June 1, 2020, effectively stopping all on campus research activities. Writing this dissertation during the COVID crisis was a challenge, and the closures directly impacted my ability to complete research goals for my dissertation. Specifically, DNA samples required to complete Chapters 3 and 4 were not able to be sequenced by the Michigan State University (MSU) genomics core. Chapter 3 uses a reduced bacterial dataset (nine samples missing), and Chapter 4 does not have any bacterial data associated with it at this time. The genomics core officially reopened on June 9, 2020, and eventual peer-reviewed publications of these chapters will include the complete bacterial datasets. vi TABLE OF CONTENTS LIST OF TABLES ......................................................................................................................... ix LIST OF FIGURES .........................................................................................................................x KEY TO ABBREVIATIONS ...................................................................................................... xiii CHAPTER 1: THE RIVER CONTINUUM CONCEPT: LESSIONS FROM THE PAST AND PERSPECTIVES FOR THE FUTURE ...........................................................................................1 Abstract ................................................................................................................................1 Introduction ..........................................................................................................................1 Stream ecology pre-1980 and the development of the RCC................................................5 The role of natural discontinuities .....................................................................................10 From the longitudinal gradient to patchy-structured systems ............................................15 Stream metacommunities as a conceptual framework for large-scale studies ...................17 Assessing the position in the river network and its effects on aquatic biodiversity ..........23 Conclusions ........................................................................................................................25 CHAPTER 2: MICROBIAL COMMUNITY RESPONSE TO A NOVEL SALMON RESOURCE SUBSIDY…... ...............................................................................................................................27 Preface................................................................................................................................27 Abstract ..............................................................................................................................27 Introduction ........................................................................................................................29
Recommended publications
  • Mining Diversity of the Natural Biorefinery Housed Within Tipula Abdominalis Larvae for Use in an Industrial Biorefinery For
    Insect Science (2010) 13, 303–312, DOI 10.1111/j.1744-7917.2010.01343.x ORIGINAL ARTICLE Mining diversity of the natural biorefinery housed within Tipula abdominalis larvae for use in an industrial biorefinery for production of lignocellulosic ethanol Dana M. Cook and Joy Doran-Peterson Microbiology Department, University of Georgia, Athens, Georgia, USA Abstract Although they are the largest taxonomic group of animals, relatively few in- sects have been examined for symbiotic relationships with micro-organisms. However, this is rapidly changing because of the potential for examination of the natural insect– microbe–lignocellulose interactions to provide insights for biofuel technology. Micro- organisms associated with lignocellulose-consuming insects often facilitate the digestion of the recalcitrant plant diet; therefore these microbial communities may be mined for novel lignocellulose-degrading microbes, or for robust and inexpensive biocatalysts necessary for economically feasible biofuel production from lignocellulose. These insect–microbe interactions are influenced by the ecosystem and specific lignocellulose diet, and appre- ciating the whole ecosystem–insect–microbiota–lignocellulose as a natural biorefinery provides a rich and diverse framework from which to design novel industrial processes. One such natural biorefinery, the Tipula abdominalis larvae in riparian ecosystems, is reviewed herein with applications for biochemical processes and overcoming challenges involved in conversion of lignocellulosic biomass to fuel ethanol. From the dense and diverse T. abdominalis larval hindgut microbial community, a cellulolytic bacterial iso- late, 27C64, demonstrated enzymatic activity toward many model plant polymers and also produced a bacterial antibiotic. 27C64 was co-cultured with yeast in fermentation of pine to ethanol, which allowed for a 20% reduction of commercial enzyme.
    [Show full text]
  • Durham E-Theses
    Durham E-Theses The feeding ecology of certain larvae in the genus tipula (Tipulidae, Diptera), with special reference to their utilisation of Bryophytes Todd, Catherine Mary How to cite: Todd, Catherine Mary (1993) The feeding ecology of certain larvae in the genus tipula (Tipulidae, Diptera), with special reference to their utilisation of Bryophytes, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/5699/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk 2 THE FEEDING ECOLOGY OF CERTAIN LARVAE IN THE GENUS TIPULA (TIPULIDAE, DIPTERA), WITH SPECIAL REFERENCE TO THEIR UTILISATION OF BRYOPHYTES Catherine Mary Todd B.Sc. (London), M.Sc. (Durham) The copyright of this thesis rests with the author. No quotation from it should be published without his prior written consent and information derived from it should be acknowledged. A thesis presented in candidature for the degree of Doctor of Philosophy in the University of Durham, 1993 FEB t99^ Abstract Bryophytes are rarely used as a food source by any animal species, but the genus Tipula (Diptera, Tipulidae) contains some of the few insect species able to feed, and complete their life-cycle, on bryophytes.
    [Show full text]
  • Analysis of Cellulolytic and Hemicellulolytic Enzyme Activity
    Insect Science (2010) 17, 291–302, DOI 10.1111/j.1744-7917.2010.01346.x ORIGINAL ARTICLE Analysis of cellulolytic and hemicellulolytic enzyme activity within the Tipula abdominalis (Diptera: Tipulidae) larval gut and characterization of Crocebacterium ilecola gen. nov., sp. nov., isolated from the Tipula abdominalis larval hindgut Theresa E. Rogers and Joy Doran-Peterson Microbiology Department, University of Georgia, Athens, Georgia, USA Abstract In forested stream ecosystems of the north and eastern United States, larvae of the aquatic crane fly Tipula abdominalis are important shredders of leaf litter detritus. T. abdominalis larvae harbor a dense and diverse microbial community in their hindgut that may aide in the degradation of lignocellulose. In this study, the activities of cellulolytic and hemicellulolytic enzymes were demonstrated from hindgut extracts and from bacterial isolates using model sugar substrates. One of the bacterial isolates was further characterized as a member of the family Microbacteriaceae. Taxonomic position of the isolate within this family was determined by a polyphasic approach, as is commonly employed for the separation of genera within the family Microbacteriaceae. The bacterial isolate is Gram- type positive, motile, non-sporulating, and rod-shaped. The G + C content of the DNA is 64.9 mol%. The cell wall contains B2γ type peptidoglycan, D- and L-diaminobutyric acid as the diamino acid, and rhamnose as the predominant sugar. The predominant fatty acids are 12-methyltetradecanoic acid (ai-C15:0) and 14-methylhexadecanoic acid (ai-C17:0). The isolate forms a distinct lineage within the family Microbacteriaceae, as determined by 16S rRNA sequence analysis. We propose the name Crocebacterium ilecola gen.
    [Show full text]
  • Bacterial Communities Associated with the Hindgut of Tipula Abdominalis Larvae
    BACTERIAL COMMUNITIES ASSOCIATED WITH THE HINDGUT OF TIPULA ABDOMINALIS LARVAE (DIPTERA: TIPULIDAE), A NATURAL BIOREFINERY by DANA M. COOK (Under the Direction of Joy Doran Peterson) ABSTRACT Insects are the largest taxonomic group of animals on earth. Although a few thorough studies have shown insect guts host high microbial diversity, many insect-microbe associations have not been investigated. Tipula abdominalis is an aquatic crane fly ubiquitous in riparian environments. T. abdominalis larvae are shredders, a functional feeding group of insects that consume coarse particulate organic matter, primarily leaf litter. In small stream ecosystems, leaf litter comprises the majority of carbon and energy inputs; however, many organisms are unable to degrade this lignocellulosic material. By converting lignocellulose into a form that other organisms can use, T. abdominalis larvae influence the bioavailability of carbon and energy within the ecosystem. Evidence suggests that the bacterial community associated with the T. abdominalis larval hindgut facilitates the digestion of its recalcitrant lignocellulosic diet. Such lignocellulose-ecosystem-insect-microbiota interactions provide a model natural biorefinery and have become of special interest recently for the application of microbial conversion of lignocellulose to biofuels, including ethanol, butanol, and hydrogen. Bacterial isolates from the T. abdominalis larval hindgut were characterized, and many had enzymatic activity against plant polymer model substrates. Several isolates had low 16S rRNA gene sequence similarity to previous described bacteria, including the proposed novel genus Klugiella xanthotipulae gen. nov., sp. nov. Clone libraries of the 16S rRNA gene revealed a phylogenetically diverse bacterial community associated with the larval hindgut wall epithelial and lumen material. Clostridia and Bacteroidetes dominated both hindgut wall and lumen, while Betaproteobacteria dominated leaf diet- and cast-associated microbiota.
    [Show full text]
  • Ohio EPA Macroinvertebrate Taxonomic Level December 2019 1 Table 1. Current Taxonomic Keys and the Level of Taxonomy Routinely U
    Ohio EPA Macroinvertebrate Taxonomic Level December 2019 Table 1. Current taxonomic keys and the level of taxonomy routinely used by the Ohio EPA in streams and rivers for various macroinvertebrate taxonomic classifications. Genera that are reasonably considered to be monotypic in Ohio are also listed. Taxon Subtaxon Taxonomic Level Taxonomic Key(ies) Species Pennak 1989, Thorp & Rogers 2016 Porifera If no gemmules are present identify to family (Spongillidae). Genus Thorp & Rogers 2016 Cnidaria monotypic genera: Cordylophora caspia and Craspedacusta sowerbii Platyhelminthes Class (Turbellaria) Thorp & Rogers 2016 Nemertea Phylum (Nemertea) Thorp & Rogers 2016 Phylum (Nematomorpha) Thorp & Rogers 2016 Nematomorpha Paragordius varius monotypic genus Thorp & Rogers 2016 Genus Thorp & Rogers 2016 Ectoprocta monotypic genera: Cristatella mucedo, Hyalinella punctata, Lophopodella carteri, Paludicella articulata, Pectinatella magnifica, Pottsiella erecta Entoprocta Urnatella gracilis monotypic genus Thorp & Rogers 2016 Polychaeta Class (Polychaeta) Thorp & Rogers 2016 Annelida Oligochaeta Subclass (Oligochaeta) Thorp & Rogers 2016 Hirudinida Species Klemm 1982, Klemm et al. 2015 Anostraca Species Thorp & Rogers 2016 Species (Lynceus Laevicaudata Thorp & Rogers 2016 brachyurus) Spinicaudata Genus Thorp & Rogers 2016 Williams 1972, Thorp & Rogers Isopoda Genus 2016 Holsinger 1972, Thorp & Rogers Amphipoda Genus 2016 Gammaridae: Gammarus Species Holsinger 1972 Crustacea monotypic genera: Apocorophium lacustre, Echinogammarus ischnus, Synurella dentata Species (Taphromysis Mysida Thorp & Rogers 2016 louisianae) Crocker & Barr 1968; Jezerinac 1993, 1995; Jezerinac & Thoma 1984; Taylor 2000; Thoma et al. Cambaridae Species 2005; Thoma & Stocker 2009; Crandall & De Grave 2017; Glon et al. 2018 Species (Palaemon Pennak 1989, Palaemonidae kadiakensis) Thorp & Rogers 2016 1 Ohio EPA Macroinvertebrate Taxonomic Level December 2019 Taxon Subtaxon Taxonomic Level Taxonomic Key(ies) Informal grouping of the Arachnida Hydrachnidia Smith 2001 water mites Genus Morse et al.
    [Show full text]
  • Evolutionary Background Entities at the Cellular and Subcellular Levels in Bodies of Invertebrate Animals
    The Journal of Theoretical Fimpology Volume 2, Issue 4: e-20081017-2-4-14 December 28, 2014 www.fimpology.com Evolutionary Background Entities at the Cellular and Subcellular Levels in Bodies of Invertebrate Animals Shu-dong Yin Cory H. E. R. & C. Inc. Burnaby, British Columbia, Canada Email: [email protected] ________________________________________________________________________ Abstract The novel recognition that individual bodies of normal animals are actually inhabited by subcellular viral entities and membrane-enclosed microentities, prokaryotic bacterial and archaeal cells and unicellular eukaryotes such as fungi and protists has been supported by increasing evidences since the emergence of culture-independent approaches. However, how to understand the relationship between animal hosts including human beings and those non-host microentities or microorganisms is challenging our traditional understanding of pathogenic relationship in human medicine and veterinary medicine. In recent novel evolution theories, the relationship between animals and their environments has been deciphered to be the interaction between animals and their environmental evolutionary entities at the same and/or different evolutionary levels;[1-3] and evolutionary entities of the lower evolutionary levels are hypothesized to be the evolutionary background entities of entities at the higher evolutionary levels.[1,2] Therefore, to understand the normal existence of microentities or microorganisms in multicellular animal bodies is becoming the first priority for elucidating the ecological and evolutiological relationships between microorganisms and nonhuman macroorganisms. The evolutionary background entities at the cellular and subcellular levels in bodies of nonhuman vertebrate animals have been summarized recently.[4] In this paper, the author tries to briefly review the evolutionary background entities (EBE) at the cellular and subcellular levels for several selected invertebrate animal species.
    [Show full text]
  • Regras Entre Assembléias De Espécies: Relação Entre Biodiversidade E Funcionamento Do Ecossistema
    Santos, G.A.P. dos UNIVERSIDADE FEDERAL DE PERNAMBUCO Chapter: Open letter. DOUTORADO EM CIÊNCIAS BIOLÓGICAS REGRAS ENTRE ASSEMBLÉIAS DE ESPÉCIES: RELAÇÃO ENTRE BIODIVERSIDADE E FUNCIONAMENTO DO ECOSSISTEMA. GIOVANNI AMADEU PAIVA DOS SANTOS I TÍTULO: Species assembly rules and the biodiversity-ecosystem functioning relationship CCB, Recife-PE, 2007. Santos, G.A.P. dos UNIVERSIDADE FEDERAL DE PERNAMBUCO Chapter: Sub-Cover. DOUTORADO EM CIÊNCIAS BIOLÓGICAS Universidade Federal de Pernambuco Doutorado em Ciências Biológicas Centro de Ciências Biológicas Regras entre assembléias de espécies: Relação entre biodiversidade e funcionamento do ecossistema. Species assembly rules and the biodiversity- ecosystem functioning relationship. Giovanni Amadeu Paiva dos Santos Tese apresentada ao Doutorado de Ciências Biológicas da UFPE, como requisito necessário para o recebimento do título de Doutor em Ciências Biológicas. RECIFE, JULHO DE 2007. II TÍTULO: Species assembly rules and the biodiversity-ecosystem functioning relationship CCB, Recife-PE, 2007. 1.1.1 1.1.2 1.1.3 Santos, Giovanni Amadeu Paiva dos Regras entre assembléias de espécies: relação entre biodiversidade e funcionamento do ecossistema / Giovanni Amadeu Paiva dos Santos. – Recife: O Autor, 2009. 263 folhas: fig., tab. Tese (doutorado) – Universidade Federal de Pernambuco. CCB. Departamento de Ciências Biológicas, 2009. 1.1.3.1.1.1 Inclui bibliografia. 1. Biodiversidade 2. Funcionamento dos ecossistemas I Título. 574 CDU (2.ed.) UFPE 1.2 577 CDD (22.ed.) CCB – 2009- 043 COMISSAO EXAMINADORA "Regras entre assemblfHas de especies: rela~ao entre biodiversidade e funcionamento do ecossistema" TITULARES ,Ore c'~~ l .l;/'>1i( Ji /',- C'"'-~" -- ia Tereza dos Santos Correia (OrientadorIlJFPE) /~-/z:; , ~ Prof. L Ricardo Coutinho - (IEAPM/RJ) om Gilbert Willem Moens (Ghent UniversityIBelgica) SUPLENTES , " ' '/l{ ) c::< \, /,_k".
    [Show full text]
  • Bacterivory of a Mudflat Nematode Community Under Different Environmental Conditions
    Bacterivory of a mudflat nematode community under different environmental conditions Pierre-Yves Pascal, Christine Dupuy, Pierre Richard, Jadwiga Rzeznik-Orignac, Nathalie Niquil To cite this version: Pierre-Yves Pascal, Christine Dupuy, Pierre Richard, Jadwiga Rzeznik-Orignac, Nathalie Niquil. Bac- terivory of a mudflat nematode community under different environmental conditions. Marine Biology, Springer Verlag, 2008, pp.671-682. 10.1007/s00227-008-0960-9. hal-00293542 HAL Id: hal-00293542 https://hal.archives-ouvertes.fr/hal-00293542 Submitted on 4 Jul 2008 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 1 Bacterivory of a mudflat nematode community under different 2 environmental conditions 3 Pierre-Yves Pascal *1, Christine Dupuy 1, Pierre Richard 1, Jadwiga Rzeznik-Orignac 2, 4 Nathalie Niquil 1 5 1Littoral, Environnement et Sociétés (LIENSS) UMR 6250 CNRS-Université de La 6 Rochelle, 2 Rue Olympe de Gouges, 17042 La Rochelle cedex, France 7 2Biologie des organismes marins et écosystèmes (BOME) UMR-CNRS 5178–USM 0401– 8 MNHN, 61 Rue Buffon, 75231 Paris, France 9 *Corresponding author: [email protected]; Tel. 33 (0)5-46-45-83-88 10 Abstract 11 The fate of the benthic bacterial biomass is a topic of major importance in understanding 12 how soft-bottom environments function.
    [Show full text]
  • Rhizophagy Cycle: an Oxidative Process in Plants for Nutrient Extraction from Symbiotic Microbes
    microorganisms Review Rhizophagy Cycle: An Oxidative Process in Plants for Nutrient Extraction from Symbiotic Microbes James F. White 1,* , Kathryn L. Kingsley 1, Satish K. Verma 2 and Kurt P. Kowalski 3 1 Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; [email protected] 2 Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, UP 221005, India; [email protected] 3 U.S. Geological Survey, Great Lakes Science Center, 1451 Green Road, Ann Arbor, MI 48105-2807, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-848-932-6286 Received: 22 August 2018; Accepted: 5 September 2018; Published: 17 September 2018 Abstract: In this paper, we describe a mechanism for the transfer of nutrients from symbiotic microbes (bacteria and fungi) to host plant roots that we term the ‘rhizophagy cycle.’ In the rhizophagy cycle, microbes alternate between a root intracellular endophytic phase and a free-living soil phase. Microbes acquire soil nutrients in the free-living soil phase; nutrients are extracted through exposure to host-produced reactive oxygen in the intracellular endophytic phase. We conducted experiments on several seed-vectored microbes in several host species. We found that initially the symbiotic microbes grow on the rhizoplane in the exudate zone adjacent the root meristem. Microbes enter root tip meristem cells—locating within the periplasmic spaces between cell wall and plasma membrane. In the periplasmic spaces of root cells, microbes convert to wall-less protoplast forms. As root cells mature, microbes continue to be subjected to reactive oxygen (superoxide) produced by NADPH oxidases (NOX) on the root cell plasma membranes.
    [Show full text]
  • Are Fauna the Next Frontier in Soil Biogeochemical Models?
    Soil Biology & Biochemistry 102 (2016) 40e44 Contents lists available at ScienceDirect Soil Biology & Biochemistry journal homepage: www.elsevier.com/locate/soilbio Beyond microbes: Are fauna the next frontier in soil biogeochemical models? * A. Stuart Grandy a, , William R. Wieder b, c, Kyle Wickings d, Emily Kyker-Snowman a a Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH 03824, USA b Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, CO 80307, USA c Institute for Arctic and Alpine Research, University of Colorado, Boulder, CO 80309, USA d Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456, USA article info abstract Article history: The explicit representation of microbial communities in soil biogeochemical models is improving their Received 2 March 2016 projections, promoting new interdisciplinary research, and stimulating novel theoretical developments. Received in revised form However, microbes are the foundation of complicated soil food webs, with highly intricate and non- 3 August 2016 linear interactions among trophic groups regulating soil biogeochemical cycles. This food web includes Accepted 9 August 2016 fauna, which influence litter decomposition and the structure and activity of the microbial community. Available online 25 August 2016 Given the early success of microbial-explicit models, should we also consider explicitly representing faunal activity and physiology in soil biogeochemistry models? Here we explore this question, arguing Keywords: Microbes that the direct effects of fauna on litter decomposition are stronger than on soil organic matter dynamics, fl Fauna and that fauna can have strong indirect effects on soil biogeochemical cycles by in uencing microbial Earth systems models population dynamics, but the direction and magnitude of these effects remains too unpredictable for Food web interactions models used to predict global biogeochemical patterns.
    [Show full text]
  • Microbes Are Trophic Analogs of Animals
    Microbes are trophic analogs of animals Shawn A. Steffana,b,1, Yoshito Chikaraishic, Cameron R. Curried, Heidi Hornd, Hannah R. Gaines-Daya, Jonathan N. Paulie, Juan E. Zalapab, and Naohiko Ohkouchic aDepartment of Entomology, University of Wisconsin, Madison, WI 53706; bUS Department of Agriculture-Agricultural Research Service, University of Wisconsin, Madison, WI 53706; cDepartment of Biogeochemistry, Japan Agency for Marine-Earth Science and Technology, Yokosuka 237-0061, Japan; dDepartment of Bacteriology, University of Wisconsin, Madison, WI 53706; and eDepartment of Forest & Wildlife Ecology, University of Wisconsin, Madison, WI 53706 Edited by James M. Tiedje, Michigan State University, East Lansing, MI, and approved October 15, 2015 (received for review May 5, 2015) In most ecosystems, microbes are the dominant consumers, com- These organisms commandeer most of the heterotrophic biomass mandeering much of the heterotrophic biomass circulating through circulating through the food web (13). Indeed, in terrestrial systems, food webs. Characterizing functional diversity within the micro- the vast majority of primary production is not captured by herbi- biome, therefore, is critical to understanding ecosystem functioning, vores; rather, it falls to the ground and is consumed by microbes and particularly in an era of global biodiversity loss. Using isotopic fin- small invertebrate detritivores (7, 12, 14). Higher-order carnivores gerprinting, we investigated the trophic positions of a broad di- consume the detritivores, conjoining the upward flow of detritivore versity of heterotrophic organisms. Specifically, we examined the and herbivore biomass (9, 11, 15, 16), but if the trophic positions in naturally occurring stable isotopes of nitrogen (15N:14N) within amino the basal layers of the food web cannot be accurately measured, the acids extracted from proteobacteria, actinomycetes, ascomycetes, entire food web rests on a poorly known, tenuous platform (9).
    [Show full text]
  • Great Lakes Entomologist
    The GREAT LAKES ENTOMOLOGIST Vol. 11, No. 3 Fall 1978 THE GREAT LAKES ENTOMOLOGIST Published by the Michigan Entomological Society Volume 11 No. 3 TABLE OF CONTENTS Baetis (Ephemeroptera: Baetidae) of Wisconsin Edward A. Ber-man and William L. Hilsenhoff. ................... 125 A Natural Subgeneric Classification of Ephemerelh bartoni and Related Species (Ephemeroptera: Ephemerellidae) W. P. SlcCafferty .................................... .I37 Annotated List of Stoneflies ~Plecoptera)from Stebbins Gulch in Northeastern Ohio Martin A. Tkac and B. A. Foote ............................ 139 Annotated List of Caddistlies tTrichoptera) Occurring along the Upper Portion of the West Branch of the Mahoning River in Northeastern Ohio Eric P. McElra~~and B. .L Foote ........................... 143 Effects of Various Phoropsiids on Color and Pubescence in Thyanta calceata (Hemiptera: Penratomidae:~ J. E. McPherson. .................................... .I55 A List of the Scutellerojdea IHemiptera) of Southern Illinois J. E. YcPherwn ..................................... ,159 Neu- World Limnichinae IV. Eutimnichus Casey. A. Synonymies, Lectotype Designations. and Redexfiptions icoleoptera: Limnichidae) David P. U-ooldridge ................................... 163 Behavior at a 14;esting Site adPrey of Crabro cribrellifer (Hymenoptera: Sphecidae) Edward M. Banoa-s. PamiLG L. Lebau. and Cathlyn E. Eckstein ......... 175 CO\ER ILLUSTRATION Dorsal and ventral iien- of Pelrod~ressexmacuhtus Roberts (Coleoptera: Haliplidae). Drawing by Ms. Peninnah Sni-A. Illinoh yamral History Society. Vol. 11, No. 2 of The Great U-es Entomologist was mailed on 11 July, 1978. THE MICHIGAN ENTOMOLOGICAL SOCIETY 1977-76 OFFICERS President Roger G. Bland President-Elect ~anielK. Young Executive Secretary M. C. Nielsen Editor D. C. L. Gosling The Michigan Entomological Society traces its origins to the old Detroit Entomo- logical Society and was organized on 4 November 1954 to ".
    [Show full text]