Ascorbic Acid Handling/Processing
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dr. Soumendu Bisoi Assistant Professor Department of Chemistry, Narajole Raj College
Dr. Soumendu Bisoi Assistant Professor Department of Chemistry, Narajole Raj College Vitamin C Vitamin C, also named as L-ascorbic acid (Asc), is a water-soluble vitamin that is essential for humans, non-human primates and a few other mammals. Vitamin C (L-ascorbic acid; Asc) is a powerful antioxidant and essential human nutrient that has extensive industrial and medicinal applications resulting in global requirements estimated at 154 thousand tons in 2007. The discovery of Asc is related with the disease of scurvy. Scurvy was a common disease in the world’s navies and sailors until the beginning of the nineteenth century, with serious symptoms such as bleeding of mucous membranes, anaemia and eventually death. In 1928, Albert Szent-Gyørgyi first isolated the Asc from adrenal glands and called it hexuronic acid. Four years later, Charles Glen King isolated Asc in his laboratory and concluded that it was the same as hexuronic acid. In 1933, Norman Haworth deduced the chemical structure of Asc (Figure 1). Figure 1 Vitamin C (L-ascorbic acid). Between 1933 and 1934, not only Haworth and fellow British chemist Edmund Hirsthad synthesised Asc, but also, independently, the Polish chemist Tadeus Reichstein, succeeded in synthesising the vitamin in bulk, making it the first vitamin to be artificially produced. The latter process made possible the cheap mass-production of semi-synthetic Asc, which was quickly marketed. Haworth was awarded the 1937 Nobel Prize in Chemistry in part for this work, but the Reichstein process, a combined chemical and bacterial fermentation sequence still used today to produce vitamin C, retained Reichstein’s name. -
Synthesis and Characterization of New Metal-Carbon Catalysts for Hydrogenation of D-Glucose
SYNTHESIS AND CHARACTERIZATION OF NEW METAL-CARBON CATALYSTS FOR HYDROGENATION OF D-GLUCOSE LIU JIAJIA NATIONAL UNIVERSITY OF SINGAPORE 2010 SYNTHESIS AND CHARACTERIZATION OF NEW METAL-CARBON CATALYSTS FOR HYDROGENATION OF D-GLUCOSE LIU JIAJIA (M.Eng, Tianjin University) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF CHEMICAL AND BIOMOLECULAR ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE 2010 Acknowledgement Acknowledgement I am heartily thankful to my supervisor, Assoc. Prof. Zhao X. S., George, whose constant encouragement, invaluable guidance, patience and support throughout the whole period of my PhD candidature. I would also like to thank Assoc. Prof. Zhao for his guidance on writing scientific papers including this PhD thesis. In addition, I want to express my sincerest appreciation to the Department of Chemical and Biomolecular Engineering for offering me the chance to study at NUS with a scholarship. It’s my pleasure to work with a group of brilliant, warmhearted and lovely people. Wish all my lab mates go well with their work. Particular acknowledgement goes to Dr. Liu Tao, Mr. Chia Phai Ann, Mr. Shang Zhenhua, Dr. Yuan Zeliang, Mr. Mao Ning, Mr. Liu Zhicheng, Dr. Rajarathnam D., Madam Chow Pek Jaslyn, Mdm Fam Hwee Koong Samantha, Ms Lee Chai Keng, Ms Tay Choon Yen, Mr. Toh Keng Chee, Mr. Chun See Chong, Ms. Ng Ai Mei, Ms. Lum Mei Peng Sharon, and Ms. How Yoke Leng Doris for their kind supports. I thank my parents and my husband. It is no exaggeration to say that I could not complete the PhD work without their generous help, boundless love, encouragement and support. -
Sodium Ascorbate Powder USP MSDS Material Safety Data Sheet
Sodium Ascorbate Powder USP MSDS Material Safety Data Sheet NFPA HMIS Personal Protective Equipment Health Hazard 1 1 1 0 Fire Hazard 1 Reactivity 0 See Section 15. Section 1. Chemical Product and Company Identification Page Number: 1 Common Name/ Sodium ascorbate Catalog S1137, SO108, S1349 Trade Name Number(s). CAS# 134-03-2 Manufacturer SPECTRUM LABORATORY PRODUCTS INC. RTECS CI7671000 14422 S. SAN PEDRO STREET TSCA TSCA 8(b) inventory: Sodium GARDENA, CA 90248 ascorbate Commercial Name(s) Ascorbicin, Ascorbin, Cebitate, Natrascorb CI# Not available. Synonym Sodium L-Ascorbate; Vitamin C Sodium; IN CASE OF EMERGENCY L-Ascorbic acid sodium salt; CHEMTREC (24hr) 800-424-9300 Ascorbic acid sodium salt; Monosodium L-Ascorbate Chemical Name L-Ascorbic Acid, monsodium salt Chemical Family Not available. CALL (310) 516-8000 Chemical Formula C6H7NaO6 Supplier SPECTRUM LABORATORY PRODUCTS INC. 14422 S. SAN PEDRO STREET GARDENA, CA 90248 Section 2.Composition and Information on Ingredients Exposure Limits Name CAS # TWA (mg/m 3) STEL (mg/m 3) CEIL (mg/m 3) % by Weight 1) Sodium ascorbate 134-03-2 100 Toxicological Data Sodium ascorbate : on Ingredients ORAL (LD50): Acute: 17531 mg/kg [Mouse]. 16300 mg/kg [Rat]. Section 3. Hazards Identification Potential Acute Health Effects Slightly hazardous in case of skin contact (irritant), of eye contact (irritant), of ingestion, of inhalation. Potential Chronic Health CARCINOGENIC EFFECTS : Not available. Effects MUTAGENIC EFFECTS : Mutagenic for mammalian somatic cells. TERATOGENIC EFFECTS : Not available. DEVELOPMENTAL TOXICITY : Not available. The substance may be toxic to kidneys, bladder. Repeated or prolonged exposure to the substance can produce target organs damage. -
Ethoxylation of Fatty Acids
S B N P Enzymatic Synthesis & Functional Characterization Fredrik Viklund Department of Biotechnology Stockholm Royal Institute of Technology Surfactants based on natural products — Enzymatic synthesis and functional characterization Copyright © by Fredrik Viklund ISBN --- is is the electronic version of the thesis. Compared to the printed version, it includes some minor typographical corrections. Royal Institute of Technology Printed in Stockholm AlbaNova University Center May Department of Biotechnology SE- Stockholm, Sweden Universitetsservice AB http://www.biotech.kth.se/ http://www.us-ab.se/ To Explorers Sammanfattning Tensider är molekyler som består av en vattenlöslig och en fettlöslig del. De spelar en viktig roll i produkter som rengöringsmedel, kosmetika, läkemedel och mat såväl som i många industriella processer. Tensider används i mycket stor skala vilket gör det viktigt att minska deras påverkan på miljön. Det kan åstadkommas genom att använda naturprodukter som råvaror, genom att förbättra tillverkningsmetoderna och genom att minska användningen av begränsade resurser som energi och lösningsmedel. Den här avhandlingen behandlar lipaskatalyserad syntes av naturprodukts- baserade tensider. Den omfattar också studier av de framställda tensiderna; dels som antioxidanter i oljor, dels som tensider för att öka lösligheten av läkemedel. Omättade fettsyraestrar av askorbinsyra framställdes genom katalys med Candida antarctica lipas B i t-amylalkohol och i joniska vätskor. Höga utbyten av askorbyloleat erhölls i en jonisk vätska som formgivits för att öka lösligheten av fettsyran, när reaktionen kördes under vakuum. Vi fann att askorbyloleat är amorft och att det är en bättre antioxidant än askorbylpalmitat i rapsolja. Polyetylenglykol (PEG)-stearat, PEG -hydroxystearat och en rad PEG -acyloxy-stearater framställdes i en vakuumdriven och lösningsmedels- fri uppställning med lipas B från C. -
(12) United States Patent (10) Patent No.: US 6,610,863 B2 Arumugam Et Al
USOO6610863B2 (12) United States Patent (10) Patent No.: US 6,610,863 B2 Arumugam et al. (45) Date of Patent: Aug. 26, 2003 (54) CONTINUOUS PROCESS FOR PRODUCING DE 199 04 821 C1, 7/2000 L-ASCORBIC ACID EP O554090 A2 4/1983 EP 1 048 663 A1 11/2000 (75) Inventors: Bhaskar Krishna Arumugam, SE 1. is : 3.3. Kingsport, TN (US); Nick Allen GB 2O34 315 * 6/1980 Collins, Fall Branch, TN (US); JP 73015931 5/1973 Transito Lynne Macias, Petal, MS WO WO 87/0O839 2/1987 (US); Steven Thomas Perri, Kingsport, WO WO 97/13761 4/1997 TN (US); Jeffrey Earl Grant Powell, WO WO 99/07691 2/1999 Blountville, TN (US); Chester Wayne WO WOOO46216 8/2000 Sink, Kingsport, TN (US); Michael Roy Cushman, Punta Gorda, FL (US) OTHER PUBLICATIONS Anderson, S. et al., Production of 2-Keto-L-Gulonate, an (73) Assignee: Eastman Chemical Company, Intermediate in L-AScorbate Synthesis, by a Genetically Kingsport, TN (US) Modified Erwinia herbicola, Science, 230, pp. 144-149, 1985. (*) Notice: Subject to any disclaimer, the term of this Regna, P.P. et al., Kinetics of Transformation of 2-Keto patent is extended or adjusted under 35 polyhydroxy Acids, J. Am. Chem. Soc., 66, pp. 246-250, U.S.C. 154(b) by 0 days. 1944. Reichstein, T. et al., Eine ergiebige Synthese der 1-AScorb (21) Appl. No.: 10/037,126 ins?ure (C-Vitamine)) Helv. Chim. Acta, 17, pp. 311-328, 1934 * See Information Disclosure Statement for Descrip (22) Filed: Dec. 21, 2001 tion. (65) Prior Publication Data Saito, Y., Direct Fermentation of 2-Keto-L-Gulonic Acid in Recombinant Gluconobacter Oxydans, Biotechnol. -
S1349 5 KG Sodium Ascorbate
Scientific Documentation S1349, Sodium Ascorbate, Powder, USP Not appropriate for regulatory submission. Please visit www.spectrumchemical.com or contact Tech Services for the most up‐to‐date information contained in this information package. Spectrum Chemical Mfg Corp 769 Jersey Avenue New Brunswick, NJ 08901 Phone 732.214.1300 Ver4.02 23.May.2016 Dear Customer, Thank you for your interest in Spectrum’s quality products and services. Spectrum has been proudly serving our scientific community for over 45 years. It is our mission to manufacture and distribute fine chemicals and laboratory products with Quality and delivery you can count on every time. To accomplish our mission, Spectrum utilizes our sourcing leverage and supplier qualification expertise in offering one of the industry’s most comprehensive line of fine chemical products under one brand, in packaging configurations designed to meet your research and production requirements. Our product grades include: USP, NF, BP, EP, JP, FCC, ACS, KSA, Reagent grade, as well as DEA controlled substances. We operate facilities in the United States on the East Coast, West Coast, as well as in Shanghai, China in order to provide the best logistical support for our customers. At Spectrum, Quality is priority number one. Suppliers with the best qualifications are preferred and we employ full-functioning in-house analytical laboratories at each of our facilities. Our facilities and systems are USFDA registered and ISO certified. We frequently host customer audits and cherish opportunities for improvements. Quality is engrained into our culture. Quality is priority number one. In the following pages, we have designed and prepared documented scientific information to aid you in your initial qualification or your continual use of our products. -
EU Regulation on the Use of Antioxidants in Meat Preparation
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 March 2019 Review EU regulation on the use of antioxidants in meat preparation and in meat products Beniamino T. Cenci-Goga1* ([email protected]), Luca Grispoldi ([email protected]), Musafiri Karama1 ([email protected]) and Paola Sechi ([email protected]) School of Veterinary Medicine, University of Perugia, Italy 1 Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria Correspondence and present address: [email protected]; Tel.: (+39 075 595 7929), School of Veterinary Medicine, Via San Costanzo, 4 – 96126 Perugia, Italy Abstract: Antioxidants for foodstuffs during processing or before packing protects colour, aroma and nutrient content. As regards food safety regulations, long-term efforts have been made in terms of food standards, food control systems, food legislation and regulatory approaches. These have, however, generated several questions on how to apply the law to the diverse food businesses. To answer these questions, a thorough examination of the EU legislator’s choices for food preservation and definitions are provided and discussed with factors affecting microbial growth. Keywords: ascorbic acid; meat preparation; meat products, meat spoilage 1. Introduction Antioxidants are food additives and their use in meat is currently regulated by EC Regulation 1333/2008 [1], amended and supplemented by EU Regulation 1129/2011 [2] and EU Regulation 601/2014 [3]. Antioxidants are described (Annex 1 EC Regulation 1333/2008 [1]) as substances, which prolong food shelf life and protect them from deteriorating as a result of oxidation, such as rancid fat and colour changes. The antioxidants legally permitted in meat, without using the maximum dosage nevertheless, are: i) ascorbic acid and its salts, ii) citric acid and its salts. -
Chemistry: Human Activity, Chemical Reactivity
Chemistry: Human Activity, Chemical chapters. For example, the chapter on carbon com- Reactivity pounds starts with a case study of methane clathrates, Peter Mahaffy, Roy Tasker, Bob Bucat, John C. and that on chemical reactions and energy, with a Kotz, Gabriela C. Weaver, Paul M. Treichel, John E. case study of hydrogen as a fuel. The more obviously McMurry organic chapters use contexts from pharmaceuticals Nelson Education Ltd., 2010 or biological chemistry, with case studies on curing ISBN-13: 978-0-17660-625-1 and death and dying in the aromatics compounds ISBN-10: 0176606254 chapter, and a case study on the discovery of penicillin in the carbonyl compound chapter. These case studies are fascinating and a useful resource in themselves, reviewed by Tina L. Overton and I looked forward to each one. It is perhaps a little unfortunate that the first two are about drug abuse, There are many general chemistry textbooks on the and that some potential adopters may be prudish market and they all almost inevitably cover similar enough to be put off by that. But in each case the content. Academic staff choose these books for topics are discussed in their scientific context, and in their undergraduate students based on many crite- a way that helps us to appreciate (in these cases) the ria; level, detailed content, layout, design, chapter power of analytical techniques. order, habit, etc. Chemistry: Human Activity, Chemical The case studies are not the only place that Reactivity may give academics additional criteria the essential importance of chemistry is discussed. to consider. The book is authored by a well-known Real-life context is embedded within the text, often team of chemical educators who in a way that encourages stu- have a particular passion for rep- dents to think about how we know resenting chemistry visually, using what we know, and that demon- electronic resources to enhance strates the scientific method effec- conceptual understanding, and for tively. -
Ga-Labeling: Laying the Foundation for an Anti-Radiolytic Formulation for NOTA-Sdab PET Tracers
pharmaceuticals Article 68Ga-Labeling: Laying the Foundation for an Anti-Radiolytic Formulation for NOTA-sdAb PET Tracers Henri Baudhuin 1,*, Julie Cousaert 2, Philippe Vanwolleghem 1, Geert Raes 3,4 , Vicky Caveliers 1,2, Marleen Keyaerts 1,2 , Tony Lahoutte 1,2 and Catarina Xavier 1 1 Department of Medical Imaging (MIMA), Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium; [email protected] (P.V.); [email protected] (V.C.); [email protected] (M.K.); [email protected] (T.L.); [email protected] (C.X.) 2 Nuclear Medicine Department (NUCG), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, B-1090 Brussels, Belgium; [email protected] 3 Unit of Cellular and Molecular Immunology (CMIM), Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium; [email protected] 4 Myeloid Cell Immunology Laboratory (MCI), VIB Center for Inflammation Research, Pleinlaan 2, B-1050 Brussels, Belgium * Correspondence: [email protected]; Tel.: +32-2-477-4991 Abstract: During the preparation of [68Ga]Ga-NOTA-sdAb at high activity, degradation of the tracers was observed, impacting the radiochemical purity (RCP). Increasing starting activities in radiolabelings is often paired with increased degradation of the tracer due to the formation of free radical species, a process known as radiolysis. Radical scavengers and antioxidants can act as radioprotectant due to their fast interaction with formed radicals and can therefore reduce the degree of radiolysis. This study aims to optimize a formulation to prevent radiolysis during the labeling of 68 Citation: Baudhuin, H.; Cousaert, J.; NOTA derivatized single domain antibody (sdAbs) with Ga. -
Recent Patents on Vitamin C: Opportunities for Crop Improvement and Single-Step Biological Manufacture Robert D
Recent Patents on Food, Nutrition & Agriculture, 2009, 1, 39-49 39 Recent Patents on Vitamin C: Opportunities for Crop Improvement and Single-Step Biological Manufacture Robert D. Hancock* Plant Products and Food Quality, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA. United Kingdom Received: August 1, 2008; Accepted: September 9, 2008; Revised: September 9, 2008 Abstract: Vitamin C is an essential human nutrient obtained primarily from plant foods. Despite the necessity of the vitamin for human health and the essential role that it plays in plant stress resistance, it is only in the last decade that an understanding of its biosynthesis in plants has emerged. These fundamental discoveries present for the first time the opportunity to manipulate crop plants for improved human nutrition and enhanced agronomic performance and are discussed in relation to recent patents protecting aspects of vitamin C synthesis and degradation in plants. Vitamin C has a wide range of medicinal and industrial uses resulting in an annual market exceeding US$600 million. In recent years, there has been strong competition in vitamin C markets as a result of emerging Chinese producers and one response has been increased investment in research and development for the biological manufacture of the vitamin. Knowledge of the plant biosynthetic pathway has provided novel opportunities for the synthesis of vitamin C in yeasts, although successes have been limited to date. A more promising route is the direct synthesis of vitamin C in acetic acid bacteria and significant research and development has gone into the genetic improvement of appropriate strains. Keywords: Ascorbic acid, fermentation, Reichstein process, Gluconobacter, sorbitol, sorbosone dehydrogenase. -
Interagency Committee on Chemical Management
DECEMBER 14, 2018 INTERAGENCY COMMITTEE ON CHEMICAL MANAGEMENT EXECUTIVE ORDER NO. 13-17 REPORT TO THE GOVERNOR WALKE, PETER Table of Contents Executive Summary ...................................................................................................................... 2 I. Introduction .......................................................................................................................... 3 II. Recommended Statutory Amendments or Regulatory Changes to Existing Recordkeeping and Reporting Requirements that are Required to Facilitate Assessment of Risks to Human Health and the Environment Posed by Chemical Use in the State ............................................................................................................................ 5 III. Summary of Chemical Use in the State Based on Reported Chemical Inventories....... 8 IV. Summary of Identified Risks to Human Health and the Environment from Reported Chemical Inventories ........................................................................................................... 9 V. Summary of any change under Federal Statute or Rule affecting the Regulation of Chemicals in the State ....................................................................................................... 12 VI. Recommended Legislative or Regulatory Action to Reduce Risks to Human Health and the Environment from Regulated and Unregulated Chemicals of Emerging Concern .............................................................................................................................. -
Sodium Ascorbate Crystalline
Product Information Product Data Sheet Sodium Ascorbate Crystalline Description Sodium Ascorbate Crystalline is a practically odourless powder. It decomposes at about 220 °C without melting sharply. Product identification Product code: 04 0817 4 Chemical names: 2,3-didehydro-L-threo-hexono-1,4-lactone sodium enolate; 3-oxo-L- gulofuranolactone sodium enolate Synonyms: sodium L-ascorbate; L-ascorbic acid monosodium salt; vitamin C (sodium salt) CAS No.: 134-03-2 HO H Chiral O EINECS No.: 205-126-1 O E No.: E 301 HO Empirical formula: C6H7NaO6 Molecular mass: 198.11 g/mol – + O OH Na Specifications Appearance: powder Colour: white to yellowish Fineness (US standard sieves): • through sieve No. 80 min. 98% • through sieve No. 100 min. 95% pH of a solution 10% in water: 7.0–8.0 Identity: corresponds Specific rotation: +103.0° to +108.0° (589 nm, 20°C, c = 10 in water) (on dry material) Loss on drying: max. 0.25% Related substances: • D-sorbosonic acid (impurity C) max. 0.15% • Methyl D-sorbosonate (impurity D) max. 0.15% • Unspecified impurities (each) max. 0.10% • Total* max.0.2% *Disregard limit 0.05% PDS 04 0817 4 Version 04 Sodium Ascorbate Crystalline 2011-05-23 pds0408174_04_sodiumascorbatecryst Replaces Version 03 2009-07-02 Page 1 of 3 Product Information Product Data Sheet Sodium Ascorbate Crystalline Heavy metals: max. 10 ppm Lead: max. 2 ppm Mercury: max. 1 ppm Zinc: max. 25 ppm Copper: max. 5.0 ppm Arsenic: max. 3 ppm Oxalic acid (impurity E): max. 0.3% Sulphates: max. 150 ppm Iron: max. 2.0 ppm Nickel: max.