Soil Rhizosphere Food Webs, Their Stability, and Implications for Soil Processes in Ecosystems

Total Page:16

File Type:pdf, Size:1020Kb

Soil Rhizosphere Food Webs, Their Stability, and Implications for Soil Processes in Ecosystems Soil rhizosphere food webs, their stability, and implications for soil processes in ecosystems John C. Moore 1, Kevin McCann 2 and Peter C. de Ruiter 3 1Department of Biological Sciences, University of Northern Colorado, Greeley, CO 80639 USA, 2Department of Zoology, University of Guelph, Guelph, Ontario N1G 2W1 Canada, 3Department of Environmental Studies, University of Utretch, 3508 Utretch, The Netherlands Introduction As students of biology we design and are exposed to a variety of caricatures to convey complex interactions and relationships. We are all acquainted with the first caricature, what for a better term can be referred to a the fundamental equation of life: 6CO 2 + 6H 20 ↔ C 6H12 O6 + 6O 2 (1) Like Euler’s equation in mathematics, Equation 1 maps several concepts. It embodies the conservation of matter, as each side of the equation possesses different molecules but equal numbers of atoms and mass. It depicts the inter-dependence between life and death processes operating at different scales, photosynthesis and respiration, the autotroph and heterotroph, the interaction between a plant and herbivore, and the immobilization of inorganic matter into organic matter and the mineralization of organic matter to inorganic matter. If we add nitrogen to the equation a similar set of processes emerges, and the interdependence of elements in shaping rates and life processes is evident (Reiners 1986, Sterner and Elser 2001). As with carbon, nitrogen is immobilized into organic matter and mineralized into inorganic matter, but we see an added dimension of a tight coupling of the compartmentalized aboveground and belowground processes as organisms from within each realm has perfected the biogeochemical pathways to immobilize the immobilize the inorganic metabolic wastes of the other. Nowhere is this more apparent than within the rhizosphere, the region of soil influenced by the roots of plants. Students are also familiar with a set of caricatures used to depict trophic interactions. The figures include a plant an herbivore and a predator, and if the vignette is of a terrestrial systems, an arrow points below the soil surface to ‘nutrients’ and/or ‘microbes’, followed by an arrow point to plant roots. The clear emphases of these depictions is on the aboveground realm, even though the interactions occurring belowground within the rhizosphere may be as or more significant in scope, complexity and overall importance to the system. Part of the reason the aboveground system receives greater attention is purely for heuristic reasons, and soils and soil processes are given short shrift stems from the obscure nature of soil biota and processes. Mathematical models represent a third type of caricature. On the one hand, effective models are internally consistent, simple in design and assumption, and thought provoking. On the other hand, they can be devoid of the details that make them biologically interesting and lead to biologically counterintuitive results. A good example of the later being the unstable mathematical representations of mutualisms and the ubiquitous nature of what appear to be stable symbiotic mutualisms that occur within the rhizosphere that have evolved over time. The objectives of this chapter are to present an approach that incorporates the three types of caricatures described above: 1) the reciprocal transfer of nutrients that are essential for plant growth and heterotrophic life depicted in Equation 1, 2) the trophic interactions among organisms aboveground and belowground, and 3) the mathematical representations of these. We demonstrate that the rhizosphere possesses a distinct trophic structure that is important to mathematical stability, and that human activities can alter the structure that are mathematically unstable and in ways that alter key ecological process. The Rhizosphere We define the rhizosphere as plant roots and the surrounding soil that is influenced by plant roots. This definition encompasses not only the roots and region of nutrient uptake by the roots, but extends into soils by action of root products and the trophic iteractions that are affected by these products or by roots (Coleman et al. 1983, Van der Putten et al. 2001, Moore et al. 2003). This definition is more inclusive than other definitions that includes roots and the soils that adhere to them, but operationally allows for a richer discussion. Significant quantities of photosynthetic products produced by plants are diverted to roots for root growth, which provides a carbon base for the soil species. The rhizosphere is characterized by rapid and prolific root growth, the sloughing of root cells, root death, and the exudation of simple carbon compounds. The size and dynamic of the rhizosphere relative to the aboveground component of plants differs by plant species and ecosystem type. For example, in grasslands, the ratio of shoot to root (S:R) production is roughly 1:1, contrasting sharply with forests, where far more photosynthate is allocated aboveground (Jackson et al. 1996), while Arctic tundra is characterized by a rhizosphere that turns over slowly resulting in an accumulation of root materials (Shaver et al. 1990). Interestingly, the range in S:R is narrowly conserved between .1 and 5 (Farrar et al. 2003); significant when contrasted with the range in plant sizes. The reasons offered for the constancy in S:R is due to the constraints on plant imposed by limitations and invariance in C:N and C:P ratios and the selective pressure to acquire just enough of the soil-based resources to balance aboveground carbon fixation. The constancy in the S:R and the dependence on elemental ratios greatly simplifies and strengthens our ability to generalize any models that we may develop. Detailed studies of the rhizosphere reveal that a growing root can be subdivided into a continuum of zones of activity from the root tip to the crown where different microbial populations have access to a continuous flow of organic substrates derived from the root (Trofymow and Coleman 1982). The root tip represents the first and lowest root zone. It is the site of root growth and is characterized by rapidly dividing cells and secretions or exudates that lubricate the tip as it passes through the soil. The exudates and sloughed root cells provide carbon for bacteria and fungi which in turn immobilize nitrogen and phosphorous. Farther up the root is the region of nutrient exchange, characterized by root hairs and lower rates of exudation. The birth and death of root hairs stimulates additional microbial growth (Bringhurst et al. 2001). The upper zones have been characterized as the region of remineralization of nutrients by predators, the region of symbiotic mutualistic relations, and the structural region (Coleman et al. 1983). Within each of the zones there is an infusion of carbon into the rhizosphere by plants which stimulates the growth and activity of microbes (Foster 1988, Grayston et al. 1996, Bardgett et al. 1998) and their invertebrate grazers (Lussenhop and Fogel 1991, Parmelee et al. 1993). Rhizosphere food web Hunt et al. (1987) presented a model of the rhizosphere food web for the North American shortgrass steppe in Colorado based on the three descriptions of food webs proposed by Paine (1980) and on the subdivisions of activities described above: 1) the connectedness web depicts the trophic interactions among organisms, 2) the energy flow web represents the flow of nutrients among organisms, and 3) the interaction web depicts the influences of the dynamics of one group on another (Figure 1). This approach has been adopted by several research groups that have attempted to link the structure of soil food webs in relation to the decomposition of organic matter and the mineralization of nutrients (Andrén et al. 1990, Brussaard et al. 1988, Brussaard et al. 1997, de Ruiter et al. 1993a, de Ruiter et al. 1993b, Hendrix et al. 1986, Hunt et al. 1987, Moore et al. 1988). The connectedness web defines the model’s basic structure (Figure 1). The diagram simplifies the high complexity and diversity by defining the web in terms of functional groups of organisms that shared similar prey and predators, feeding modes, life history attributes and habitat preferences (Moore et al. 1988). At the base of the web are plant roots, labile (C:N ratio < 30:1) and resistant (C:N ratio > 30:1) forms of detritus, and an inorganic nitrogen source. These basal resources are utilized microbes and invertebrates, terminating with predatory mites. The energy flow web expresses food web structure in quantitative measures, i.e. population sizes (biomass) and feeding rates (Figure 1). The estimates of flow are derived indirectly using a simple food web model (Figure 1), that used estimates of population sizes, turn-over rates, consumption rates, prey preferences and energy conversion parameters (Table 1, see de Ruiter et al. 1993b; Hunt et al. 1987; O'Neill 1969). Feeding rates were estimated using the procedures presented by Hunt et al. (1987). Consumed matter is divided into a fraction that is immobilized into consumer biomass (assimilation) and a fraction that is returned to the environment as feces, orts, and unconsumed prey, and of the assimilated fraction, material that is incorporated into new biomass (production) and materials that is mineralized as inorganic material. The estimates begin with top predators with the assumptions that the amount of material required to maintain the predators steady state biomass must equal the sum of its steady state biomass and loss due to death divided by its ecological efficiency: F = (D nat B + P)/e ass eprod (2) -1 -1 where F is the feeding rate (biomass time ), Dnat is the specific death rate (time ) of the consumer, B (biomass) is the population size of the consumer, P is the death rate to predators -1 (biomass time ), and eass and eprod are the assimilation (%) and production (%) efficiencies, respectively. For a top predator the death due to predator is zero.
Recommended publications
  • Diverse Allochthonous Resource Quality Effects on Headwater Stream Communities Through Insect-Microbe Interactions
    DIVERSE ALLOCHTHONOUS RESOURCE QUALITY EFFECTS ON HEADWATER STREAM COMMUNITIES THROUGH INSECT-MICROBE INTERACTIONS By Courtney Larson A DISSERTATION Submitted to Michigan State University in partial fulfillment of the requirements for the degree of Entomology—Doctor of Philosophy Ecology, Evolutionary Biology and Behavior—Dual Major 2020 ABSTRACT DIVERSE ALLOCHTHONOUS RESOURCE QUALITY EFFECTS ON HEADWATER STREAM COMMUNITIES THROUGH INSECT-MICROBE INTERACTIONS By Courtney Larson Freshwater resources are vital to environmental sustainability and human health; yet, they are inundated by multiple stressors, leaving aquatic communities to face unknown consequences. Headwater streams are highly reliant on allochthonous sources of energy. Riparian trees shade the stream, limiting primary production, causing macroinvertebrates to consume an alternative food source. Traditionally, leaf litter fallen from riparian trees is the primary allochthonous resource, but other sources, such as salmon carrion associated with annual salmon runs, may also be important. An alteration in the quantity or quality of these sources may have far reaching effects not only on the organisms that directly consume the allochthonous resource (shredders), but also on other functional feeding groups. Allochthonous resources directly and indirectly change stream microbial communities, which are used by consumers with potential changes to their life histories and behavior traits. The objective of my research was to determine the influence allochthonous resources have on stream
    [Show full text]
  • Regras Entre Assembléias De Espécies: Relação Entre Biodiversidade E Funcionamento Do Ecossistema
    Santos, G.A.P. dos UNIVERSIDADE FEDERAL DE PERNAMBUCO Chapter: Open letter. DOUTORADO EM CIÊNCIAS BIOLÓGICAS REGRAS ENTRE ASSEMBLÉIAS DE ESPÉCIES: RELAÇÃO ENTRE BIODIVERSIDADE E FUNCIONAMENTO DO ECOSSISTEMA. GIOVANNI AMADEU PAIVA DOS SANTOS I TÍTULO: Species assembly rules and the biodiversity-ecosystem functioning relationship CCB, Recife-PE, 2007. Santos, G.A.P. dos UNIVERSIDADE FEDERAL DE PERNAMBUCO Chapter: Sub-Cover. DOUTORADO EM CIÊNCIAS BIOLÓGICAS Universidade Federal de Pernambuco Doutorado em Ciências Biológicas Centro de Ciências Biológicas Regras entre assembléias de espécies: Relação entre biodiversidade e funcionamento do ecossistema. Species assembly rules and the biodiversity- ecosystem functioning relationship. Giovanni Amadeu Paiva dos Santos Tese apresentada ao Doutorado de Ciências Biológicas da UFPE, como requisito necessário para o recebimento do título de Doutor em Ciências Biológicas. RECIFE, JULHO DE 2007. II TÍTULO: Species assembly rules and the biodiversity-ecosystem functioning relationship CCB, Recife-PE, 2007. 1.1.1 1.1.2 1.1.3 Santos, Giovanni Amadeu Paiva dos Regras entre assembléias de espécies: relação entre biodiversidade e funcionamento do ecossistema / Giovanni Amadeu Paiva dos Santos. – Recife: O Autor, 2009. 263 folhas: fig., tab. Tese (doutorado) – Universidade Federal de Pernambuco. CCB. Departamento de Ciências Biológicas, 2009. 1.1.3.1.1.1 Inclui bibliografia. 1. Biodiversidade 2. Funcionamento dos ecossistemas I Título. 574 CDU (2.ed.) UFPE 1.2 577 CDD (22.ed.) CCB – 2009- 043 COMISSAO EXAMINADORA "Regras entre assemblfHas de especies: rela~ao entre biodiversidade e funcionamento do ecossistema" TITULARES ,Ore c'~~ l .l;/'>1i( Ji /',- C'"'-~" -- ia Tereza dos Santos Correia (OrientadorIlJFPE) /~-/z:; , ~ Prof. L Ricardo Coutinho - (IEAPM/RJ) om Gilbert Willem Moens (Ghent UniversityIBelgica) SUPLENTES , " ' '/l{ ) c::< \, /,_k".
    [Show full text]
  • Bacterivory of a Mudflat Nematode Community Under Different Environmental Conditions
    Bacterivory of a mudflat nematode community under different environmental conditions Pierre-Yves Pascal, Christine Dupuy, Pierre Richard, Jadwiga Rzeznik-Orignac, Nathalie Niquil To cite this version: Pierre-Yves Pascal, Christine Dupuy, Pierre Richard, Jadwiga Rzeznik-Orignac, Nathalie Niquil. Bac- terivory of a mudflat nematode community under different environmental conditions. Marine Biology, Springer Verlag, 2008, pp.671-682. 10.1007/s00227-008-0960-9. hal-00293542 HAL Id: hal-00293542 https://hal.archives-ouvertes.fr/hal-00293542 Submitted on 4 Jul 2008 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 1 Bacterivory of a mudflat nematode community under different 2 environmental conditions 3 Pierre-Yves Pascal *1, Christine Dupuy 1, Pierre Richard 1, Jadwiga Rzeznik-Orignac 2, 4 Nathalie Niquil 1 5 1Littoral, Environnement et Sociétés (LIENSS) UMR 6250 CNRS-Université de La 6 Rochelle, 2 Rue Olympe de Gouges, 17042 La Rochelle cedex, France 7 2Biologie des organismes marins et écosystèmes (BOME) UMR-CNRS 5178–USM 0401– 8 MNHN, 61 Rue Buffon, 75231 Paris, France 9 *Corresponding author: [email protected]; Tel. 33 (0)5-46-45-83-88 10 Abstract 11 The fate of the benthic bacterial biomass is a topic of major importance in understanding 12 how soft-bottom environments function.
    [Show full text]
  • Rhizophagy Cycle: an Oxidative Process in Plants for Nutrient Extraction from Symbiotic Microbes
    microorganisms Review Rhizophagy Cycle: An Oxidative Process in Plants for Nutrient Extraction from Symbiotic Microbes James F. White 1,* , Kathryn L. Kingsley 1, Satish K. Verma 2 and Kurt P. Kowalski 3 1 Department of Plant Biology, Rutgers University, New Brunswick, NJ 08901, USA; [email protected] 2 Centre of Advanced Study in Botany, Banaras Hindu University, Varanasi, UP 221005, India; [email protected] 3 U.S. Geological Survey, Great Lakes Science Center, 1451 Green Road, Ann Arbor, MI 48105-2807, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-848-932-6286 Received: 22 August 2018; Accepted: 5 September 2018; Published: 17 September 2018 Abstract: In this paper, we describe a mechanism for the transfer of nutrients from symbiotic microbes (bacteria and fungi) to host plant roots that we term the ‘rhizophagy cycle.’ In the rhizophagy cycle, microbes alternate between a root intracellular endophytic phase and a free-living soil phase. Microbes acquire soil nutrients in the free-living soil phase; nutrients are extracted through exposure to host-produced reactive oxygen in the intracellular endophytic phase. We conducted experiments on several seed-vectored microbes in several host species. We found that initially the symbiotic microbes grow on the rhizoplane in the exudate zone adjacent the root meristem. Microbes enter root tip meristem cells—locating within the periplasmic spaces between cell wall and plasma membrane. In the periplasmic spaces of root cells, microbes convert to wall-less protoplast forms. As root cells mature, microbes continue to be subjected to reactive oxygen (superoxide) produced by NADPH oxidases (NOX) on the root cell plasma membranes.
    [Show full text]
  • Are Fauna the Next Frontier in Soil Biogeochemical Models?
    Soil Biology & Biochemistry 102 (2016) 40e44 Contents lists available at ScienceDirect Soil Biology & Biochemistry journal homepage: www.elsevier.com/locate/soilbio Beyond microbes: Are fauna the next frontier in soil biogeochemical models? * A. Stuart Grandy a, , William R. Wieder b, c, Kyle Wickings d, Emily Kyker-Snowman a a Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH 03824, USA b Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, CO 80307, USA c Institute for Arctic and Alpine Research, University of Colorado, Boulder, CO 80309, USA d Department of Entomology, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456, USA article info abstract Article history: The explicit representation of microbial communities in soil biogeochemical models is improving their Received 2 March 2016 projections, promoting new interdisciplinary research, and stimulating novel theoretical developments. Received in revised form However, microbes are the foundation of complicated soil food webs, with highly intricate and non- 3 August 2016 linear interactions among trophic groups regulating soil biogeochemical cycles. This food web includes Accepted 9 August 2016 fauna, which influence litter decomposition and the structure and activity of the microbial community. Available online 25 August 2016 Given the early success of microbial-explicit models, should we also consider explicitly representing faunal activity and physiology in soil biogeochemistry models? Here we explore this question, arguing Keywords: Microbes that the direct effects of fauna on litter decomposition are stronger than on soil organic matter dynamics, fl Fauna and that fauna can have strong indirect effects on soil biogeochemical cycles by in uencing microbial Earth systems models population dynamics, but the direction and magnitude of these effects remains too unpredictable for Food web interactions models used to predict global biogeochemical patterns.
    [Show full text]
  • Microbes Are Trophic Analogs of Animals
    Microbes are trophic analogs of animals Shawn A. Steffana,b,1, Yoshito Chikaraishic, Cameron R. Curried, Heidi Hornd, Hannah R. Gaines-Daya, Jonathan N. Paulie, Juan E. Zalapab, and Naohiko Ohkouchic aDepartment of Entomology, University of Wisconsin, Madison, WI 53706; bUS Department of Agriculture-Agricultural Research Service, University of Wisconsin, Madison, WI 53706; cDepartment of Biogeochemistry, Japan Agency for Marine-Earth Science and Technology, Yokosuka 237-0061, Japan; dDepartment of Bacteriology, University of Wisconsin, Madison, WI 53706; and eDepartment of Forest & Wildlife Ecology, University of Wisconsin, Madison, WI 53706 Edited by James M. Tiedje, Michigan State University, East Lansing, MI, and approved October 15, 2015 (received for review May 5, 2015) In most ecosystems, microbes are the dominant consumers, com- These organisms commandeer most of the heterotrophic biomass mandeering much of the heterotrophic biomass circulating through circulating through the food web (13). Indeed, in terrestrial systems, food webs. Characterizing functional diversity within the micro- the vast majority of primary production is not captured by herbi- biome, therefore, is critical to understanding ecosystem functioning, vores; rather, it falls to the ground and is consumed by microbes and particularly in an era of global biodiversity loss. Using isotopic fin- small invertebrate detritivores (7, 12, 14). Higher-order carnivores gerprinting, we investigated the trophic positions of a broad di- consume the detritivores, conjoining the upward flow of detritivore versity of heterotrophic organisms. Specifically, we examined the and herbivore biomass (9, 11, 15, 16), but if the trophic positions in naturally occurring stable isotopes of nitrogen (15N:14N) within amino the basal layers of the food web cannot be accurately measured, the acids extracted from proteobacteria, actinomycetes, ascomycetes, entire food web rests on a poorly known, tenuous platform (9).
    [Show full text]
  • Gut Content, Digestive Enzymes, Fatty Acids and Stable Isot
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.15.098228; this version posted July 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Multidimensional trophic niche revealed by complementary approaches: gut content, 2 digestive enzymes, fatty acids and stable isotopes in soil fauna 3 Anton M. Potapov1,2, Melanie M. Pollierer2, Sandrine Salmon3, Vladimír Šustr4, Ting-Wen 4 Chen4* 5 1A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky 6 Prospect 33, 119071 Moscow, Russia 7 2J.F. Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Untere 8 Karspüle 2, 37073 Göttingen, Germany 9 3Muséum National d’Histoire Naturelle, Département Adaptations du Vivant, UMR 7179 10 MECADEV, 4 avenue du Petit Château, 91800 Brunoy, France 11 4Institute of Soil Biology, Biology Centre, Czech Academy of Sciences, Na Sádkách 7, 37005 12 České Budějovice, Czech Republic 13 14 *Corresponding author: Ting-Wen Chen (address: Institute of Soil Biology, Biology Centre, 15 Czech Academy of Sciences, Na Sádkách 7, 370 05 České Budějovice, Czech Republic; email: 16 [email protected]) 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.05.15.098228; this version posted July 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Novack-Gottshall, P.M. 2007. Using a Theoretical Ecospace to Quantify the Ecological Diversity of Paleozoic and Modern Marine Biotas
    Novack-Gottshall, P.M. 2007. Using a theoretical ecospace to quantify the ecological diversity of Paleozoic and modern marine biotas. Paleobiology 33:274-295 (+ online appendices). Please note the following corrections: p. 283. Replace p=1.005 with p=0.1005 p. 284, Fig. 3 caption. Replace p=1.005 with p=0.1005 p. 289: Add at end of Acknowledgements: This is Paleobiology Database Publication 62. Paleobiology, 33(2), 2007, pp. 273–294 Using a theoretical ecospace to quantify the ecological diversity of Paleozoic and modern marine biotas Philip M. Novack-Gottshall Abstract.—The process of evolution hinders our ability to make large-scale ecological compari- sons—such as those encompassing marine biotas spanning the Phanerozoic—because the com- pared entities are taxonomically and morphologically dissimilar. One solution is to focus instead on life habits, which are repeatedly discovered by taxa because of convergence. Such an approach is applied to a comparison of the ecological diversity of Paleozoic (Cambrian–Devonian) and mod- ern marine biotas from deep-subtidal, soft-substrate habitats. Ecological diversity (richness and disparity) is operationalized by using a standardized ecospace framework that can be applied equally to extant and extinct organisms and is logically independent of taxonomy. Because indi- vidual states in the framework are chosen a priori and not customized for particular taxa, the framework fulfills the requirements of a universal theoretical ecospace. Unique ecological life hab- its can be recognized as each discrete, n-dimensional combination of character states in the frame- work. Although the basic unit of analysis remains the organism, the framework can be applied to other entities—species, clades, or multispecies assemblages—for the study of comparative paleo- ecology and ecology.
    [Show full text]
  • Abyssal Deposit Feeders Are Secondary Consumers of Detritus and Rely on Nutrition Derived from Microbial Communities in Their Guts Sonia Romero‑Romero1*, Elizabeth C
    www.nature.com/scientificreports OPEN Abyssal deposit feeders are secondary consumers of detritus and rely on nutrition derived from microbial communities in their guts Sonia Romero‑Romero1*, Elizabeth C. Miller1, Jesse A. Black1, Brian N. Popp2 & Jefrey C. Drazen1 Trophic ecology of detrital‑based food webs is still poorly understood. Abyssal plains depend entirely on detritus and are among the most understudied ecosystems, with deposit feeders dominating megafaunal communities. We used compound‑specifc stable isotope ratios of amino acids (CSIA‑AA) to estimate the trophic position of three abundant species of deposit feeders collected from the abyssal plain of the Northeast Pacifc (Station M; ~ 4000 m depth), and compared it to the trophic position of their gut contents and the surrounding sediments. Our results suggest that detritus forms the base of the food web and gut contents of deposit feeders have a trophic position consistent with primary consumers and are largely composed of a living biomass of heterotrophic prokaryotes. Subsequently, deposit feeders are a trophic level above their gut contents making them secondary consumers of detritus on the abyssal plain. Based on δ13C values of essential amino acids, we found that gut contents of deposit feeders are distinct from the surrounding surface detritus and form a unique food source, which was assimilated by the deposit feeders primarily in periods of low food supply. Overall, our results show that the guts of deposit feeders constitute hotspots of organic matter on the abyssal plain that occupy one trophic level above detritus, increasing the food‑chain length in this detritus‑based ecosystem. Detritus is the main standing stock of organic matter for most ecosystems, both aquatic and terrestrial1, and its importance in ecosystem functioning has long been noted 2.
    [Show full text]
  • Microbes Are Trophic Analogs of Animals
    Microbes are trophic analogs of animals Shawn A. Steffana,b,1, Yoshito Chikaraishic, Cameron R. Curried, Heidi Hornd, Hannah R. Gaines-Daya, Jonathan N. Paulie, Juan E. Zalapab, and Naohiko Ohkouchic aDepartment of Entomology, University of Wisconsin, Madison, WI 53706; bUS Department of Agriculture-Agricultural Research Service, University of Wisconsin, Madison, WI 53706; cDepartment of Biogeochemistry, Japan Agency for Marine-Earth Science and Technology, Yokosuka 237-0061, Japan; dDepartment of Bacteriology, University of Wisconsin, Madison, WI 53706; and eDepartment of Forest & Wildlife Ecology, University of Wisconsin, Madison, WI 53706 Edited by James M. Tiedje, Michigan State University, East Lansing, MI, and approved October 15, 2015 (received for review May 5, 2015) In most ecosystems, microbes are the dominant consumers, com- These organisms commandeer most of the heterotrophic biomass mandeering much of the heterotrophic biomass circulating through circulating through the food web (13). Indeed, in terrestrial systems, food webs. Characterizing functional diversity within the micro- the vast majority of primary production is not captured by herbi- biome, therefore, is critical to understanding ecosystem functioning, vores; rather, it falls to the ground and is consumed by microbes and particularly in an era of global biodiversity loss. Using isotopic fin- small invertebrate detritivores (7, 12, 14). Higher-order carnivores gerprinting, we investigated the trophic positions of a broad di- consume the detritivores, conjoining the upward flow of detritivore versity of heterotrophic organisms. Specifically, we examined the and herbivore biomass (9, 11, 15, 16), but if the trophic positions in naturally occurring stable isotopes of nitrogen (15N:14N) within amino the basal layers of the food web cannot be accurately measured, the acids extracted from proteobacteria, actinomycetes, ascomycetes, entire food web rests on a poorly known, tenuous platform (9).
    [Show full text]
  • History of Microbiology.Docx
    AB toxins The structure and activity of many exotoxins are based on the AB model. In this model, the B portion of the toxin is responsible for toxin binding to a cell but does not directly harm it. The A portion enters the cell and disrupts its function. accessory pigments Photosynthetic pigments such as carotenoids and phycobiliproteins that aid chlorophyll in trapping light energy. acetyl coenzyme A (acetyl-CoA) A combination of acetic acid and coenzyme A that is energy rich; it is produced by many catabolic pathways and is the substrate for the tricarboxylic acid cycle, fatty acid biosynthesis, and other pathways. acid dyes Dyes that are anionic or have negatively charged groups such as carboxyls. acid fast Refers to bacteria like the mycobacteria that cannot be easily decolorized with acid alcohol after being stained with dyes such as basic fuchsin. acid-fast staining A staining procedure that differentiates between bacteria based on their ability to retain a dye when washed with an acid alcohol solution. acidophile A microorganism that has its growth optimum between about pH 0 and 5.5. acquired enamel pellicle A membranous layer on the tooth enamel surface formed by selectively adsorbing glycoproteins (mucins) from saliva. This pellicle confers a net negative charge to the tooth surface. acquired immune deficiency syndrome (AIDS) An infectious disease syndrome caused by the human immunodeficiency virus and is characterized by the loss of a normal immune response, followed by increased susceptibility to opportunistic infections and an increased risk of some cancers. acquired immune tolerance The ability to produce antibodies against nonself antigens while "tolerating" (not producing antibodies against) self-antigens.
    [Show full text]
  • Advances in the Application of Amino Acid Nitrogen Isotopic Analysis in Ecological and Biogeochemical Studies Naohiko Ohkouchi
    University of Rhode Island DigitalCommons@URI Graduate School of Oceanography Faculty Graduate School of Oceanography Publications 2017 Advances in the application of amino acid nitrogen isotopic analysis in ecological and biogeochemical studies Naohiko Ohkouchi Yoshito Chikaraishi See next page for additional authors Follow this and additional works at: https://digitalcommons.uri.edu/gsofacpubs The University of Rhode Island Faculty have made this article openly available. Please let us know how Open Access to this research benefits oy u. This is a pre-publication author manuscript of the final, published article. Terms of Use This article is made available under the terms and conditions applicable towards Open Access Policy Articles, as set forth in our Terms of Use. Citation/Publisher Attribution Ohkouchi, N., Chikaraishi, Y., Close, H., Fry, B., Larsen, T., Madigan, D. J., McCarthy, M. D.,…Yokoyama, Y. (2017). Advances in the application of amino acid nitrogen isotopic analysis in ecological and biogeochemical studies. Organic Chemistry, 113, 150-174. doi: 10.1016/j.orggeochem.2017.07.009. Available at: https://doi.org/10.1016/j.orggeochem.2017.07.009 This Article is brought to you for free and open access by the Graduate School of Oceanography at DigitalCommons@URI. It has been accepted for inclusion in Graduate School of Oceanography Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. Authors Naohiko Ohkouchi, Yoshito Chikaraishi, Hilary Close, Brian Fry, Thomas Larsen, Daniel J. Madigan, Matthew D. McCarthy, Kelton McMahon, Toshi Nagata, Yuichi I. Naito, Nanako O. Ogawa, Brian N. Popp, Shawn Steffan, Yoshinori Takano, Ichiro Tayasu, Alex S.
    [Show full text]