Dehydrogenase Gene of Entamoeba Histolytica

Total Page:16

File Type:pdf, Size:1020Kb

Dehydrogenase Gene of Entamoeba Histolytica Proc. Nad. Acad. Sci. USA Vol. 89, pp. 10188-10192, November 1992 Medical Sciences Cloning and expression of an NADP+-dependent alcohol dehydrogenase gene of Entamoeba histolytica (amebiasis/protozoan parasite/fermentation/inhibitors) AJIT KUMAR*, PEI-SHEN SHENtt, STEVEN DESCOTEAUX*, JAN POHL§, GORDON BAILEYt, AND JOHN SAMUELSON*1II *Department of Tropical Public Health, Harvard School of Public Health, Boston, MA 02115; tDepartment of Biochemistry, Morehouse School of Medicine, Atlanta, GA 30310; §Microchemical Facility, Emory University, Atlanta, GA 30322; and 'Department of Pathology, New England Deaconess Hospital, Boston, MA 02215 Communicated by Elkan Blout, June 29, 1992 (receivedfor review May 1, 1992) ABSTRACT Ethanol is the major metabolic product of NAD(P)+ so that the reducing equivalents are regenerated glucose fermentation by the protozoan parasite Entmoeba (4-7). Both NADP+-dependent and NAD+-dependent alco- histolytica under the anaerobic conditions found in the lumen hol dehydrogenase (ADH) activities have been identified in of the colon. Here an internal peptide sequence determined E. histolytica trophozoites (4-7). The NADP+-dependent from a major 39-kDa amoeba protein isolated by isoeLtric ADH (EhADHi; EC 1.1.1.2) was found to be composed of focusing followed by SDS/PAGE was used to clone the gene for four -30-kDa subunits, prefer secondary alcohols to primary the E. histolytica NADP+-dependent alcohol dehydrogenase alcohols, and be inhibited by the substrate analogue pyrazole (EhADH1; EC 1.1.1.2). The EhADHi clone had an open (7). The amoeba NAD+-dependent ADH (EC 1.1.1.1) is not reading frame that was 360 amino acids long and encoded a well-characterized (4). protein of -39 kDa (calculated size). EhADHi showed a 62% Human ADHs are cytoplasmic dimeric proteins composed amino acid identity with the tetrameric NADP+-dependent of -40-kDa peptides (long chain) that bind NAD+ and zinc as alcohol dehydrogenase of Thermoanaerobium brockii. In con- cofactors (8). Although the best-studied function of human trast, EhADHi showed a 15% amino acid identity with the ADHs is the oxidation of ethanol to acetaldehyde, human closest human alcohol dehydrogenase. EhADHi contained 18 ADHs are capable of oxidizing multiple alcohols and of of the 22 amino acids conserved in other alcohol dehydroge- reducing numerous aldehydes and ketones (9). The tertiary nases, including glycines involved in binding NAD(P)+ as well structure of human ADH enzymes has been inferred by as histidine and cysteine residues involved in binding the analogy with horse liver ADH, whose structure has been catalytic zinc ion. Like the T. brockii alcohol dehydrogenase, determined at atomic resolution by x-ray crystallography (10, EhADHi lacked a 23-amino acid stretch present in other 11). indudes that bind a With the long-term goal ofdeveloping antiamoebic drugs to alcohol dehydrogenases that four cysteines complement those already available to treat human infection second noncatalytic zinc ion. An EhADH1-glutathione-S- with E. histolytica, we are focusing on enzymes involved in transferase fusion protein showed the expected NADP+- the fermentation of glucose to ethanol. This metabolic path- dependent alcohol dehydrogenase and NADPH-dependent ace- way was chosen for four reasons. (i) This pathway is the taldehyde reductase activities. The enzymatic activities of the target ofthe best antiamoebic drug metronidazole (3). (ii) The EhADHi fusion protein were inhibited by pyrazole and 4-meth- amoebae are dependent upon fermentation of glucose (4, 5), ylpyrazole. whereas the human host uses oxidative respiration. (iii) Multiple ADH and aldehyde dehydrogenase inhibitors are Entamoeba histolytica is a protozoan parasite that infects known (12, 13). (iv) One E. histolytica ADH is tetrameric and -500 million individuals in the developing world, resulting in NADP+-dependent (7) and so is likely to be quite different -40 million cases of dysentery with a consequent annual from human ADHs, which are dimeric and NAD+-dependent mortality rate of ==40,000 (1, 2). Entamoebae reproduce (8). Here an internal peptide from an abundant 39-kDa under anaerobic conditions in the colonic lumen and cause amoeba protein isolated on two-dimensional protein gels was dysentery when they invade the bowel wall. Because poor found serendipitously to contain a 16-amino acid sequence countries cannot afford to make the changes in sanitary homologous to that of the tetrameric NADP+-dependent conditions that might eliminate fecal-oral spread of amoebic ADH ofthe anaerobic thermophilic bacterium Thermoanaer- infection, amebiasis is primarily controlled by drug treatment obium brockii (14). We used the peptide sequence to clone, of persons sick with the parasite (1-3). sequence, and express in Escherichia coli the NADP+- Entamoebae are obligate fermenters because they lack dependent E. histolytica ADH (EhADH1) gene.** mitochondria and the enzymes involved in respiration (4, 5). Amoebae use facilitated diffusion for the uptake of glucose, MATERIALS AND METHODS which is then metabolized to pyruvate via the Embden- Meyerhofpathway with the net gain oftwo molecules ofATP Separation of E. histolytica Proteins on Two-Dimensional and two molecules of NADH (5). Pyruvate is converted to Protein Gels. Trophozoites of pathogenic E. histolytica HM- acetyl-CoA with the production of a ferredoxin free-radical 1:IHSS were cultured axenically in TYI-S-33 medium (15). and CO2. Metronidazole, the most widely used drug to treat For two-dimensional separation of proteins (16), parasites amebiasis, is activated by a one-electron reduction from the donor ferredoxin free-radical (3). Under anaerobic condi- Abbreviations: ADH, alcohol dehydrogenase; EhADH1, NADP+- tions, acetyl-CoA is sequentially reduced to acetaldehyde dependent alcohol dehydrogenase ofE. histolytica; GST, glutathione and ethanol with the production of two molecules of S-transferase. tPresent address: Department of Tropical Public Health, Harvard School of Public Health, Boston, MA 02115. The publication costs of this article were defrayed in part by page charge I"To whom reprint requests should be addressed. payment. This article must therefore be hereby marked "advertisement" **The sequence reported in this paper has been deposited in the in accordance with 18 U.S.C. §1734 solely to indicate this fact. GenBank data base (accession no. M88600). 10188 Medical Sciences: Kumar et al. Proc. Natl. Acad. Sci. USA 89 (1992) 10189 were grown to midlogarithmic phase, washed three times in New England Nuclear), and hybridized with a radiolabeled phosphate-buffered saline, and lysed at an equivalent con- probe containing the final 349 base pairs (bp) from the 3' end centration of 2 x 106 amoebae per ml in 0.3% SDS/5% of EhADH1 gene (19). 2-mercaptoethanol/10 mM Tris, pH 8/5 mM iodoacetamide/ Expression of EhADHi as a Glutathione-S-Transferase 0.2 mM diisopropyl fluorophosphate/0.2 mM 7-amino-1- (GST) Fusion Protein in Escherichia colt. To express the chloro-3-tosylamido-2-heptanone. The lysate was boiled, in- EhADHi enzyme in Escherichia coli XL1-Blue (Stratagene), cubated with RNase (7.5 ,ug/ml) and DNase (15 pg/m%), restriction sites were added to ends ofthe coding sequence of lyophilized, and solubilized in 9 M urea/2% 3-4(3- the EhADHI gene contained in pAK311 by using synthetic cholamidapropyl)dimethylammoniol-2-hydroxy-1-propane- oligonucleotide primers, the PCR, and Vent polymerase sulfonate/100 mM dithiothreitol/2% (wt/vol) ampholines (New England Biolabs). The PCR product was cloned in- ranging from pH 3 to pH 10 (Pharmacia LKB). About 300 Ag frame at the 5' end of the coding sequence of GST that was ofthe amoeba protein was focused in isoelectric focusing gels contained in the expression vector pGEX-2T (23). Isopropyl in 1.5-mm diameter tubes. For the second dimension, the f-D-thiogalactoside (1 mM) was used to induce bacteria to tube gels were incubated with SDS sample buffer, electro- make the GST-EhADH1 fusion protein containing the 26- phoresed by SDS/PAGE on a slab gel containing 10%c kDa GST at the N terminus and the 39-kDa EhADHI at the polyacrylamide with a 4% stacking gel, and stained with C terminus. Bacteria were lysed by sonication, and the Coomassie brilliant blue. Major protein spots were excised GST-EhADH1 fusion protein was purified on glutathione- and stored at -70'C in 50% (vol/vol) methanol. agarose beads (23). Protein concentrations were determined Digestion ofexcised amoeba proteins with Staphylococcus by the method of Bradford (24), and the purity of the fusion aureus V8 protease was performed as described by Kennedy proteins was determined by SDS/PAGE. The size of the et al. (17). The isolated protein spots from four two- undenatured GST-EhADH1 fusion protein was determined dimensional gels were combined, placed in SDS/PAGE by FPLC (Pharmacia) using a Superose 12 gel filtration buffer, digested at room temperature with V-8 protease (0.1 column. pug/ml) for 15 min in the sample loading well and then for 30 Assays of ADH and Acetaldehyde Reductase Activities of the min at the stacking gel-running gel interface, and electro- GST-EhADH1 Fusion Protein. The ADH activity of the phoresed through a 15% polyacrylamide gel containing SDS. recombinant EhADH1 was determined by incubating en- The gel was equilibrated,-in 10 mM 3-(cyclohexylamino)-1- zyme extracts, substrates, and cofactors in 50 mM propanesulfonic acid, pH 11/20%6 methanol, and electroblot- glycine-NaOH (pH 9.5), and monitoring the increase in ted onto a poly(vinylidene difluoride) membrane (Bio-Rad), absorbance at 334 nm with a Gilford Response spectropho- which was lightly stained with Coomassie blue. Peptides tometer. The activities and Michaelis constants (Km) of the were excised and subjected to automated Edman degradation enzyme for isopropanol and ethanol were determined by in an Applied Biosystems model 477A/120A sequencer/ incubating various concentrations of each with 200 ,M phenylthiohydantoin analyzer (18). NADP+ and plotting the data on an Eadie-Hofstee plot (25).
Recommended publications
  • The Failure of Two Major Formaldehyde Catabolism Enzymes (ADH5 and ALDH2) Leads to Partial Synthetic Lethality in C57BL/ 6 Mice Jun Nakamura1,2*, Darcy W
    Nakamura et al. Genes and Environment (2020) 42:21 https://doi.org/10.1186/s41021-020-00160-4 SHORT REPORT Open Access The failure of two major formaldehyde catabolism enzymes (ADH5 and ALDH2) leads to partial synthetic lethality in C57BL/ 6 mice Jun Nakamura1,2*, Darcy W. Holley3, Toshihiro Kawamoto4 and Scott J. Bultman3 Abstract Background: Exogenous formaldehyde is classified by the IARC as a Category 1 known human carcinogen. Meanwhile, a significant amount of endogenous formaldehyde is produced in the human body; as such, formaldehyde-derived DNA and protein adducts have been detected in animals and humans in the absence of major exogenous formaldehyde exposure. However, the toxicological effects of endogenous formaldehyde on individuals with normal DNA damage repair functions are not well understood. In this study, we attempted to generate C57BL/6 mice deficient in both Adh5 and Aldh2, which encode two major enzymes that metabolize endogenous formaldehyde, in order to understand the effects of endogenous formaldehyde on mice with normal DNA repair function. Results: Due to deficiencies in both ADH5 and ALDH2, few mice survived past post-natal day 21. In fact, the survival of pups within the first few days after birth was significantly decreased. Remarkably, two Aldh2−/−/Adh5−/− mice survived for 25 days after birth, and we measured their total body weight and organ weights. The body weight of Aldh2−/−/Adh5−/− mice decreased significantly by almost 37% compared to the Aldh2−/−/Adh5+/− and Aldh2−/−/Adh5+/+ mice of the same litter. In addition, the absolute weight of each organ was also significantly reduced. Conclusion: Mice deficient in both formaldehyde-metabolizing enzymes ADH5 and ALDH2 were found to develop partial synthetic lethality and mortality shortly after birth.
    [Show full text]
  • Age-Dependent Protein Abundance of Cytosolic Alcohol and Aldehyde Dehydrogenases in Human Liver S
    Supplemental material to this article can be found at: http://dmd.aspetjournals.org/content/suppl/2017/08/21/dmd.117.076463.DC2 http://dmd.aspetjournals.org/content/suppl/2017/06/12/dmd.117.076463.DC1 1521-009X/45/9/1044–1048$25.00 https://doi.org/10.1124/dmd.117.076463 DRUG METABOLISM AND DISPOSITION Drug Metab Dispos 45:1044–1048, September 2017 Copyright ª 2017 by The American Society for Pharmacology and Experimental Therapeutics Age-dependent Protein Abundance of Cytosolic Alcohol and Aldehyde Dehydrogenases in Human Liver s Deepak Kumar Bhatt, Andrea Gaedigk, Robin E. Pearce, J. Steven Leeder, and Bhagwat Prasad Department of Pharmaceutics, University of Washington, Seattle, Washington (D.K.B., B.P.); Department of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children’s Mercy-Kansas City, Missouri and School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri (A.G., R.E.P., J.S.L.) Received April 21, 2017; accepted June 5, 2017 ABSTRACT Hepatic cytosolic alcohol and aldehyde dehydrogenases (ADHs and the adult levels, respectively. For all proteins, the abundance steeply ALDHs) catalyze the biotransformation of xenobiotics (e.g., cyclo- increased during the first year of life, which mostly reached adult Downloaded from phosphamide and ethanol) and vitamin A. Because age-dependent levels during early childhood (age between 1 and 6 years). Only for hepatic abundance of these proteins is unknown, we quantified ADH1A protein abundance in adults (age > 18 year) was ∼40% lower protein expression of ADHs and ALDH1A1 in a large cohort of pediatric relative to the early childhood group. Abundances of ADHs and and adult human livers by liquid chromatography coupled with tandem ALDH1A1 were not associated with sex in samples with age > 1 year mass spectrometry proteomics.
    [Show full text]
  • Alcohol-Responsive Genes Identified in Human Ipsc-Derived Neural Cultures
    bioRxiv preprint doi: https://doi.org/10.1101/381673; this version posted July 31, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Alcohol-responsive genes identified in human iPSC-derived neural cultures Kevin P. Jensen1,2,#, Richard Lieberman3,#, Henry R. Kranzler4,5, Joel Gelernter1,2, and Jonathan Covault3,6* 1 Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511 2 VA Connecticut Healthcare System, West Haven, CT 06516 3 Alcohol Research Center, Department of Psychiatry, University of Connecticut School of Medicine, Farmington, CT 06030-1410 4 Center for Studies of Addiction, Department of Psychiatry, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA 19104 5 VISN4 MIRECC, Crescenz VAMC, Philadelphia, PA 19104 6 Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269 # These authors contributed equally to this work *Correspondence: Department of Psychiatry UCONN Health 263 Farmington Avenue Farmington, CT 06030-1410 Telephone: 860-679-7560 Fax: 860-679-1296 Email: [email protected] Running title: Transcriptional effects of alcohol in human neural cultures 1 bioRxiv preprint doi: https://doi.org/10.1101/381673; this version posted July 31, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.
    [Show full text]
  • Confirmation of Pathogenic Mechanisms by SARS-Cov-2–Host
    Messina et al. Cell Death and Disease (2021) 12:788 https://doi.org/10.1038/s41419-021-03881-8 Cell Death & Disease ARTICLE Open Access Looking for pathways related to COVID-19: confirmation of pathogenic mechanisms by SARS-CoV-2–host interactome Francesco Messina 1, Emanuela Giombini1, Chiara Montaldo1, Ashish Arunkumar Sharma2, Antonio Zoccoli3, Rafick-Pierre Sekaly2, Franco Locatelli4, Alimuddin Zumla5, Markus Maeurer6,7, Maria R. Capobianchi1, Francesco Nicola Lauria1 and Giuseppe Ippolito 1 Abstract In the last months, many studies have clearly described several mechanisms of SARS-CoV-2 infection at cell and tissue level, but the mechanisms of interaction between host and SARS-CoV-2, determining the grade of COVID-19 severity, are still unknown. We provide a network analysis on protein–protein interactions (PPI) between viral and host proteins to better identify host biological responses, induced by both whole proteome of SARS-CoV-2 and specific viral proteins. A host-virus interactome was inferred, applying an explorative algorithm (Random Walk with Restart, RWR) triggered by 28 proteins of SARS-CoV-2. The analysis of PPI allowed to estimate the distribution of SARS-CoV-2 proteins in the host cell. Interactome built around one single viral protein allowed to define a different response, underlining as ORF8 and ORF3a modulated cardiovascular diseases and pro-inflammatory pathways, respectively. Finally, the network-based approach highlighted a possible direct action of ORF3a and NS7b to enhancing Bradykinin Storm. This network-based representation of SARS-CoV-2 infection could be a framework for pathogenic evaluation of specific 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; clinical outcomes.
    [Show full text]
  • Is There a Role for Ethanol Assay Using Alcohol Dehydrogenase in a Basic Drugs and Alcohol Screen of Blood Following Routine Autopsies?
    Journal of Clinical Pathology and Forensic Medicine Vol. 3(2), pp. 17-19, December 2012 Available online at http://www.academicjournals.org/JCPFM DOI: 10.5897/JCPFM12.003 ISSN 2I41-2405 ©2012 Academic Journals Short Communication Is there a role for ethanol assay using alcohol dehydrogenase in a basic drugs and alcohol screen of blood following routine autopsies? William Tormey 1,2 and Tara Moore 3 1Biomedical Sciences, University of Ulster Cromore Road, Coleraine, BT52 1SA, Northern Ireland. 2Department of Chemical Pathology, Beaumont Hospital, Dublin 9, Ireland. 3Biomedical Sciences, University of Ulster, Cromore Road, Coleraine, BT52 1SA, Northern Ireland. Accepted 22 March, 2012 The external examination system of determining the cause of death as operated in Dundee, Scotland is controversial. The addition of a blood or urine specimen for drugs and alcohol processed by hospital autoanalysers will reduce error in death certification. This is even more convenient to organise with a shorter turn-around time than imaging by computed tomography (CT) or magnetic resonance imaging (MRI). These measures may reduce the autopsy rate and ameliorate the distress of families of the deceased. Key words: Autopsy, alcohol, death. INTRODUCTION For over a decade, there has been controversy over the dehydrogenase and the back reaction nicotinamide appropriateness of the high rate of coroner’s autopsies adenine dinucleotide (NAD) to NADH measured (Pounder, 2000; Rutty et al., 2001). Advocacy of the spectrophotometrically at 340 nm on the Olympus 5400 “view and grant” system of issuing the cause of death as autoanalyser for the analysis of alcohol. The data sheet operated in Dundee, Scotland has been challenged and claims that the assay can accurately quantitate alcohol imaging is suggested as a partial answer to lessen the concentrations within the range of 10 to 600 mg/dl.
    [Show full text]
  • How Is Alcohol Metabolized by the Body?
    Overview: How Is Alcohol Metabolized by the Body? Samir Zakhari, Ph.D. Alcohol is eliminated from the body by various metabolic mechanisms. The primary enzymes involved are aldehyde dehydrogenase (ALDH), alcohol dehydrogenase (ADH), cytochrome P450 (CYP2E1), and catalase. Variations in the genes for these enzymes have been found to influence alcohol consumption, alcohol-related tissue damage, and alcohol dependence. The consequences of alcohol metabolism include oxygen deficits (i.e., hypoxia) in the liver; interaction between alcohol metabolism byproducts and other cell components, resulting in the formation of harmful compounds (i.e., adducts); formation of highly reactive oxygen-containing molecules (i.e., reactive oxygen species [ROS]) that can damage other cell components; changes in the ratio of NADH to NAD+ (i.e., the cell’s redox state); tissue damage; fetal damage; impairment of other metabolic processes; cancer; and medication interactions. Several issues related to alcohol metabolism require further research. KEY WORDS: Ethanol-to­ acetaldehyde metabolism; alcohol dehydrogenase (ADH); aldehyde dehydrogenase (ALDH); acetaldehyde; acetate; cytochrome P450 2E1 (CYP2E1); catalase; reactive oxygen species (ROS); blood alcohol concentration (BAC); liver; stomach; brain; fetal alcohol effects; genetics and heredity; ethnic group; hypoxia The alcohol elimination rate varies state of liver cells. Chronic alcohol con- he effects of alcohol (i.e., ethanol) widely (i.e., three-fold) among individ- sumption and alcohol metabolism are on various tissues depend on its uals and is influenced by factors such as strongly linked to several pathological concentration in the blood T chronic alcohol consumption, diet, age, consequences and tissue damage. (blood alcohol concentration [BAC]) smoking, and time of day (Bennion and Understanding the balance of alcohol’s over time.
    [Show full text]
  • Computational Exploration of the Medium-Chain Dehydrogenase / Reductase Superfamily
    From the Department of Medical Biochemistry and Biophysics Karolinska Institutet, Stockholm, Sweden COMPUTATIONAL EXPLORATION OF THE MEDIUM-CHAIN DEHYDROGENASE / REDUCTASE SUPERFAMILY Linus J. Östberg Stockholm 2017 All previously published papers were reproduced with permission from the publisher. Published by Karolinska Institutet. Printed by E-Print AB 2017 ©Linus J. Östberg, 2017 ISBN 978-91-7676-650-7 COMPUTATIONAL EXPLORATION OF THE MEDIUM-CHAIN DEHYDROGENASE / REDUCTASE SUPERFAMILY THESIS FOR DOCTORAL DEGREE (Ph.D.) By Linus J. Östberg Principal Supervisor: Opponent: Prof. Jan-Olov Höög Prof. Jaume Farrés Karolinska Institutet Autonomous University of Barcelona Department of Medical Biochemistry and Department of Biochemistry and Biophysics Molecular Biology Co-supervisor: Examination Board: Prof. Bengt Persson Prof. Erik Lindahl Uppsala University Stockholm University Department of Cell and Molecular Biology Department of Biochemistry and Biophysics Assoc. Prof. Tanja Slotte Stockholm University Department of Ecology, Environment and Plant Sciences Prof. Elias Arnér Karolinska Institutet Department of Medical Biochemistry and Biophysics ABSTRACT The medium-chain dehydrogenase/reductase (MDR) superfamily is a protein family with more than 170,000 members across all phylogenetic branches. In humans there are 18 repre- sentatives. The entire MDR superfamily contains many protein families such as alcohol dehy- drogenase, which in mammals is in turn divided into six classes, class I–VI (ADH1–6). Most MDRs have enzymatical functions, catalysing the conversion of alcohols to aldehyde/ketones and vice versa, but the function of some members is still unknown. In the first project, a methodology for identifying and automating the classification of mammalian ADHs was developed using BLAST for identification and class-specific hidden Markov models were generated for identification.
    [Show full text]
  • 1 Here Are the Quiz 4 Questions You Will Answer Online Using the Quiz
    Chemistry 6720, quiz 4 handout Here are the quiz 4 questions you will answer online using the quiz tool in canvas instructure. Some of the questions deal with citric acid cycle enzymes that use mechanistic strategies covered in the lectures. Since we did not cover all of those specific enzymes in lecture, be sure to review the citric acid cycle ahead of taking the quiz online so you can answer the appropriate questions regarding mechanistic strategies/themes for the enzymes. In doing so, practice drawing mechanisms for each enzyme of the citric acid cycle. You will probably need to look up the mechanisms for isocitrate dehydrogenase, aconitase, succinate dehydrogenase, and succinyl-CoA synthetase in a general biochemistry text. I will not be asking specific details of the mechanisms for those 4 enzymes, but you will still need to be generally familiar with how they operate to answer a few of the questions below. You do not need to know the chemistry of FAD reduction for the quiz. Be sure to note the quiz deadline in canvas to be sure you get your answers submitted by the deadline. 1. Shown at the right is a Fischer projection for D-glucose. Use the strategy described in the lecture to assign the configurations (R or S) of the chiral centers at C2, C3, C4, and C5. 2. Using the structures shown to the right, assign the methyl groups of isopropanol, and the hydrogens at C2 and C3 of succinate, as either ProR or ProS. Use the strategy covered in lecture to guide you in making the assignments.
    [Show full text]
  • Original Article Compensatory Upregulation of Aldo-Keto Reductase 1B10 to Protect Hepatocytes Against Oxidative Stress During Hepatocarcinogenesis
    Am J Cancer Res 2019;9(12):2730-2748 www.ajcr.us /ISSN:2156-6976/ajcr0097527 Original Article Compensatory upregulation of aldo-keto reductase 1B10 to protect hepatocytes against oxidative stress during hepatocarcinogenesis Yongzhen Liu1, Jing Zhang1, Hui Liu1, Guiwen Guan1, Ting Zhang1, Leijie Wang1, Xuewei Qi1, Huiling Zheng1, Chia-Chen Chen1, Jia Liu1, Deliang Cao2, Fengmin Lu3, Xiangmei Chen1 1State Key Laboratory of Natural and Biomimetic Drugs, Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P. R. China; 2Department of Medical Microbiology, Immunology and Cell Biology, Simmons Cancer Institute at Southern Illinois University School of Medicine, 913 N, Rutledge Street, Springfield, IL 62794, USA; 3Peking University People’s Hospital, Peking University Hepatology Institute, Beijing 100044, P. R. China Received May 26, 2019; Accepted November 15, 2019; Epub December 1, 2019; Published December 15, 2019 Abstract: Aldo-keto reductase 1B10 (AKR1B10), a member of aldo-keto reductase superfamily, contributes to detox- ification of xenobiotics and metabolization of physiological substrates. Although increased expression of AKR1B10 was found in hepatocellular carcinoma (HCC), the role of AKR1B10 in the development of HCC remains unclear. This study aims to illustrate the role of AKR1B10 in hepatocarcinogenesis based on its intrinsic oxidoreduction abilities. HCC cell lines with AKR1B10 overexpression or knockdown were treated with doxorubicin or hydrogen peroxide to determinate the influence of aberrant AKR1B10 expression on cells’ response to oxidative stress. Using Akr1b8 (the ortholog of human AKR1B10) knockout mice, diethylnitrosamine (DEN) induced liver injury, chronic inflammation and hepatocarcinogenesis were explored. Clinically, the pattern of serum AKR1B10 relevant to disease progres- sion was investigated in a patient cohort with chronic hepatitis B (n=30), liver cirrhosis (n=30) and HCC (n=40).
    [Show full text]
  • ARTICLE Evidence of Positive Selection on a Class I ADH Locus
    ARTICLE Evidence of Positive Selection on a Class I ADH Locus Yi Han,* Sheng Gu,* Hiroki Oota,† Michael V. Osier,‡ Andrew J. Pakstis, William C. Speed, Judith R. Kidd, and Kenneth K. Kidd The alcohol dehydrogenase (ADH) family of enzymes catalyzes the reversible oxidation of alcohol to acetaldehyde. Seven ADH genes exist in a segment of ∼370 kb on 4q21. Products of the three class I ADH genes that share 95% sequence identity are believed to play the major role in the first step of ethanol metabolism. Because the common belief that selection has operated at the ADH1B*47His allele in East Asian populations lacks direct biological or statistical evidence, we used genomic data to test the hypothesis. Data consisted of 54 single-nucleotide polymorphisms (SNPs) across the ADH clusters in a global sampling of 42 populations. Both the Fst statistic and the long-range haplotype (LRH) test provided positive evidence of selection in several East Asian populations. The ADH1B Arg47His functional polymorphism has the highest Fst of the 54 SNPs in the ADH cluster, and it is significantly above the mean Fst of 382 presumably neutral sites tested on the same 42 population samples. The LRH test that uses cores including that site and extending on both sides also gives significant evidence of positive selection in some East Asian populations for a specific haplotype carrying the ADH1B*47His allele. Interestingly, this haplotype is present at a high frequency in only some East Asian populations, whereas the specific allele also exists in other East Asian populations and in the Near East and Europe but does not show evidence of selection with use of the LRH test.
    [Show full text]
  • Anti-ADH5 Monoclonal Antibody, Clone FQS23996(C) (DCABH-6425) This Product Is for Research Use Only and Is Not Intended for Diagnostic Use
    Anti-ADH5 monoclonal antibody, clone FQS23996(C) (DCABH-6425) This product is for research use only and is not intended for diagnostic use. PRODUCT INFORMATION Product Overview Rabbit monoclonal to ADH5 Antigen Description Class-III ADH is remarkably ineffective in oxidizing ethanol, but it readily catalyzes the oxidation of long-chain primary alcohols and the oxidation of S-(hydroxymethyl) glutathione. Immunogen Synthetic peptide (the amino acid sequence is considered to be commercially sensitive) within Human ADH5 aa 1-100. The exact sequence is proprietary.Database link: P11766 Isotype IgG Source/Host Rabbit Species Reactivity Mouse, Rat, Human Clone FQS23996(C) Purity Tissue culture supernatant Conjugate Unconjugated Applications WB, IHC-P, IP, Flow Cyt Positive Control Human fetal liver, HepG2, Human fetal kidney and SH-SY5Y lysates. Human brain and kidney tissue. Permeabilized SH-SY5Y cells. Immunoprecipitation pellet from Human fetal liver lysate. Format Liquid Size 100 μl Buffer pH: 7.2; Preservative: 0.01% Sodium azide; Constituents: 49% PBS, 50% Glycerol, 0.05% BSA Preservative 0.01% Sodium Azide Storage Store at +4°C short term (1-2 weeks). Upon delivery aliquot. Store at -20°C long term. Avoid freeze / thaw cycle. Ship Shipped at 4°C. GENE INFORMATION 45-1 Ramsey Road, Shirley, NY 11967, USA Email: [email protected] Tel: 1-631-624-4882 Fax: 1-631-938-8221 1 © Creative Diagnostics All Rights Reserved Gene Name ADH5 alcohol dehydrogenase 5 (class III), chi polypeptide [ Homo sapiens ] Official Symbol ADH5 Synonyms
    [Show full text]
  • Alcohol Dehydrogenase
    Catalog Number: 100161, 151430, 159858 Alcohol Dehydrogenase Molecular Weight: 141,000 comprised of four subunits of 35,000 each.8 CAS # : 9031-72-5 Synonyms: ADH; Alcohol : NAD+ oxidoreductase Source: Yeast E.C. 1.1.1.1 Description: Alcohol dehydrogenase catalyzes the reaction: The common reaction in yeast cells is reduction of acetaldehyde to ethanol. In vitro the enzyme is generally assayed and used in a more alkaline pH region, a condition which favors a shift of equilibrium towards the oxidation of ethanol. Composition: A metalloenzyme containing four tightly bound zinc atoms per molecule.18,19 Per subunit, there are two distinct active site sulfhydryl groups which can be distinguished on the basis of differential reactivity with iodoacetate and butyl isocyanate.17 A histidine residue is considered to have an essential role.9 Optimum pH: For the oxidation of ethanol, pH 8.6-9.0 (the enzyme becomes increasingly unstable at higher pH). For the reduction of acetaldehyde a pH nearer to 7.0 is considered optimum. This reaction is kinetically complex with pH being only one factor determining optimum conditions. 1% Extinction coefficient: E 260= 12.6. Isoelectric point: 5.4.16 Solubility: Dissolves readily at 5 mg/ml in 0.01 M sodium phosphate pH 7.5 to give a clear colorless solution. Activators: Sulfyhydryl activating reagents, mercaptoethanol, dithiothreitol, cysteine, etc., and heavy metal chelating reagents. Specificity: Yeast ADH which has a more narrow specificity than that of liver enzyme, accepts ethanol, is somewhat active on the straight chain primary alcohols, and acts to a very limited extent on certain secondary and branched chain alcohols.10 NADP does not serve as coenzyme.
    [Show full text]