Biocatalytic Oxidation of Alcohols
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Dehydrogenase Gene of Entamoeba Histolytica
Proc. Nad. Acad. Sci. USA Vol. 89, pp. 10188-10192, November 1992 Medical Sciences Cloning and expression of an NADP+-dependent alcohol dehydrogenase gene of Entamoeba histolytica (amebiasis/protozoan parasite/fermentation/inhibitors) AJIT KUMAR*, PEI-SHEN SHENtt, STEVEN DESCOTEAUX*, JAN POHL§, GORDON BAILEYt, AND JOHN SAMUELSON*1II *Department of Tropical Public Health, Harvard School of Public Health, Boston, MA 02115; tDepartment of Biochemistry, Morehouse School of Medicine, Atlanta, GA 30310; §Microchemical Facility, Emory University, Atlanta, GA 30322; and 'Department of Pathology, New England Deaconess Hospital, Boston, MA 02215 Communicated by Elkan Blout, June 29, 1992 (receivedfor review May 1, 1992) ABSTRACT Ethanol is the major metabolic product of NAD(P)+ so that the reducing equivalents are regenerated glucose fermentation by the protozoan parasite Entmoeba (4-7). Both NADP+-dependent and NAD+-dependent alco- histolytica under the anaerobic conditions found in the lumen hol dehydrogenase (ADH) activities have been identified in of the colon. Here an internal peptide sequence determined E. histolytica trophozoites (4-7). The NADP+-dependent from a major 39-kDa amoeba protein isolated by isoeLtric ADH (EhADHi; EC 1.1.1.2) was found to be composed of focusing followed by SDS/PAGE was used to clone the gene for four -30-kDa subunits, prefer secondary alcohols to primary the E. histolytica NADP+-dependent alcohol dehydrogenase alcohols, and be inhibited by the substrate analogue pyrazole (EhADH1; EC 1.1.1.2). The EhADHi clone had an open (7). The amoeba NAD+-dependent ADH (EC 1.1.1.1) is not reading frame that was 360 amino acids long and encoded a well-characterized (4). -
Itraq-Based Quantitative Proteomics Analysis Reveals the Mechanism Underlying the Weakening of Carbon Metabolism in Chlorotic Tea Leaves
Article iTRAQ-Based Quantitative Proteomics Analysis Reveals the Mechanism Underlying the Weakening of Carbon Metabolism in Chlorotic Tea Leaves Fang Dong 1,2, Yuanzhi Shi 1,2, Meiya Liu 1,2, Kai Fan 1,2, Qunfeng Zhang 1,2,* and Jianyun Ruan 1,2 1 Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; [email protected] (F.D.); [email protected] (Y.S.); [email protected] (M.L.); [email protected] (K.F.); [email protected] (J.R.) 2 Key Laboratory for Plant Biology and Resource Application of Tea, the Ministry of Agriculture, Hangzhou 310008, China * Correspondence: [email protected]; Tel.: +86-571-8527-0665 Received: 7 November 2018; Accepted: 5 December 2018; Published: 7 December 2018 Abstract: To uncover mechanism of highly weakened carbon metabolism in chlorotic tea (Camellia sinensis) plants, iTRAQ (isobaric tags for relative and absolute quantification)-based proteomic analyses were employed to study the differences in protein expression profiles in chlorophyll-deficient and normal green leaves in the tea plant cultivar “Huangjinya”. A total of 2110 proteins were identified in “Huangjinya”, and 173 proteins showed differential accumulations between the chlorotic and normal green leaves. Of these, 19 proteins were correlated with RNA expression levels, based on integrated analyses of the transcriptome and proteome. Moreover, the results of our analysis of differentially expressed proteins suggested that primary carbon metabolism (i.e., carbohydrate synthesis and transport) was inhibited in chlorotic tea leaves. The differentially expressed genes and proteins combined with photosynthetic phenotypic data indicated that 4-coumarate-CoA ligase (4CL) showed a major effect on repressing flavonoid metabolism, and abnormal developmental chloroplast inhibited the accumulation of chlorophyll and flavonoids because few carbon skeletons were provided as a result of a weakened primary carbon metabolism. -
Synthesis of 1-Naphthol by a Natural Peroxygenase Engineered by Directed Evolution
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UPCommons. Portal del coneixement obert de la UPC Synthesis of 1-Naphthol by a Natural Peroxygenase Engineered by Directed Evolution Patricia Molina-Espeja,[a] Marina Cañellas,[b] Francisco J. Plou,[a] Martin Hofrichter,[c] Fatima Lucas,[b] Victor Guallar[b] and Miguel Alcalde*[a] Abstract: There is an increasing interest in enzymes that catalyze hydroxylation) to the non-natural olefin cyclopropanation by the hydroxylation of naphthalene under mild conditions and with carbene transfer. Indeed, these enzymes can transform minimal requirements. To address this challenge, an extracellular naphthalene into 1-naphthol by either harnessing the peroxide fungal aromatic peroxygenase with mono(per)oxygenase activity shunt pathway or through their natural NAD(P)H dependent was engineered to selectively convert naphthalene into 1-naphthol. activity.[12-15] More recently, directed evolution of toluene ortho- Mutant libraries constructed by random mutagenesis and DNA monooxygenase (TOM) with a whole-cell biocatalytic system recombination were screened for peroxygenase activity on was described.[16-18] However, the poor enzyme stability and the naphthalene while quenching the undesired peroxidative activity on reliance on expensive redox cofactors and reductase domains 1-naphthol (one-electron oxidation). The resulting double mutant have precluded the practical application of these enzymes in (G241D-R257K) of this process was characterized biochemically specific industrial settings. and computationally. The conformational changes produced by directed evolution improved the substrate´s catalytic position. Over a decade ago, the first “true natural” aromatic Powered exclusively by catalytic concentrations of H2O2, this soluble peroxygenase was discovered (EC 1.11.2.1; also referred to as and stable biocatalyst has total turnover numbers of 50,000, with unspecific peroxygenase, UPO).[19] This enzyme was recently high regioselectivity (97%) and reduced peroxidative activity. -
Lpmos) ✉ Riin Kont1, Bastien Bissaro 2,3, Vincent G
ARTICLE https://doi.org/10.1038/s41467-020-19561-8 OPEN Kinetic insights into the peroxygenase activity of cellulose-active lytic polysaccharide monooxygenases (LPMOs) ✉ Riin Kont1, Bastien Bissaro 2,3, Vincent G. H. Eijsink 2 & Priit Väljamäe 1 Lytic polysaccharide monooxygenases (LPMOs) are widely distributed in Nature, where they catalyze the hydroxylation of glycosidic bonds in polysaccharides. Despite the importance of 1234567890():,; LPMOs in the global carbon cycle and in industrial biomass conversion, the catalytic prop- erties of these monocopper enzymes remain enigmatic. Strikingly, there is a remarkable lack of kinetic data, likely due to a multitude of experimental challenges related to the insoluble nature of LPMO substrates, like cellulose and chitin, and to the occurrence of multiple side reactions. Here, we employed competition between well characterized reference enzymes and LPMOs for the H2O2 co-substrate to kinetically characterize LPMO-catalyzed cellulose oxidation. LPMOs of both bacterial and fungal origin showed high peroxygenase efficiencies, 5 6 −1 −1 with kcat/KmH2O2 values in the order of 10 –10 M s . Besides providing crucial insight into the cellulolytic peroxygenase reaction, these results show that LPMOs belonging to multiple families and active on multiple substrates are true peroxygenases. 1 Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia. 2 Faculty of Chemistry, Biotechnology and Food Science, NMBU—Norwegian University of Life Sciences, Ås, Norway. 3 INRAE, Aix Marseille University, -
Adaptive Laboratory Evolution Enhances Methanol Tolerance and Conversion in Engineered Corynebacterium Glutamicum
ARTICLE https://doi.org/10.1038/s42003-020-0954-9 OPEN Adaptive laboratory evolution enhances methanol tolerance and conversion in engineered Corynebacterium glutamicum Yu Wang 1, Liwen Fan1,2, Philibert Tuyishime1, Jiao Liu1, Kun Zhang1,3, Ning Gao1,3, Zhihui Zhang1,3, ✉ ✉ 1234567890():,; Xiaomeng Ni1, Jinhui Feng1, Qianqian Yuan1, Hongwu Ma1, Ping Zheng1,2,3 , Jibin Sun1,3 & Yanhe Ma1 Synthetic methylotrophy has recently been intensively studied to achieve methanol-based biomanufacturing of fuels and chemicals. However, attempts to engineer platform micro- organisms to utilize methanol mainly focus on enzyme and pathway engineering. Herein, we enhanced methanol bioconversion of synthetic methylotrophs by improving cellular tolerance to methanol. A previously engineered methanol-dependent Corynebacterium glutamicum is subjected to adaptive laboratory evolution with elevated methanol content. Unexpectedly, the evolved strain not only tolerates higher concentrations of methanol but also shows improved growth and methanol utilization. Transcriptome analysis suggests increased methanol con- centrations rebalance methylotrophic metabolism by down-regulating glycolysis and up- regulating amino acid biosynthesis, oxidative phosphorylation, ribosome biosynthesis, and parts of TCA cycle. Mutations in the O-acetyl-L-homoserine sulfhydrylase Cgl0653 catalyzing formation of L-methionine analog from methanol and methanol-induced membrane-bound transporter Cgl0833 are proven crucial for methanol tolerance. This study demonstrates the importance of -
Glycerol Dehydrogenase from Gluconobacter Industrius
Agric. Biol Chem., 49 (4), 1001 -1010, 1985 1001 Solubilization, Purification and Properties of Membrane-bound Glycerol Dehydrogenase from Gluconobacter industrius Minoru Ameyama,Emiko Shinagawa, Kazunobu Matsushita and Osao Adachi Laboratory of Applied Microbiology, Department of Agricultural Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753, Japan Received July 30, 1984 Membrane-bound glycerol dehydrogenase was solubilized and purified about 100-fold from the membraneof Gluconobacter industrius IFO 3260 grown on a glycerol-glutamate medium. Solubilization of the enzyme was successfully achieved by use of 0.5% dimethyldodecylamineoxide in 0.05 m Tris-HCl, pH 8.0. Alcohol dehydrogenase and D-glucose dehydrogenase, which were abundantly formed in the same bacterial membrane, were eliminated on solubilization. Glycerol dehydrogenase was further purified through fractionation with polyethylene glycol 6000. The enzymeshowed a broad substrate specificity and various kinds of polyhydroxyl alcohols, in addition to glycerol, were rapidly oxidized in the presence of 2,6-dichlorophenolindophenoi and phenazine methosulfate as the electron acceptor but NADand NADPwere inert. The enzyme was proved to be a quinoprotein in which pyrroloquinoline quinone functioned as the prosthetic group. The first report on microbial oxidation of localization of the oxidase system in cells of G. glycerol to dihydroxyacetone was by Bertrand liquefaciens and found that the oxidation of with a strain capable of L-sorbose fermen- glycerol and raeso-erythritol -
Engineering the Substrate Specificity of Galactose Oxidase
Engineering the Substrate Specificity of Galactose Oxidase Lucy Ann Chappell BSc. (Hons) Submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds School of Molecular and Cellular Biology September 2013 The candidate confirms that the work submitted is her own and that appropriate credit has been given where reference has been made to the work of others. This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement © 2013 The University of Leeds and Lucy Ann Chappell The right of Lucy Ann Chappell to be identified as Author of this work has been asserted by her in accordance with the Copyright, Designs and Patents Act 1988. ii Acknowledgements My greatest thanks go to Prof. Michael McPherson for the support, patience, expertise and time he has given me throughout my PhD. Many thanks to Dr Bruce Turnbull for always finding time to help me with the Chemistry side of the project, particularly the NMR work. Also thanks to Dr Arwen Pearson for her support, especially reading and correcting my final thesis. Completion of the laboratory work would not have been possible without the help of numerous lab members and friends who have taught me so much, helped develop my scientific skills and provided much needed emotional support – thank you for your patience and friendship: Dr Thembi Gaule, Dr Sarah Deacon, Dr Christian Tiede, Dr Saskia Bakker, Ms Briony Yorke and Mrs Janice Robottom. Thank you to three students I supervised during my PhD for their friendship and contributions to the project: Mr Ciaran Doherty, Ms Lito Paraskevopoulou and Ms Upasana Mandal. -
Dr. Soumendu Bisoi Assistant Professor Department of Chemistry, Narajole Raj College
Dr. Soumendu Bisoi Assistant Professor Department of Chemistry, Narajole Raj College Vitamin C Vitamin C, also named as L-ascorbic acid (Asc), is a water-soluble vitamin that is essential for humans, non-human primates and a few other mammals. Vitamin C (L-ascorbic acid; Asc) is a powerful antioxidant and essential human nutrient that has extensive industrial and medicinal applications resulting in global requirements estimated at 154 thousand tons in 2007. The discovery of Asc is related with the disease of scurvy. Scurvy was a common disease in the world’s navies and sailors until the beginning of the nineteenth century, with serious symptoms such as bleeding of mucous membranes, anaemia and eventually death. In 1928, Albert Szent-Gyørgyi first isolated the Asc from adrenal glands and called it hexuronic acid. Four years later, Charles Glen King isolated Asc in his laboratory and concluded that it was the same as hexuronic acid. In 1933, Norman Haworth deduced the chemical structure of Asc (Figure 1). Figure 1 Vitamin C (L-ascorbic acid). Between 1933 and 1934, not only Haworth and fellow British chemist Edmund Hirsthad synthesised Asc, but also, independently, the Polish chemist Tadeus Reichstein, succeeded in synthesising the vitamin in bulk, making it the first vitamin to be artificially produced. The latter process made possible the cheap mass-production of semi-synthetic Asc, which was quickly marketed. Haworth was awarded the 1937 Nobel Prize in Chemistry in part for this work, but the Reichstein process, a combined chemical and bacterial fermentation sequence still used today to produce vitamin C, retained Reichstein’s name. -
Synthesis and Characterization of New Metal-Carbon Catalysts for Hydrogenation of D-Glucose
SYNTHESIS AND CHARACTERIZATION OF NEW METAL-CARBON CATALYSTS FOR HYDROGENATION OF D-GLUCOSE LIU JIAJIA NATIONAL UNIVERSITY OF SINGAPORE 2010 SYNTHESIS AND CHARACTERIZATION OF NEW METAL-CARBON CATALYSTS FOR HYDROGENATION OF D-GLUCOSE LIU JIAJIA (M.Eng, Tianjin University) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF CHEMICAL AND BIOMOLECULAR ENGINEERING NATIONAL UNIVERSITY OF SINGAPORE 2010 Acknowledgement Acknowledgement I am heartily thankful to my supervisor, Assoc. Prof. Zhao X. S., George, whose constant encouragement, invaluable guidance, patience and support throughout the whole period of my PhD candidature. I would also like to thank Assoc. Prof. Zhao for his guidance on writing scientific papers including this PhD thesis. In addition, I want to express my sincerest appreciation to the Department of Chemical and Biomolecular Engineering for offering me the chance to study at NUS with a scholarship. It’s my pleasure to work with a group of brilliant, warmhearted and lovely people. Wish all my lab mates go well with their work. Particular acknowledgement goes to Dr. Liu Tao, Mr. Chia Phai Ann, Mr. Shang Zhenhua, Dr. Yuan Zeliang, Mr. Mao Ning, Mr. Liu Zhicheng, Dr. Rajarathnam D., Madam Chow Pek Jaslyn, Mdm Fam Hwee Koong Samantha, Ms Lee Chai Keng, Ms Tay Choon Yen, Mr. Toh Keng Chee, Mr. Chun See Chong, Ms. Ng Ai Mei, Ms. Lum Mei Peng Sharon, and Ms. How Yoke Leng Doris for their kind supports. I thank my parents and my husband. It is no exaggeration to say that I could not complete the PhD work without their generous help, boundless love, encouragement and support. -
Alcohol Oxidation
Alcohol oxidation Alcohol oxidation is an important organic reaction. Primary alcohols (R-CH2-OH) can be oxidized either Mechanism of oxidation of primary alcohols to carboxylic acids via aldehydes and The indirect oxidation of aldehyde hydrates primary alcohols to carboxylic acids normally proceeds via the corresponding aldehyde, which is transformed via an aldehyde hydrate (R- CH(OH)2) by reaction with water. The oxidation of a primary alcohol at the aldehyde level is possible by performing the reaction in absence of water, so that no aldehyde hydrate can be formed. Contents Oxidation to aldehydes Oxidation to ketones Oxidation to carboxylic acids Diol oxidation References Oxidation to aldehydes Oxidation of alcohols to aldehydes is partial oxidation; aldehydes are further oxidized to carboxylic acids. Conditions required for making aldehydes are heat and distillation. In aldehyde formation, the temperature of the reaction should be kept above the boiling point of the aldehyde and below the boiling point of the alcohol. Reagents useful for the transformation of primary alcohols to aldehydes are normally also suitable for the oxidation of secondary alcohols to ketones. These include: Oxidation of alcohols to aldehydes and ketones Chromium-based reagents, such as Collins reagent (CrO3·Py2), PDC or PCC. Sulfonium species known as "activated DMSO" which can result from reaction of DMSO with electrophiles, such as oxalyl chloride (Swern oxidation), a carbodiimide (Pfitzner-Moffatt oxidation) or the complex SO3·Py (Parikh-Doering oxidation). Hypervalent iodine compounds, such as Dess-Martin periodinane or 2-Iodoxybenzoic acid. Catalytic TPAP in presence of excess of NMO (Ley oxidation). Catalytic TEMPO in presence of excess bleach (NaOCl) (Oxoammonium-catalyzed oxidation). -
Generated by SRI International Pathway Tools Version 25.0, Authors S
Authors: Pallavi Subhraveti Ron Caspi Quang Ong Peter D Karp An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Ingrid Keseler Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. Gcf_000725805Cyc: Streptomyces xanthophaeus Cellular Overview Connections between pathways are omitted for legibility. -
Engineering Alcohol Oxidases for Substrate Scope and Their Application in Flow and Cascade Biocatalysis
ENGINEERING ALCOHOL OXIDASES FOR SUBSTRATE SCOPE AND THEIR APPLICATION IN FLOW AND CASCADE BIOCATALYSIS Rachel Heath, University of Manchester [email protected] Matthew Thompson, EnginZyme Jeremy Ramsden, University of Manchester Sebastian Cosgrove, University of Manchester William Finnigan, University of Manchester Nicholas Turner, University of Manchester Key Words: oxidation, primary alcohol, secondary alcohol, high-throughput screening, thermostability Alcohol oxidases have significant advantages over alcohol dehydrogenases (ADHs) for biocatalytic oxidation of alcohols: they don’t require addition of (expensive) nicotinamide cofactors (or a recycling system for cofactor regeneration) and the catalytic reaction is irreversible. Although alcohol oxidases generate hydrogen peroxide when they turn over, this issue can be alleviated by addition of catalase, which, not only removes the peroxide, but also creates more oxygen for cofactor regeneration. Alcohol oxidases are perceived to have a limited substrate scope preventing their wider use in synthesis. Thus, we present the engineering of two alcohol oxidases for increased substrate scope, one for the selective oxidation of primary alcohols and one for secondary alcohol oxidation. Arthrobacter chlorophenolicus choline oxidase and Streptomyces hygroscopicus cholesterol oxidase were selected as the primary and secondary alcohol oxidase, respectively. Examination of crystal structures of homologous alcohol oxidases revealed positions in the active site and entrance channel to target for saturation mutagenesis. Libraries were screened using a high-throughput assay based on the detection of hydrogen peroxide using hexanol as the substrate for evolution of choline oxidase and cyclohexanol for evolution of cholesterol oxidase. Mutations from positive hits were combined and, in these cases, resulted in variants with further improvements in both kcat and conversion to the carbonyl in biotransformations.