Ethoxylation of Fatty Acids

Total Page:16

File Type:pdf, Size:1020Kb

Ethoxylation of Fatty Acids S B N P Enzymatic Synthesis & Functional Characterization Fredrik Viklund Department of Biotechnology Stockholm Royal Institute of Technology Surfactants based on natural products — Enzymatic synthesis and functional characterization Copyright © by Fredrik Viklund ISBN --- is is the electronic version of the thesis. Compared to the printed version, it includes some minor typographical corrections. Royal Institute of Technology Printed in Stockholm AlbaNova University Center May Department of Biotechnology SE- Stockholm, Sweden Universitetsservice AB http://www.biotech.kth.se/ http://www.us-ab.se/ To Explorers Sammanfattning Tensider är molekyler som består av en vattenlöslig och en fettlöslig del. De spelar en viktig roll i produkter som rengöringsmedel, kosmetika, läkemedel och mat såväl som i många industriella processer. Tensider används i mycket stor skala vilket gör det viktigt att minska deras påverkan på miljön. Det kan åstadkommas genom att använda naturprodukter som råvaror, genom att förbättra tillverkningsmetoderna och genom att minska användningen av begränsade resurser som energi och lösningsmedel. Den här avhandlingen behandlar lipaskatalyserad syntes av naturprodukts- baserade tensider. Den omfattar också studier av de framställda tensiderna; dels som antioxidanter i oljor, dels som tensider för att öka lösligheten av läkemedel. Omättade fettsyraestrar av askorbinsyra framställdes genom katalys med Candida antarctica lipas B i t-amylalkohol och i joniska vätskor. Höga utbyten av askorbyloleat erhölls i en jonisk vätska som formgivits för att öka lösligheten av fettsyran, när reaktionen kördes under vakuum. Vi fann att askorbyloleat är amorft och att det är en bättre antioxidant än askorbylpalmitat i rapsolja. Polyetylenglykol (PEG)-stearat, PEG -hydroxystearat och en rad PEG -acyloxy-stearater framställdes i en vakuumdriven och lösningsmedels- fri uppställning med lipas B från C. antarctica som katalysator. Kritisk micellbildningskoncentration (CMC) och solubiliseringsförmåga uppmättes för PEG -acyloxy-stearaterna. Deras effekter på levande celler utvärderades i studier av hemolys och ”transepithelial electrical resistance”. Flera av PEG -acyloxy-stearaterna var utmärka solubiliserare för farmaceutisk användning och hade försumbara negativa effekter på levande celler även vid höga koncentrationer. Enzymatiska och kemisk-enzymatiska metoder erbjuder unika möjligheter att framställa tensider av hög renhet. Rena och väldefinierade tensider möjlig- gör nya tillämpningar och är viktiga för förståelsen av förhållandet mellan tensiders struktur och deras funktion. Abstract Surfactants are molecules that contain a water-soluble and a fat-soluble part. ey have important functions in products such as detergents, cosmetics, pharmaceuticals and foods as well as in many industrial processes. Surfactants are used on very large scale, which makes it important to decrease their impact on the environment. is can be done by starting with natural materials, by improving the synthetic methods and by reducing the use of limited resources such as energy and organic solvents. is thesis focuses on lipase-catalyzed synthesis of surfactants based on natural products. It also includes functional studies of the produced surfac- tants; as antioxidants in oils, or as surfactants to solubilize pharmaceuticals. Unsaturated fatty acid esters of ascorbic acid were synthesized with cataly- sis by Candida antarctica lipase B in t-amyl alcohol and in ionic liquids. High yields of ascorbyl oleate were obtained in an ionic liquid that was designed to improve the solubility of the fatty acid, when the reaction was performed under vacuum. Ascorbyl oleate was amorphous and was a better antioxidant than ascorbyl palmitate in rapeseed oil. Polyethylene glycol (PEG) stearate, PEG -hydroxystearate and a series of PEG -acyloxy-stearates were synthesized in a vacuum-driven, solvent-free system using C. antarctica lipase B as catalyst. Critical micelle concentration and solubilization capacity were determined for the PEG -acyloxy-stea- rates. eir effects on living cells were evaluated in studies of hemolysis and transepithelial electrical resistance. Several PEG -acyloxy-stearates were excellent solubilizers for pharmaceutical use and had negligible negative effects on living cells even at high concentrations. Enzymatic and chemo-enzymatic methods offer unique possibilities to synthesize surfactants of high purity. Pure and well-defined surfactants en- able new applications and are important for the understanding of surfactant structure-function relationships. Contents List of articles 8 Introduction 9 Fat-soluble antioxidants 9 Pharmaceutical solubilizers 10 Enzymatic synthesis 11 Solubility 13 Heterogeneous reaction systems 14 Mainly solid systems 14 Homogeneous reaction systems 16 Substrate modifications 17 Surfactants as a part of the solution 18 Surfactant-coated soluble enzymes 18 Other methods 19 Ionic liquids 21 Substrates of different polarities 23 Inhibition and oxidation 24 Solvents of the future 25 Water and drying 26 Water as a substrate 26 Water and enzyme activity 27 Overall water effect 28 Drying methods 29 Salt hydrates and salt solutions 29 Chemically acting desiccants 30 Molecular sieves 30 Vacuum 31 Distillation 31 Activated acyl donors and drying 32 Vinyl esters 32 Non-ideal systems 32 Surfactant purity 35 Selectivity 38 Chemoselectivity 38 Regio- and substrate selectivity 38 Stereoselectivity 42 PEG monoesters 42 PEG monoalkyl ethers 42 Borate esters 43 Ethoxylation of fatty acids 44 Environmental aspects 45 Natural products and biocatalysis 45 Natural surfactants 46 Biological surfactants 47 Natural raw materials 47 Genetically modified organisms 48 Natural and healthy 49 Other aspects 49 Functional studies 51 Ascorbyl esters 51 Antioxidative effect of unsaturated ascorbyl esters 53 Pharmaceutical solubilization 55 Surfactant effects on cells 56 PEG-esters of hydroxy fatty acids 57 PEG 12-acyloxy-stearates 59 Structure vs. function 60 Future studies 61 Acknowledgements 62 References 64 List of articles is thesis is based on the following publications that are referred to by their roman numerals. I. Viklund F., Alander J. and Hult K. () Antioxidative properties and enzymatic synthesis of ascorbyl fatty acid esters. Journal of the American Oil Chemists’ Society In press. II. Park S., Viklund F., Hult K., Kazlauskas R.J. () Ionic liquids create new opportunities for nonaqueous biocatalysis: Acylation of glucose and ascorbic acid. In Ionic Liquids in Green Chemistry, Prospects and Opportunities ACS Symposium Series In press III. Park S., Viklund F., Kazlauskas R. and Hult K. () Vacuum-driven lipase-catalyzed direct condensation of -ascorbic acid and fatty acids in ionic liquids. Manuscript IV. Viklund F. and Hult K. () Enzymatic synthesis of surfactants based on polyethylene glycol and stearic or -hydroxystearic acid. Manu- script V. Viklund F., Söderlind E., Hult K. and von Corswant C. () Properties of PEG -acyloxy-stearates and their use as pharmaceutical solubilizers. Manuscript 8 9 Introduction e work presented in this thesis and the accompanying articles has been performed within the Centre for Surfactants based on Natural Products (SNAP, ). e main goals have been design, synthesis and functional studies of new surfactants. e surfactants have been targeted towards two specific applications: fat-soluble antioxidants and pharmaceutical solubilizers. e syntheses were performed using lipase catalysis. Fat-soluble antioxidants e fats and oils we use in food are mainly isolated from plants. ey naturally oxidize and become rancid upon storage. e oils contain molecules called antioxidants that protect the oil from oxidation. e natural antioxidants in oils mainly belong to the group tocopherols, which are more commonly called vitamin E. e interest in using special or highly refined oils in food is growing. Prod- ucts often contain nutritionally important, but sensitive, polyunsaturated fatty acids. ese include ω- fatty acids such as linolenic acid, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and ω- fatty acids such as linoleic acid (see the chapter on functional studies for structures). Polyunsatu- rated fatty acids are often present only in low concentrations in their natural sources. In the concentration process, natural antioxidants may be removed from the oil. To protect the oil from oxidation, rancid taste and destruction of essential fatty acids, antioxidants must be added. Vitamin C is an inexpensive and efficient natural antioxidant. Unfortu- nately, it is only soluble in water and cannot be directly used in oils. A com- mon way to make vitamin C more soluble in oils is to react it with a fatty acid to form an ascorbyl fatty acid ester. e only commercially used ascorbyl fatty acid ester today is ascorbyl palmitate. Ascorbyl palmitate is frequently used as an antioxidant for oils but is limited by a relatively low solubility. One way to increase the solubility of the ascorbyl fatty acid ester is to use ascorbyl oleate instead of ascorbyl palmitate. Ascorbyl oleate, as well as ascorbic acid and oleic 8 9 Introduction Introduction acid used for its production, are chemically sensitive compounds. is makes ascorbyl oleate difficult to produce with traditional chemical methods. By using enzymatic catalysis we have successfully produced ascorbyl oleate. We found that enzymatic synthesis in organic solvents is feasible and studied some of its limitations (Paper I). We also studied the activity of ascorbyl ole- ate as
Recommended publications
  • Safety Assessment of Sorbitan Esters As Used in Cosmetics
    Safety Assessment of Sorbitan Esters as Used in Cosmetics Status: Re-Review for Panel Review Release Date: August 18, 2014 Panel Meeting Date: September 8-9, 2014 The 2014 Cosmetic Ingredient Review Expert Panel members are: Chairman, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; Ronald A. Hill, Ph.D.; Curtis D. Klaassen, Ph.D.; Daniel C. Liebler, Ph.D.; James G. Marks, Jr., M.D., Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; and Paul W. Snyder, D.V.M., Ph.D. The CIR Director is Lillian J. Gill, D.P.A. This safety assessment was prepared by Monice M. Fiume, Assistant Director/Senior Scientific Analyst and Bart Heldreth, Ph.D., Chemist. © Cosmetic Ingredient Review 1620 L Street, NW, Suite 1200 ♢ Washington, DC 20036-4702 ♢ ph 202.331.0651 ♢ fax 202.331.0088 ♢ [email protected] Commitment & Credibility since 1976 Memorandum To: CIR Expert Panel Members and Liaisons From: Monice M. Fiume MMF Assistant Director/Senior Scientific Analyst Date: August 18, 2014 Subject: Safety Assessment of Sorbitan Esters as Used in Cosmetics Enclosed is the Re-Review of the Safety Assessment on Sorbitan Esters as Used in Cosmetics. (It is identified as sorbes092014rep_final for posting in the pdf document.) In 1985, the Panel determined that a group of seven sorbitan esters were safe as used in cosmetic ingredients. In 2002, the Panel reviewed the safety of an additional 10 sorbitan ester, and issued an addendum to that report, concluding that the sorbitan fatty acid esters were safe as used in cosmet- ic ingredients.
    [Show full text]
  • Production and Characterization of Fish Oil Methyl Ester
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by International Journal of Innovative Technology and Research (IJITR) Deepak Tanwar* et al. / (IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH Volume No. 1, Issue No. 3, April - May 2013, 209 – 217. Production and Characterization of Fish Oil Methyl Ester DEEPAK TANWAR1 AJAYTA2 DILIP SHARMA3 Rajasthan State Pollution Control Board, Department of Mechanical Engineering, Department of Mechanical Engineering, RIICO Industrial area, Phase-III, Government Polytechnic College, Malaviya National Institute of Technology, Kishangarh 305801, India Ajmer 305001, India Jaipur 302004, India [email protected] YOGESH PRAKASH MATHUR4 KAMAL KISHORE KHATRI5 SHYAM LAL SONI6 Department of Civil Engineering, Department of Mechanical Engineering, Department of Mechanical Engineering, Malaviya National Institute of Technology, Malaviya National Institute of Technology, Malaviya National Institute of Technology, Jaipur 302004, India Jaipur 302004, India Jaipur 302004, India RAGINI GUPTA7 Department of Chemistry, Malaviya National Institute of Technology, Jaipur 302004, India Abstract: Limited availability of edible oils areas and are abundantly available in the country of prevents it from being used as viable source of testing. For example, soybean oil is of primary Biodiesel. Low cost and abundantly found fish oil interest source in the United States while many produced from soap stock could be a better option European countries are concentrating on Rapeseed oil for biodiesel processing. Such type of fish oil [2] and countries with tropical climates prefer to contains a higher amount of moisture and FFA utilize Coconut oil or Palm oil [3]. Other vegetable and requires a pre-treatment prior to biodiesel oils, including Sunflower, Safflower, Mahua, Neem, production.
    [Show full text]
  • Dr. Soumendu Bisoi Assistant Professor Department of Chemistry, Narajole Raj College
    Dr. Soumendu Bisoi Assistant Professor Department of Chemistry, Narajole Raj College Vitamin C Vitamin C, also named as L-ascorbic acid (Asc), is a water-soluble vitamin that is essential for humans, non-human primates and a few other mammals. Vitamin C (L-ascorbic acid; Asc) is a powerful antioxidant and essential human nutrient that has extensive industrial and medicinal applications resulting in global requirements estimated at 154 thousand tons in 2007. The discovery of Asc is related with the disease of scurvy. Scurvy was a common disease in the world’s navies and sailors until the beginning of the nineteenth century, with serious symptoms such as bleeding of mucous membranes, anaemia and eventually death. In 1928, Albert Szent-Gyørgyi first isolated the Asc from adrenal glands and called it hexuronic acid. Four years later, Charles Glen King isolated Asc in his laboratory and concluded that it was the same as hexuronic acid. In 1933, Norman Haworth deduced the chemical structure of Asc (Figure 1). Figure 1 Vitamin C (L-ascorbic acid). Between 1933 and 1934, not only Haworth and fellow British chemist Edmund Hirsthad synthesised Asc, but also, independently, the Polish chemist Tadeus Reichstein, succeeded in synthesising the vitamin in bulk, making it the first vitamin to be artificially produced. The latter process made possible the cheap mass-production of semi-synthetic Asc, which was quickly marketed. Haworth was awarded the 1937 Nobel Prize in Chemistry in part for this work, but the Reichstein process, a combined chemical and bacterial fermentation sequence still used today to produce vitamin C, retained Reichstein’s name.
    [Show full text]
  • Synthesis and Characterization of New Metal-Carbon Catalysts for Hydrogenation of D-Glucose
    SYNTHESIS AND CHARACTERIZATION OF NEW METAL-CARBON CATALYSTS FOR HYDROGENATION OF D-GLUCOSE LIU JIAJIA NATIONAL UNIVERSITY OF SINGAPORE 2010 SYNTHESIS AND CHARACTERIZATION OF NEW METAL-CARBON CATALYSTS FOR HYDROGENATION OF D-GLUCOSE LIU JIAJIA (M.Eng, Tianjin University) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF CHEMICAL AND BIOMOLECULAR ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE 2010 Acknowledgement Acknowledgement I am heartily thankful to my supervisor, Assoc. Prof. Zhao X. S., George, whose constant encouragement, invaluable guidance, patience and support throughout the whole period of my PhD candidature. I would also like to thank Assoc. Prof. Zhao for his guidance on writing scientific papers including this PhD thesis. In addition, I want to express my sincerest appreciation to the Department of Chemical and Biomolecular Engineering for offering me the chance to study at NUS with a scholarship. It’s my pleasure to work with a group of brilliant, warmhearted and lovely people. Wish all my lab mates go well with their work. Particular acknowledgement goes to Dr. Liu Tao, Mr. Chia Phai Ann, Mr. Shang Zhenhua, Dr. Yuan Zeliang, Mr. Mao Ning, Mr. Liu Zhicheng, Dr. Rajarathnam D., Madam Chow Pek Jaslyn, Mdm Fam Hwee Koong Samantha, Ms Lee Chai Keng, Ms Tay Choon Yen, Mr. Toh Keng Chee, Mr. Chun See Chong, Ms. Ng Ai Mei, Ms. Lum Mei Peng Sharon, and Ms. How Yoke Leng Doris for their kind supports. I thank my parents and my husband. It is no exaggeration to say that I could not complete the PhD work without their generous help, boundless love, encouragement and support.
    [Show full text]
  • Characterization of the Fatty Acid Composition of Nannochloropsis
    Characterization of the Fatty Acid Composition of Nannochloropsis salina as a Determinant of Biodiesel Properties Nagwa Gamal-ElDin Mohammady Department of Botany and Microbiology, Faculty of Science, Moharam Bey 21511, Alexandria University, Alexandria, Egypt. Fax: +203 3911 794. E-mail: [email protected] Z. Naturforsch. 66 c, 328 – 332 (2011); received November 21, 2010/March 27, 2011 Nannochloropsis salina was cultured batch-wise to evaluate the potential of the alga to produce biodiesel. The cells were harvested at the end of the exponential growth phase when the concentration was 18 · 106 cells/mL culture. The growth estimated as dry weight from this cell number was (3.8 0.7) mg/L. The lipid and triglyceride contents were 40% and 12% on a dry weight basis, respectively. The amount of the ratio triglycerides/total lipids was approximately 0.3. The composition of triglyceride fatty acid methyl esters (biodiesel) was analysed by gas- liquid chromatography and identifi ed as: C14:0, C16:0, C16:1, C18:0, C18:1, C18:2, C18:3, C20:1, and C20:5. The ratio of unsaturated to saturated fatty acid contents was approximate- ly 4.4. Additionally, the characterization of each individual fatty acid ester was discussed with regard to the fuel properties of biodiesel produced by the alga. Key words: Biodiesel, Lipids, Nannochloropsis salina Introduction Depending on species, many microalgae have been described as lipid-rich strains for their hy- The use of biofuels can play an important role drocarbons and other complex oils. However, not in avoiding excessive dependence on fossil fu- all algal oils are satisfactory for the production els and reducing pollution by greenhouse gases of biodiesel (Guschina and Harwood, 2006), due emission (Gouveia and Oliveira, 2009).
    [Show full text]
  • Application of Simultaneous Oil Extraction and Transesterification in Biodiesel Fuel Synthesis: a Review
    energies Review Application of Simultaneous Oil Extraction and Transesterification in Biodiesel Fuel Synthesis: A Review Violeta Makareviciene * , Egle Sendzikiene and Milda Gumbyte Faculty of Forest Sciences and Ecology, Agriculture Academy, Vytautas Magnus University, LT-44248 Kaunas, Lithuania; [email protected] (E.S.); [email protected] (M.G.) * Correspondence: [email protected] Received: 7 April 2020; Accepted: 28 April 2020; Published: 2 May 2020 Abstract: Increasing concentrations of greenhouse gases in the atmosphere are leading to increased production and use of biofuels. The industrial development of biodiesel production and the use of biodiesel in the EU transport sector have been ongoing for almost two decades. Compared to mineral diesel production, the process of producing biodiesel is quite complex and expensive, and the search for new raw materials and advanced technologies is needed to maintain production value and expand the industrial production of biodiesel. The purpose of this article is to review the application possibilities of one of the new technologies—simultaneous extraction of oil from oily feedstock and transesterification (in situ)—and to evaluate the effectiveness of the abovementioned process under various conditions. Keywords: biodiesel; in situ; simultaneous oil extraction and transesterification 1. Introduction With the increase in atmospheric pollution in the form of greenhouse gases, the development of the use of biofuels in the transport sector is receiving increasing attention. Biodiesel is a well-known type of biofuel that has been used for a relatively long time. It is produced from various oily raw materials. Recently, the possibilities of utilizing non-food raw materials and residual waste in the synthesis of biodiesel have been intensively studied.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,610,863 B2 Arumugam Et Al
    USOO6610863B2 (12) United States Patent (10) Patent No.: US 6,610,863 B2 Arumugam et al. (45) Date of Patent: Aug. 26, 2003 (54) CONTINUOUS PROCESS FOR PRODUCING DE 199 04 821 C1, 7/2000 L-ASCORBIC ACID EP O554090 A2 4/1983 EP 1 048 663 A1 11/2000 (75) Inventors: Bhaskar Krishna Arumugam, SE 1. is : 3.3. Kingsport, TN (US); Nick Allen GB 2O34 315 * 6/1980 Collins, Fall Branch, TN (US); JP 73015931 5/1973 Transito Lynne Macias, Petal, MS WO WO 87/0O839 2/1987 (US); Steven Thomas Perri, Kingsport, WO WO 97/13761 4/1997 TN (US); Jeffrey Earl Grant Powell, WO WO 99/07691 2/1999 Blountville, TN (US); Chester Wayne WO WOOO46216 8/2000 Sink, Kingsport, TN (US); Michael Roy Cushman, Punta Gorda, FL (US) OTHER PUBLICATIONS Anderson, S. et al., Production of 2-Keto-L-Gulonate, an (73) Assignee: Eastman Chemical Company, Intermediate in L-AScorbate Synthesis, by a Genetically Kingsport, TN (US) Modified Erwinia herbicola, Science, 230, pp. 144-149, 1985. (*) Notice: Subject to any disclaimer, the term of this Regna, P.P. et al., Kinetics of Transformation of 2-Keto patent is extended or adjusted under 35 polyhydroxy Acids, J. Am. Chem. Soc., 66, pp. 246-250, U.S.C. 154(b) by 0 days. 1944. Reichstein, T. et al., Eine ergiebige Synthese der 1-AScorb (21) Appl. No.: 10/037,126 ins?ure (C-Vitamine)) Helv. Chim. Acta, 17, pp. 311-328, 1934 * See Information Disclosure Statement for Descrip (22) Filed: Dec. 21, 2001 tion. (65) Prior Publication Data Saito, Y., Direct Fermentation of 2-Keto-L-Gulonic Acid in Recombinant Gluconobacter Oxydans, Biotechnol.
    [Show full text]
  • Reactive Distillation for Cosmetic Ingredients : an Alternative for the Production of Isopropyl Myristate?
    Reactive distillation for cosmetic ingredients : an alternative for the production of isopropyl myristate? Citation for published version (APA): Jong, de, M. C. (2010). Reactive distillation for cosmetic ingredients : an alternative for the production of isopropyl myristate?. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR674097 DOI: 10.6100/IR674097 Document status and date: Published: 01/01/2010 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.
    [Show full text]
  • Chemistry: Human Activity, Chemical Reactivity
    Chemistry: Human Activity, Chemical chapters. For example, the chapter on carbon com- Reactivity pounds starts with a case study of methane clathrates, Peter Mahaffy, Roy Tasker, Bob Bucat, John C. and that on chemical reactions and energy, with a Kotz, Gabriela C. Weaver, Paul M. Treichel, John E. case study of hydrogen as a fuel. The more obviously McMurry organic chapters use contexts from pharmaceuticals Nelson Education Ltd., 2010 or biological chemistry, with case studies on curing ISBN-13: 978-0-17660-625-1 and death and dying in the aromatics compounds ISBN-10: 0176606254 chapter, and a case study on the discovery of penicillin in the carbonyl compound chapter. These case studies are fascinating and a useful resource in themselves, reviewed by Tina L. Overton and I looked forward to each one. It is perhaps a little unfortunate that the first two are about drug abuse, There are many general chemistry textbooks on the and that some potential adopters may be prudish market and they all almost inevitably cover similar enough to be put off by that. But in each case the content. Academic staff choose these books for topics are discussed in their scientific context, and in their undergraduate students based on many crite- a way that helps us to appreciate (in these cases) the ria; level, detailed content, layout, design, chapter power of analytical techniques. order, habit, etc. Chemistry: Human Activity, Chemical The case studies are not the only place that Reactivity may give academics additional criteria the essential importance of chemistry is discussed. to consider. The book is authored by a well-known Real-life context is embedded within the text, often team of chemical educators who in a way that encourages stu- have a particular passion for rep- dents to think about how we know resenting chemistry visually, using what we know, and that demon- electronic resources to enhance strates the scientific method effec- conceptual understanding, and for tively.
    [Show full text]
  • Characterization of Lactose Fatty Acid Esters for Their Microbial Growth Inhibitory Activity and Emulsification Properties
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-2018 Characterization of Lactose Fatty Acid Esters for their Microbial Growth Inhibitory Activity and Emulsification Properties Seung-Min Lee Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Food Science Commons, and the Nutrition Commons Recommended Citation Lee, Seung-Min, "Characterization of Lactose Fatty Acid Esters for their Microbial Growth Inhibitory Activity and Emulsification Properties" (2018). All Graduate Theses and Dissertations. 7030. https://digitalcommons.usu.edu/etd/7030 This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. i CHARACTERIZATION OF LACTOSE FATTY ACID ESTERS FOR THEIR MICROBIAL GROWTH INHIBITORY ACTIVITY AND EMULSIFICATION PROPERTIES by Seung-Min Lee A dissertation submitted in partial fulfillment of the requirement for the degree of DOCTOR OF PHILOSOPHY in Nutrition and Food Sciences Approved: ____________________________ ____________________________ Marie K. Walsh, Ph.D. Brian A. Nummer, Ph.D. Major Professor Committee Member ___________________________ ____________________________ Silvana Martini, Ph.D. Jon Y. Takemoto, Ph.D. Committee Member Committee Member ____________________________ ____________________________ Cheng-Wei Tom Chang, Ph.D. Mark R. McLellan, Ph.D. Committee Member Vice President for Research and Dean of the School of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2018 ii Copyright © Seung-Min Lee 2018 All Rights Reserved iii ABSTRACT Characterization of Lactose Fatty Acid Esters for their Microbial Growth Inhibitory Activity and Emulsification Properties by Seung-Min Lee, Doctor of Philosophy Utah State University, 2018 Major Professor: Dr.
    [Show full text]
  • United States Patent (19) (11) Patent Number: 4,960,602 Talkington Et Al
    United States Patent (19) (11) Patent Number: 4,960,602 Talkington et al. 45) Date of Patent: Oct. 2, 1990 (54 FOOD OR BEVERAGE COMPOSITIONS 4,880,657 11/1989 Guffey et al. WITH ALTERED FLAVORED DISPLAY FOREIGN PATENT DOCUMENTS 75 Inventors: Sherry R. Talkington, Florence, Ky.; 0287157 10/1988 European Pat. Off. Susan S. Abe, Mason; Marko D. 0290065. 1 1/1988 European Pat. Off. Mijac, Cincinnati, both of Ohio 0311154 4/1989 European Pat. Off. 73 Assignee: The Procter & Gamble Company, OTHER PUBLICATIONS Cincinnati, Ohio Mattson et al., "The Effect of a Non-Absorbable Fat . (21) Appl. No.: 374,430 ... ', J. Nutrition 109, #10, pp. 1688-1693, (Oct. 1979). 22 Filed: Jun. 30, 1989 Mattson et al., "The Effect of a Nonabsorbable Lipid. ... ', J. Nutrition 106, #6, pp. 747-752, (Jun. 1976). Related U.S. Application Data Fallat et al., "Short Term Study of Sucrose Polyester. ... ', Am. J. Clin. Nutr. 29, pp. 1204-1215, (Nov. 1976). (63) Continuation of Ser. No. 175,406, Apr. 13, 1988, aban doned, which is a continuation-in-part of Ser. No. Primary Examiner-Donald E. Czaja 47,367, May 6, 1987, abandoned. Assistant Examiner-Evan Federman (51 Int. Cl. ............................................... A23D 9/00 Attorney, Agent, or Firm-Gary M. Sutter; Ronald L. (52) U.S. C. .................................... 426/534; 426/590; Hemingway; Richard C. Witte 426/601; 426/607; 426/611; 426/804 57 ABSTRACT (58 Field of Search ............... 426/601, 607, 613, 534, 426/549,580, 589, 590, 602, 603, 613, 615,804, The present invention relates to food or beverage com 611 positions having an altered flavor display.
    [Show full text]
  • Castor Oil Fatty Acid and Glycerol –– Oleic Acid Esters, As Emulsifier and Antibacterial Agent, Using Candida Rugosa Lipase
    Synthesis of Glycerol –– Castor Oil Fatty Acid and Glycerol –– Oleic Acid Esters, as Emulsifier and Antibacterial Agent, Using Candida rugosa Lipase Elmira Vania Denada1, Sri Handayani1 Sumi Hudiyono1 and Siswati Setiasih1 1Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, West Java, Indonesia Keywords: Castor Oil, Glycerol, castor oil fatty acid, ester, oleic, emulsifier, antibacterial, Candida rugosa Abstract: The research’s objective is to synthesize glycerol – castor oil fatty acid and glycerol oleic acid esters using Candida rugosa lipase in n-hexane. Molar fatty acid to glycerol ratio that used in esterification varied from 1:1, 1:2, 1:3, and 1:4. The ester products then being analysed by using FTIR. The spectra for glycerol-castor oil fatty acid ester and glycerol-oleic acid absorption peak at wave number 1735.37 cm-1 and 1748.25 cm-1 respectively, which indicate the existence of C=O ester groups. Conversion percentage in esterification was conducted using titrimetric method. The highest conversion percentage was reached at the molar ratio 1:4 with the value of 92.4% respectively for glycerol-castor oil fatty acid and 86.2% for glycerol oleic ester. Emulsifier test was performed to observe the stability and the type of emulsion, using ester product as emulsifier. The properties of the emulsifier in both esters are obtained by type of water in oil. Antimicrobial assay were also conducted for both esterification product using disc diffusion method against Propionibacterium acne and Staphylococcus epidermidis. The antimicrobial assay showed that glycerol- castor oil fatty acid esters has antimicrobial activity, but glycerol-oleic esters did not show the antimicrobial activity.
    [Show full text]