(12) United States Patent (10) Patent No.: US 6,610,863 B2 Arumugam Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) United States Patent (10) Patent No.: US 6,610,863 B2 Arumugam Et Al USOO6610863B2 (12) United States Patent (10) Patent No.: US 6,610,863 B2 Arumugam et al. (45) Date of Patent: Aug. 26, 2003 (54) CONTINUOUS PROCESS FOR PRODUCING DE 199 04 821 C1, 7/2000 L-ASCORBIC ACID EP O554090 A2 4/1983 EP 1 048 663 A1 11/2000 (75) Inventors: Bhaskar Krishna Arumugam, SE 1. is : 3.3. Kingsport, TN (US); Nick Allen GB 2O34 315 * 6/1980 Collins, Fall Branch, TN (US); JP 73015931 5/1973 Transito Lynne Macias, Petal, MS WO WO 87/0O839 2/1987 (US); Steven Thomas Perri, Kingsport, WO WO 97/13761 4/1997 TN (US); Jeffrey Earl Grant Powell, WO WO 99/07691 2/1999 Blountville, TN (US); Chester Wayne WO WOOO46216 8/2000 Sink, Kingsport, TN (US); Michael Roy Cushman, Punta Gorda, FL (US) OTHER PUBLICATIONS Anderson, S. et al., Production of 2-Keto-L-Gulonate, an (73) Assignee: Eastman Chemical Company, Intermediate in L-AScorbate Synthesis, by a Genetically Kingsport, TN (US) Modified Erwinia herbicola, Science, 230, pp. 144-149, 1985. (*) Notice: Subject to any disclaimer, the term of this Regna, P.P. et al., Kinetics of Transformation of 2-Keto patent is extended or adjusted under 35 polyhydroxy Acids, J. Am. Chem. Soc., 66, pp. 246-250, U.S.C. 154(b) by 0 days. 1944. Reichstein, T. et al., Eine ergiebige Synthese der 1-AScorb (21) Appl. No.: 10/037,126 ins?ure (C-Vitamine)) Helv. Chim. Acta, 17, pp. 311-328, 1934 * See Information Disclosure Statement for Descrip (22) Filed: Dec. 21, 2001 tion. (65) Prior Publication Data Saito, Y., Direct Fermentation of 2-Keto-L-Gulonic Acid in Recombinant Gluconobacter Oxydans, Biotechnol. Bioeng., US 2002/0151726 A1 Oct. 17, 2002 58 (2 & 3), pp. 309-315, 1998. Related U.S. Application Data Wankat, Rate-Controlled Separations, chapter 10.4, (60) Provisional application No. 60/257,991, filed on Dec. 22, Elsevier Applied Science, p. 524–541, Simulated Moving 2000, Bed Fractionation, 1990. (51) Int. Cl............................................... C07D 307/62 * cited by examiner (52) U.S. Cl. ....................................................... 549/315 Primary Examiner Joseph K. McKane (58) Field of Search .......................................... 549/315 Assistant Examiner Ebenezer Sackey (74) Attorney, Agent, or Firm-Eric D. Middlemas; (56) References Cited Bernard J. Graves, Jr. U.S. PATENT DOCUMENTS (57) ABSTRACT 2,265,121 A 12/1941 Reichstein 2.462,251 A 2/1949 Bassford et al. The present invention provides methods and an apparatus 2,491,065 A 12/1949 Van Eekelen et al. for the manufacture of an L-ascorbic acid product in high 4,111,958 A 9/1978 Crawford yield by direct conversion of an aqueous Solution containing 4,767,870 A 8/1988 Fujiwara et al. 2-keto-L-gulonic acid by contact with an acid catalyst or 5,128,487 A 7/1992 Tomislav et al. under thermal Self-catalyzed conditions at a conversion level 5,391,770 A 2/1995 Le Fur et al. that maximizes the formation of L-ascorbic acid and mini 5,637,734. A * 6/1997 Honda et al. ............... 549/315 mizes decomposition of the L-ascorbic acid thus formed. 5,744,618 A 4/1998 Fechtel et al. 5,817.238 A * 10/1998 Makino et al. ............... 21/635 The Separation process for L-ascorbic acid and KLG is 5.998,634. A 12/1999 Murphy et al. operated in Such a way that an efficient Separation process 6,004,445 A 12/1999 Genders et al. allows the majority of the KLG to be recycled for further 6,197.977 B1 3/2001 Böttcher et al. conversion. The product Stream from the Separation process is then Subjected to a recovery Step to obtain crystalline FOREIGN PATENT DOCUMENTS L-ascorbic acid product. DE 384.3389 6/1990 DE 19734086 C1 11/1996 36 Claims, 14 Drawing Sheets U.S. Patent Aug. 26, 2003 Sheet 3 of 14 US 6,610,863 B2 \/SV/|||ENOZ||NE8HOSEC] U.S. Patent Aug. 26, 2003 Sheet 4 of 14 US 6,610,863 B2 WSWIS)y %‘AuOOSÐTx{ssed-3||6u?S pea-ux>]©TX%09@pea-,GINS 00|09070Z0 O O O 09 CN V %)WWSW JO Soy U.S. Patent Aug. 26, 2003 Sheet S of 14 US 6,610,863 B2 | uueufieldwol-iuo?oesuo?oeax, blue1313Koeae 921. U.S. Patent Aug. 26, 2003 Sheet 6 of 14 US 6,610,863 B2 -0-KLG -- ASCOrbic Acid Figure 6 U.S. Patent Aug. 26, 2003 Sheet 7 of 14 US 6,610,863 B2 s Figure 7 U.S. Patent Aug. 26, 2003 Sheet 8 of 14 US 6,610,863 B2 100 90 80 70 30 20 10 % eOA U.S. Patent Aug. 26, 2003 Sheet 9 of 14 US 6,610,863 B2 3000 2800 2600 2400 2200 2000 1800 1600 1400 : 1200 1000 800 > 5 600 5 9 (2 5 O 400 M O 200 s R s % oN U.S. Patent Aug. 26, 2003 Sheet 10 of 14 US 6,610,863 B2 4400 4200 4000 3800 3600 3400 3200 3000 2800 2600 2400. 2200 2000 1800 1600 1400 1200 1000 > . 5 5> g2 800 2 S O 600 (M. O 400 200 s s 2 e % ooA U.S. Patent Aug. 26, 2003 Sheet 11 of 14 US 6,610,863 B2 1700 1650 1600 1550 1500 1450 1400 1350 1300 1250 1200 1150 1100 1050 1000 950 900 850 800 750 700 650 600 S50 500 450 O 400 2 ' H 350 rid d O > 300 CD S. CD O 250 CM) O 200 150 100 50 s Sr & s SE s R s O % 00A U.S. Patent Aug. 26, 2003 Sheet 12 of 14 US 6,610,863 B2 i g s s s SN Sp CO O V N O % W U.S. Patent Aug. 26, 2003 Sheet 13 of 14 US 6,610,863 B2 s s s s s s s s s s s s U.S. Patent Aug. 26, 2003 Sheet 14 of 14 US 6,610,863 B2 8SQ3 3g33 S. 3 O O O O O ve O OO N O O %iou"AlmoeleS WSW US 6,610,863 B2 1 2 CONTINUOUS PROCESS FOR PRODUCING cyclization process without the use of copious amounts of L-ASCORBIC ACID acid catalysts (T. Reichstein, Helv. Chim. Acta 17, 1934, pp. 311-328 and BP 428,815). Although aqueous cyclization This application claims priority to U.S. Provisional does not require the extensive purification StepS associated Application Serial No. 60/257,991, filed Dec. 22, 2000, the with acid catalysis, non-acid catalyzed intramolecular disclosure of which is hereby incorporated herein by refer cyclization is associated with relatively low yields. For CCC. example, 2-keto-L-gulonic acid may be heated in water This invention was made with United States Government saturated with carbon dioxide with 50% yield after fractional Support under Cooperative Research Agreement No. crystallization (U.S. Pat. No. 2,265,121). Also, 2-keto-L- 70NANB5H1138 awarded by the Advanced Technology gulonic acid or derivatives of 2-keto-L-gulonic acid may be Program of the National Institute of Standards and Technol heated to 130-140 C. in water to generate ascorbic acid ogy. The United States Government has certain rights in the with yields approximating 50% (U.S. Pat. No. 2,491,065). invention. Numerous attempts at direct cyclization processes for keto-L-gulonic acid (KLG) and derivatives thereof have FIELD OF THE INVENTION 15 been proposed in which the final product is isolated from the The present invention relates to a process for producing cyclization stream by removal of the solvent. Purification of L-ascorbic acid. More particularly, the present invention the L-ascorbic acid product is hampered, however, due to the relates to a continuous process for producing L-ascorbic acid instability of L-ascorbic acid product in aqueous or acid that minimizes decomposition of the L-ascorbic acid product reaction solutions (e.g. P. P. Regna and B. P. Caldwell, J. Am. formed and allows for unreacted Starting material to be Chem. Soc., 66, pp. 246-250, 1944), especially when the recycled back into the reaction mix. reaction is operated Such that conversion of the 2-keto-L- gulonic acid Starting material is nearly complete. Thus, there BACKGROUND OF THE INVENTION exists a need for a process that operates at leSS than complete L-AScorbic acid (vitamin C) is produced commercially by conversion, but allows for efficient use of the 2-keto-L- combined chemical and fermentation processes Starting 25 gulonic acid Starting material and produces purified from glucose or Sorbose. A common intermediate generated L-ascorbic acid in high yield. Accordingly, it is to the in the commercial process is 2-keto-L-gulonic acid (KLG), provision of Such processes that the present invention is or its protected form, diacetone-2-keto-L-gulonic acid. The directed. conversion of 2-keto-L-gulonic acid to L-ascorbic acid may be carried out by esterification with methanol, followed by SUMMARY OF THE INVENTION cyclization using Stoichiometric amounts of a base, in a The present invention relates to a proceSS for producing methodology derived from the original Reichstein proceSS L-ascorbic acid which comprises the Steps of Subjecting an (T. Reichstein, A. Grussner, Helv. Chim. Acta 17, p. aqueous Solution of 2-keto-L-gulonic acid (KLG) or deriva 311-328, 1934). Alternatively, diacetone-2-keto-L-gulonic tives of 2-keto-L-gulonic acid to an acid-catalyzed, or Self acid may be cyclized directly, with a loSS of acetone fol 35 catalyzed cyclization, followed by Separation of the product lowed by consecutive lactonization and enolization, to form L-ascorbic acid and any unreacted 2-keto-L-gulonic acid ascorbic acid.
Recommended publications
  • Dr. Soumendu Bisoi Assistant Professor Department of Chemistry, Narajole Raj College
    Dr. Soumendu Bisoi Assistant Professor Department of Chemistry, Narajole Raj College Vitamin C Vitamin C, also named as L-ascorbic acid (Asc), is a water-soluble vitamin that is essential for humans, non-human primates and a few other mammals. Vitamin C (L-ascorbic acid; Asc) is a powerful antioxidant and essential human nutrient that has extensive industrial and medicinal applications resulting in global requirements estimated at 154 thousand tons in 2007. The discovery of Asc is related with the disease of scurvy. Scurvy was a common disease in the world’s navies and sailors until the beginning of the nineteenth century, with serious symptoms such as bleeding of mucous membranes, anaemia and eventually death. In 1928, Albert Szent-Gyørgyi first isolated the Asc from adrenal glands and called it hexuronic acid. Four years later, Charles Glen King isolated Asc in his laboratory and concluded that it was the same as hexuronic acid. In 1933, Norman Haworth deduced the chemical structure of Asc (Figure 1). Figure 1 Vitamin C (L-ascorbic acid). Between 1933 and 1934, not only Haworth and fellow British chemist Edmund Hirsthad synthesised Asc, but also, independently, the Polish chemist Tadeus Reichstein, succeeded in synthesising the vitamin in bulk, making it the first vitamin to be artificially produced. The latter process made possible the cheap mass-production of semi-synthetic Asc, which was quickly marketed. Haworth was awarded the 1937 Nobel Prize in Chemistry in part for this work, but the Reichstein process, a combined chemical and bacterial fermentation sequence still used today to produce vitamin C, retained Reichstein’s name.
    [Show full text]
  • Synthesis and Characterization of New Metal-Carbon Catalysts for Hydrogenation of D-Glucose
    SYNTHESIS AND CHARACTERIZATION OF NEW METAL-CARBON CATALYSTS FOR HYDROGENATION OF D-GLUCOSE LIU JIAJIA NATIONAL UNIVERSITY OF SINGAPORE 2010 SYNTHESIS AND CHARACTERIZATION OF NEW METAL-CARBON CATALYSTS FOR HYDROGENATION OF D-GLUCOSE LIU JIAJIA (M.Eng, Tianjin University) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF CHEMICAL AND BIOMOLECULAR ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE 2010 Acknowledgement Acknowledgement I am heartily thankful to my supervisor, Assoc. Prof. Zhao X. S., George, whose constant encouragement, invaluable guidance, patience and support throughout the whole period of my PhD candidature. I would also like to thank Assoc. Prof. Zhao for his guidance on writing scientific papers including this PhD thesis. In addition, I want to express my sincerest appreciation to the Department of Chemical and Biomolecular Engineering for offering me the chance to study at NUS with a scholarship. It’s my pleasure to work with a group of brilliant, warmhearted and lovely people. Wish all my lab mates go well with their work. Particular acknowledgement goes to Dr. Liu Tao, Mr. Chia Phai Ann, Mr. Shang Zhenhua, Dr. Yuan Zeliang, Mr. Mao Ning, Mr. Liu Zhicheng, Dr. Rajarathnam D., Madam Chow Pek Jaslyn, Mdm Fam Hwee Koong Samantha, Ms Lee Chai Keng, Ms Tay Choon Yen, Mr. Toh Keng Chee, Mr. Chun See Chong, Ms. Ng Ai Mei, Ms. Lum Mei Peng Sharon, and Ms. How Yoke Leng Doris for their kind supports. I thank my parents and my husband. It is no exaggeration to say that I could not complete the PhD work without their generous help, boundless love, encouragement and support.
    [Show full text]
  • Ethoxylation of Fatty Acids
    S B N P Enzymatic Synthesis & Functional Characterization Fredrik Viklund Department of Biotechnology Stockholm Royal Institute of Technology Surfactants based on natural products — Enzymatic synthesis and functional characterization Copyright © by Fredrik Viklund ISBN --- is is the electronic version of the thesis. Compared to the printed version, it includes some minor typographical corrections. Royal Institute of Technology Printed in Stockholm AlbaNova University Center May Department of Biotechnology SE- Stockholm, Sweden Universitetsservice AB http://www.biotech.kth.se/ http://www.us-ab.se/ To Explorers Sammanfattning Tensider är molekyler som består av en vattenlöslig och en fettlöslig del. De spelar en viktig roll i produkter som rengöringsmedel, kosmetika, läkemedel och mat såväl som i många industriella processer. Tensider används i mycket stor skala vilket gör det viktigt att minska deras påverkan på miljön. Det kan åstadkommas genom att använda naturprodukter som råvaror, genom att förbättra tillverkningsmetoderna och genom att minska användningen av begränsade resurser som energi och lösningsmedel. Den här avhandlingen behandlar lipaskatalyserad syntes av naturprodukts- baserade tensider. Den omfattar också studier av de framställda tensiderna; dels som antioxidanter i oljor, dels som tensider för att öka lösligheten av läkemedel. Omättade fettsyraestrar av askorbinsyra framställdes genom katalys med Candida antarctica lipas B i t-amylalkohol och i joniska vätskor. Höga utbyten av askorbyloleat erhölls i en jonisk vätska som formgivits för att öka lösligheten av fettsyran, när reaktionen kördes under vakuum. Vi fann att askorbyloleat är amorft och att det är en bättre antioxidant än askorbylpalmitat i rapsolja. Polyetylenglykol (PEG)-stearat, PEG -hydroxystearat och en rad PEG -acyloxy-stearater framställdes i en vakuumdriven och lösningsmedels- fri uppställning med lipas B från C.
    [Show full text]
  • Chemistry: Human Activity, Chemical Reactivity
    Chemistry: Human Activity, Chemical chapters. For example, the chapter on carbon com- Reactivity pounds starts with a case study of methane clathrates, Peter Mahaffy, Roy Tasker, Bob Bucat, John C. and that on chemical reactions and energy, with a Kotz, Gabriela C. Weaver, Paul M. Treichel, John E. case study of hydrogen as a fuel. The more obviously McMurry organic chapters use contexts from pharmaceuticals Nelson Education Ltd., 2010 or biological chemistry, with case studies on curing ISBN-13: 978-0-17660-625-1 and death and dying in the aromatics compounds ISBN-10: 0176606254 chapter, and a case study on the discovery of penicillin in the carbonyl compound chapter. These case studies are fascinating and a useful resource in themselves, reviewed by Tina L. Overton and I looked forward to each one. It is perhaps a little unfortunate that the first two are about drug abuse, There are many general chemistry textbooks on the and that some potential adopters may be prudish market and they all almost inevitably cover similar enough to be put off by that. But in each case the content. Academic staff choose these books for topics are discussed in their scientific context, and in their undergraduate students based on many crite- a way that helps us to appreciate (in these cases) the ria; level, detailed content, layout, design, chapter power of analytical techniques. order, habit, etc. Chemistry: Human Activity, Chemical The case studies are not the only place that Reactivity may give academics additional criteria the essential importance of chemistry is discussed. to consider. The book is authored by a well-known Real-life context is embedded within the text, often team of chemical educators who in a way that encourages stu- have a particular passion for rep- dents to think about how we know resenting chemistry visually, using what we know, and that demon- electronic resources to enhance strates the scientific method effec- conceptual understanding, and for tively.
    [Show full text]
  • Recent Patents on Vitamin C: Opportunities for Crop Improvement and Single-Step Biological Manufacture Robert D
    Recent Patents on Food, Nutrition & Agriculture, 2009, 1, 39-49 39 Recent Patents on Vitamin C: Opportunities for Crop Improvement and Single-Step Biological Manufacture Robert D. Hancock* Plant Products and Food Quality, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA. United Kingdom Received: August 1, 2008; Accepted: September 9, 2008; Revised: September 9, 2008 Abstract: Vitamin C is an essential human nutrient obtained primarily from plant foods. Despite the necessity of the vitamin for human health and the essential role that it plays in plant stress resistance, it is only in the last decade that an understanding of its biosynthesis in plants has emerged. These fundamental discoveries present for the first time the opportunity to manipulate crop plants for improved human nutrition and enhanced agronomic performance and are discussed in relation to recent patents protecting aspects of vitamin C synthesis and degradation in plants. Vitamin C has a wide range of medicinal and industrial uses resulting in an annual market exceeding US$600 million. In recent years, there has been strong competition in vitamin C markets as a result of emerging Chinese producers and one response has been increased investment in research and development for the biological manufacture of the vitamin. Knowledge of the plant biosynthetic pathway has provided novel opportunities for the synthesis of vitamin C in yeasts, although successes have been limited to date. A more promising route is the direct synthesis of vitamin C in acetic acid bacteria and significant research and development has gone into the genetic improvement of appropriate strains. Keywords: Ascorbic acid, fermentation, Reichstein process, Gluconobacter, sorbitol, sorbosone dehydrogenase.
    [Show full text]
  • Ascorbic Acid Handling/Processing
    United States Department of Agriculture Agricultural Marketing Service | National Organic Program Document Cover Sheet https://www.ams.usda.gov/rules-regulations/organic/national-list/petitioned Document Type: ☐ National List Petition or Petition Update A petition is a request to amend the USDA National Organic Program’s National List of Allowed and Prohibited Substances (National List). Any person may submit a petition to have a substance evaluated by the National Organic Standards Board (7 CFR 205.607(a)). Guidelines for submitting a petition are available in the NOP Handbook as NOP 3011, National List Petition Guidelines. Petitions are posted for the public on the NOP website for Petitioned Substances. ☒ Technical Report A technical report is developed in response to a petition to amend the National List. Reports are also developed to assist in the review of substances that are already on the National List. Technical reports are completed by third-party contractors and are available to the public on the NOP website for Petitioned Substances. Contractor names and dates completed are available in the report. Ascorbic Acid Handling/Processing 1 Identification of Petitioned Substance 18 2 Chemical Names: 19 Trade Names: 3 Ascorbic Acid Magnorbin 4 L-Ascorbic Acid Ascorbicap 5 (2R)-2-[(1S)-1,2-dihydroxyethyl]-3,4-dihydroxy- Hybrin 6 2H-furan-5-one Cescorbat 7 L-Threoascorbic Acid 8 CAS Numbers: 9 Other Names: 50-81-7 10 Vitamin C 11 Cevitamic Acid Other Codes: 12 Xyloascorbic Acid, L EC No. 200-066-2 13 Vitacimin ICSC No. 0379 14 Vitacin FEMA No. 2109 15 Ascoltin RTECS No.
    [Show full text]
  • The Roots—A Short History of Industrial Microbiology and Biotechnology
    Appl Microbiol Biotechnol (2013) 97:3747–3762 DOI 10.1007/s00253-013-4768-2 MINI-REVIEW The roots—a short history of industrial microbiology and biotechnology Klaus Buchholz & John Collins Received: 20 December 2012 /Revised: 8 February 2013 /Accepted: 9 February 2013 /Published online: 17 March 2013 # Springer-Verlag Berlin Heidelberg 2013 Abstract Early biotechnology (BT) had its roots in fasci- mainly secondary metabolites, e.g. steroids obtained by nating discoveries, such as yeast as living matter being biotransformation. By the mid-twentieth century, biotech- responsible for the fermentation of beer and wine. Serious nology was becoming an accepted specialty with courses controversies arose between vitalists and chemists, resulting being established in the life sciences departments of several in the reversal of theories and paradigms, but prompting universities. Starting in the 1970s and 1980s, BT gained the continuing research and progress. Pasteur’s work led to the attention of governmental agencies in Germany, the UK, establishment of the science of microbiology by developing Japan, the USA, and others as a field of innovative potential pure monoculture in sterile medium, and together with the and economic growth, leading to expansion of the field. work of Robert Koch to the recognition that a single path- Basic research in Biochemistry and Molecular Biology dra- ogenic organism is the causative agent for a particular matically widened the field of life sciences and at the same disease. Pasteur also achieved innovations for industrial time unified them considerably by the study of genes and processes of high economic relevance, including beer, wine their relatedness throughout the evolutionary process.
    [Show full text]
  • S42452-020-2604-8.Pdf
    Research Article Process design and economic studies of two‑step fermentation for production of ascorbic acid Shi Min Lim1 · Michelle Siao Li Lau1 · Edward Ing Jiun Tiong1 · Mun Min Goon1 · Roger Jhee Cheng Lau1 · Wan Sieng Yeo1 · Sie Yon Lau1 · Nabisab Mujawar Mubarak1 Received: 7 November 2019 / Accepted: 26 March 2020 / Published online: 5 April 2020 © Springer Nature Switzerland AG 2020 Abstract The current study presents the conceptual design of a chemical plant for an annual production of 500 tonne ascorbic acid or Vitamin C with a high purity of 95% via fermentation of D-sorbitol. In this study, two-step fermentation with a single culture process is operated with a proper ISO 14000 Environmental Management procedure. A process fow diagram of the processing plant and the plant-wide simulation fowsheet that was generated by SuperPro Designer Simulation software, as well as the material and energy balances are also depicted. Meanwhile, the process is optimized through the recycling of sorbose and heat integration. By recycling sorbose, the production of ascorbic acid has increased by 24% while the total energy consumption had reduced by 20% after heat integration. Furthermore, economic and sen- sitivity analysis was performed to calculate the proftability of the plant and predict the efect of market conditions on the investments. After the economic analysis, total capital investment and total production cost for the best scenario were found to be roughly USD 52 million and USD 43 million, respectively with a return on investment of 78.73% and a payback period of 1.17 years since the selling price of Vitamin C is high.
    [Show full text]
  • Survase 1658.Vp
    S.A. SURVASE et al.: Production of Vitamins, Food Technol. Biotechnol. 44 (3) 381–396 (2006) 381 ISSN 1330-9862 review (FTB-1658) Biotechnological Production of Vitamins Shrikant A. Survase, Ishwar B. Bajaj and Rekha S. Singhal* Food and Fermentation Technology Department, Institute of Chemical Technology, University of Mumbai, Matunga, Mumbai 400019, India Received: December 20, 2005 Accepted: March 20, 2006 Summary Vitamins are defined as essential micronutrients that are required in trace quantity and cannot be synthesized by mammals. Apart from their in vivo nutritional and physio- logical roles as growth factors for men, animals, plants and microorganisms, vitamins are now being increasingly introduced as food/feed additives, as medical-therapeutic agents, as health aids, and also as technical aids. Production of vitamins by chemical synthesis, or extraction from their known sources has serious disadvantages. This led to an increased in- terest in substituting these processes with biotechnological processes. For several of these compounds microbiological and algal processes exist, or are rapidly emerging. Different methods like media optimization, mutation and screening, genetic engineering and bioca- talyst conversion have been used for improvement of the production of vitamins. The sur- vey describes the current state of vitamin production by biotechnological processes and their significance, as compared to the existing chemical processes. Key words: vitamins, fermentation, biotechnological production Introduction these processes have growing consumer consciousness with regard to food additive safety. This has led to in- Vitamins, defined as essential micronutrients re- creased interest in substituting these processes with bio- quired in trace quantities that cannot be synthesized by technological processes.
    [Show full text]
  • The Chemistry of L-Ascorbic Acid Derivatives in the Asymmetric Synthesis of C2- and C3- Substituted Aldono-Γ-Lactones
    The Chemistry of L-Ascorbic Acid Derivatives in the Asymmetric Synthesis of C2- and C3- Substituted Aldono-γ-lactones A Dissertation by Ayodele O. Olabisi M. S., Wichita State University, 2004 B. S., Wichita State University, 1999 Submitted to the College of Liberal Arts and Sciences and the Faculty of the Graduate School of Wichita State University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy August 2005 The Chemistry of L-Ascorbic Acid Derivatives in the Asymmetric Synthesis of C2- and C3- Substituted Aldono-γ-lactones I have examined the final copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Chemistry. ______________________________________ Professor Kandatege Wimalasena, Committee Chair We have read this dissertation and recommend its acceptance: __________________________________________ Professor William C. Groutas, Committee Member __________________________________________ Professor Ram P. Singhal, Committee Member __________________________________________ Professor Francis D’Souza, Committee Member __________________________________________ Professor George R. Bousfield, Committee Member Accepted for the College of Liberal Arts and Sciences __________________________________________ Dr. William Bischoff, Dean Accepted for the Graduate School __________________________________________ Dr. Susan K. Kovar, Dean ii DEDICATION To My Parents iii ACKNOWLEDMENTS I wish to express my deepest and sincerest appreciation to my advisor, Dr Kandatege Wimalasena for his positive guidance, enlightened mentoring and encouragement. His passion for the subject matter has greatly improved my knowledge and interest. My sincere appreciation extends to Dr. Shyamali Wimalasena and Dr. Mathew Mahindaratne, who helped me with my initial research training and their assistance in the preparation of my manuscripts.
    [Show full text]
  • Manipulation of B. Megaterium Growth for Efficient 2-KLG Production by K
    Process Biochemistry 45 (2010) 602–606 Contents lists available at ScienceDirect Process Biochemistry journal homepage: www.elsevier.com/locate/procbio Short communication Manipulation of B. megaterium growth for efficient 2-KLG production by K. vulgare Jing Zhang a,b, Jie Liu c, Zhongping Shi b, Liming Liu a,c, Jian Chen a,b,* a State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China b The Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China c Jiangsu Jiangshan Pharmaceutical Co., Ltd., Jingjiang 214500, China ARTICLE INFO ABSTRACT Article history: In the two-step Vitamin C fermentative production, its precursor 2-keto-L-gulonic acid (2-KLG) was Received 5 June 2009 synthesized by Ketogulonicigenium vulgare through co-culture with Bacillus megaterium. The rates of K. Received in revised form 20 November 2009 vulgare cell growth and 2-KLG production were closely related with B. megaterium concentration in the Accepted 28 November 2009 co-culture system. To enhance the 2-KLG production efficiency, a strategy of manipulating B. megaterium growth in the co-culture system and properly releasing its intracellular components was introduced. Keywords: Lysozyme was used specifically to damage B. megaterium cell wall structure and subsequently inhibit its Bacillus megaterium cell growth. When 10,000 U mLÀ1 lysozyme was fed to the co-culture system at 12 h, the growth rate of Ketogulonicigenium vulgare K. vulgare, sorbose consumption rate, and 2-KLG productivity could increase 27.4%, 37.1%, and 28.2%, 2-Keto-L-gulonic acid Lysozyme respectively. Productivity ß 2009 Elsevier Ltd.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,320,061 B1 Collins Et Al
    USOO6320061B1 (12) United States Patent (10) Patent No.: US 6,320,061 B1 Collins et al. (45) Date of Patent: Nov. 20, 2001 (54) SOLVENT EXCHANGE PROCESS 5,712,131 1/1998 Felman et al. ....................... 435/136 5,741,681 4/1998 Kato et al. ........................... 435/109 (75) Inventors: Nick Allen Collins, Fall Branch; 5,827,700 10/1998 Felman et al. ....................... 435/144 Steven Thomas Perri, Kingsport, both 5,852,211 12/1998 Dimpelmann et al. ............. 562/580 of TN (US) FOREIGN PATENT DOCUMENTS (73) Assignee: Eastman Chemical Company, 922,949 * 6/1947 (FR). Kiingsport, t TN (US)(US OTHER PUBLICATIONS (*) Notice: Subject to any disclaimer, the term of this Chemical Abstracts, vol. 82, 65021 Zh. Prikl. Khim, (Len patent is extended or adjusted under 35 ingrad), 47(11), p. 2530–2532 (1974), 1975.* U.S.C. 154(b) by 0 days. Anderson, et al., “Production of 2-Keto-L-Gulonate, an Intermediate in 1-AScorbate Synthesis, by a Genetically (21) Appl. No.: 09/587,752 Modified Erwinia herbicola,” Science, vol. 230, pp. (22) Filed: Jun. 5, 2000 Reichstein,144-149 (1985). et al., “Eine Ergiebige- 0 Synthesis der L-AScorb (51) Int. Cl." ............................................... C07D 307/62 ins?ure (C-Vitamin)).” Helv. Chim. Acta, vol. 17:311-328 (52) U.S. Cl. .............................................................. 549/315 (1934). (58) Field of Search ............................................... 549/315 Saito, et al., “Cloning of Genes for L-Sorbose and L-Sor bOSone Dehydrogenases from Gluconobacter Oxydans and (56) References Cited Microbial Production of 2-Keto-L-Gulonate, A Precursor of L-AScorbic Acid, in a Recombinant G.
    [Show full text]