United States National Museum Bulletin 273

Total Page:16

File Type:pdf, Size:1020Kb

United States National Museum Bulletin 273 SMITHSONIAN INSTITUTION MUSEUM O F NATURAL HISTORY UNITED STATES NATIONAL MUSEUM BULLETIN 273 The Muscular System of the Red Howling Monkey MIGUEL A. SCHON The Johns Hopkins University School of Medicine SMITHSONIAN INSTITUTION PRESS WASHINGTON, D.C. 1968 Publications of the United States National Museum The scientific publications of the United States National Museum include two series, Proceedings of the United States National Museum and United States National Museum Bulletin. In these series are published original articles and monographs dealing with the collections and work of the Museum and setting forth newly acquired facts in the fields of anthropology, biology, geology, history, and technology. Copies of each publication are distributed to libraries and scientific organizations and to specialists and others interested in the various subjects. The Proceedings, begun in 1878, are intended for the publication, in separate form, of shorter papers. These are gathered in volumes, octavo in size, with the publication date of each paper recorded in the table of contents of the volume. In the Bulletin series, the first of which was issued in 1875, appear longer, separate publications consisting of monographs (occasionally in several parts) and volumes in which are collected works on related subjects. Bulletins are either octavo or quarto in size, depending on the needs of the presentation. Since 1902, papers relating to the botanical collections of the Museum have been published in the Bulletin series under the heading Contributions from the United States National Herbarium. This work forms number 273 of the Bulletin series. Frank A. Taylor Director, United States National Museum U.S. GOVERNMENT PRINTING OFFICE WASHINGTON : 1968 For sale by the Superintendent of Documents, U.S. Goverrunent Printing Office Washington, D.C. 20402 - Price $1.25 Contents Page Introduction 1 Muscles of the head 3 Trigeminal Group 3 Facial Group 13 Facial musculature 13 Deep musculature 20 Glossopharyngeal group 21 Vago-accessory group 22 Extraocular group 28 Lingual group 30 Muscles of the trunk 32 Expaxial musculature 32 Superficial oblique system 33 Long system 34 Deep oblique system 41 Short system 43 Hypoaxial musculature 46 Lateral group 46 Subvertebral group 56 Perineal group 59 Perineal musculature— Male 60 Perineal musculature—Female 62 Caudal group 64 Ventral group 65 Muscles of the upper extremity 71 Dorsal (extensor) musculature 71 Shoulder girdle group 71 Extrinsic series 71 Intrinsic series 81 Upper arm group 86 Forearm group 89 Superficial series, radial division 89 Superficial series, intermediate division 92 Superficial series, ulnar division 93 Deep series 96 Ventral (flexor) musculature 99 Shoulder girdle group 99 Extrinsic series 99 Intrinsic series 103 Upper arm group . 104 Forearm group 105 Superficial series, radial division 105 Superficial series, intermediate division 107 Superficial series, ulnar division 110 Deep series Ill VI U.S. NATIONAL MUSEUM BULLETIN 2 73 Muscles of the upper extremity— Continued Page Ventral (flexor) musculature— Continued Hand group 113 Superficial series, superficial layer 113 Superficial series, deep layer 116 Deep series, superficial layer 117 Deep series, deep layer 118 Muscles of the lower extremity 123 Dorsal musculature 123 Coxofemoral group 123 Prepelvic 123 Postpelvic 133 Cruropedal group 139 Lateral division 139 Anterior division 142 Pedal group 145 Ventral musculature 146 Coxofemoral group 146 Prepelvic 146 Postpelvic 149 Cruropedal group 152 Pedal group 159 Superficial series, superficial layer 159 Superficial series, deep layer 162 Deep series, superficial layer 162 Deep series, deep layer 163 Conclusions 166 Literature cited 177 Alphabetical listing of muscles 183 The Muscular System of the Red Howling Monkey Introduction The howling monkeys, which are members of the superfamily Ceboidea (Simpson, 1945), inhabit a very extensive area in the tropical and subtropical forests of Central and South America. They are well known among travelers and naturaUsts for their prodigious roars, which can be heard for very long distances. The voice-producing organs have been extensively studied in the past. The pertinent bibUography can be found in the sunmiary account of Starck and Schneider (1960) and the recent study by Kelemen and Sade (1960). Schon (1964a) added further information about the pharyngolingual musculature of this animal and emphasized certain functional aspects of these structures. The muscular system of the whole animal was investigated by Santi Sirena (1871), who compared it with man, the great apes, and some catarrhine monkeys; unfortunately, this work has remained little known among modern students of primate anatomy. Sirena used three specimens preserved in alcohol. They were tentatively classified as Mycetes fuscus, a synonym for the accepted name Alouatta fnsca (Hershkovitz, 1964). Two were males, but Sirena could not ascertain the sex of the other animal because its genito-urinary organs had been removed. Each one had fourteen pairs of ribs, and at least one was an adult. The purpose of my research was to compare the entire muscular system of Alouatta with that of the spider, woolly, and woolly spider monkeys, on the one hand, and the capuchin on the other. All of these animals have prehensile tails. The howler is usually grouped with Ateles, Lagothrix, and Brachyteles as a brachiator (Erikson, 1963) or as a semibrachiator (Ashton and Oxnard, 1963). Cehus is classified as a chmber (Erikson, 1963) or as a quadruped (Ashton and Oxnard, 1963). It is hoped that by contrasting the differences and similarities between the howUng monkey and the other four, the muscular adap- 1 2 U.S. NATIONAL MUSEUM BULLETIN 2 73 tations of Alouatta which have permitted this genus to follow its own evolutionary path will become evident. Four enbaimed specimens of the red howling monkey (Alouatta seniculus) were dissected under an Aloe Dazor fluorescent lamp with a magnifier head. Three were adult males, two from central (Guarico State) Venezuela, and one from eastern (Delta Amacuro Territory) Venezuela. The adult female was obtained through animal dealers centered in Leticia, Colombia. In addition, the masticatory and palatine muscles on the severed heads of two young adult females and one adult male from central Venezuela were studied. The ventral neck muscles were also observed in this male. It was not possible to observe the facial and dorsal trunk muscles in the female because they had been damaged while removing the brain and spinal cord. In the following account all this information has been pulled together. Variations are indicated wherever present. The data are organized according to a sUghtly modified version of a scheme developed by W. L. Straus, Jr. (unpublished), which is based on his own experience and on the previous work of A. B. Howell (1936, 1939). The recently approved Nomina Anatomica (1966) has been employed, but other commonly known anatomical terms have occasionally been used. To facilitate the comparison of the facial musculature of the howler with that of the Atelinae and Cehus, I have adhered to the terminology used by Schreiber (1928) and Huber (1930, 1931, 1933). It was found that some former students called their specimens by names accepted today only as synonyms. These are followed in this text by a parenthesis containing the name which is now accepted. In this work every muscle is first described and comments are added about observations made by other authors on the same structure of Alouatta. This is followed by the innervation and inferences about the function. The latter were based on the top- ographical arrangement and on what is presumed to be the action of the particular muscle in man or other primates (Howell and Straus, 1933). Finally, the comparative anatomy is reviewed. Sometimes groups of muscles are treated together in relation to functional and comparative aspects. This work is based on the dissertation presented by the author to the Graduate Board of the Johns Hopkins University in partial fulfillment of the requirements for the degree of Doctor of Philosophy, June 1966. It was aided in part by a training grant from the National Institutes of Health. I wish to express my appreciation to Dr. W. L. Straus, Jr., De- partment of Anatomy, Johns Hopkins University School of Medicine, for his guidance and indispensable advice, and to Dr. D. Bodian, Chairman of that Department, who arranged for financial support. MUSCULAR SYSTEM OF THE RED HOWLING MONKEY 3 The collaboration of Drs. G. Bergold and L. Carbonell of the Institute Venezolano de Investigaciones Cient'ficas, Dr. E. Mondolfi, Prof. A. Bodini, Prof. M. de Montbrun, Prof. R. Bodini, and Mr. C. Sanchez of the Universidad Central de Venezuela, and Mr. W. Pantin is here acknowledged. Mrs. Ranice Birch Crosby, Director of the Department of Arts as Applied to Medicine, Johns Hopkins University School of Medicine, gave most valuable help with figures 23 and 35. Mrs. R. Kimmerer, Mrs. P. Spencer, and Mrs. O. Schon helped in typing the manuscript. Muscles of the Head Trigeminal Group M. temporalis: It is an extensive but not very thick triangular muscle whose base corresponds to the linea temporalis and lambdoid crest, the apex to the insertion on the mandible (fig. 1). The linea is more marked in older individuals of both sexes where it is seen as a long, sharp ridge extending from about the middle of the lambdoid crest to the superciliary arch. Origin of the muscle is by fleshy fibers from (1) the back of the orbit on the facies temporalis of the alisphenoid and frontaUs. A crest which follows the sphenomalar articulation is occasionally seen at the point of attachment of these fibers; (2) the entire medial waU of the temporal fossa where its fibers ascend to the temporal line; (3) the lambdoid crest; and (4) the cranial side of the transverse root of the zygoma. Finally, (5) many bundles come from the caudal half of the inner surface of the temporal aponeurosis and also invade the jugal arch on its deep aspect.
Recommended publications
  • Selecting Different Approaches for Palate and Pharynx Surgery
    SPECIAL ISSUE 4: INVITED ARTICLE Selecting Different Approaches for Palate and Pharynx Surgery: Palatopharyngeal Arch Staging System Rodolfo Lugo-Saldaña1 , Karina Saldívar-Ponce2 , Irina González-Sáez3 , Daniela Hernández-Sirit4 , Patricia Mireles-García5 ABSTRACT The examination of the anatomical structures involved in the upper airway collapse in patients with the obstructive sleep apnea-hypopnea syndrome (OSAHS) is a key for integrated evaluation of patients. Our proposal is for a noninvasive classification system that guides us about the presence of anatomical differences between the palatopharyngeal muscle (PFM). The functions of the PFM are narrowing the isthmus, descending the palate, and raising the larynx during swallowing; these characteristics give the PFM a special role in the collapse of the lateral pharyngeal wall. Complete knowledge of the anatomy and classification of different variants can guide us to choose the appropriate surgical procedures for the lateral wall collapse. Until now there is not a consensus about description of the trajectory or anatomical variants of the PFM into oropharynx, the distance between both muscles, and the muscle tone. Here we also present the relationship between the lateral wall surgeries currently available (lateral pharyngoplasty by Cahali, expansion sphincteroplasty by Pang, relocation pharyngoplasty by Li, Roman blinds pharyngoplasty by Mantovani, and barbed sutures pharyngoplasty by Vicini) with the proposed classification of the palatopharyngeal arch staging system (PASS). Keywords:
    [Show full text]
  • Iliopsoas Tendonitis/Bursitis Exercises
    ILIOPSOAS TENDONITIS / BURSITIS What is the Iliopsoas and Bursa? The iliopsoas is a muscle that runs from your lower back through the pelvis to attach to a small bump (the lesser trochanter) on the top portion of the thighbone near your groin. This muscle has the important job of helping to bend the hip—it helps you to lift your leg when going up and down stairs or to start getting out of a car. A fluid-filled sac (bursa) helps to protect and allow the tendon to glide during these movements. The iliopsoas tendon can become inflamed or overworked during repetitive activities. The tendon can also become irritated after hip replacement surgery. Signs and Symptoms Iliopsoas issues may feel like “a pulled groin muscle”. The main symptom is usually a catch during certain movements such as when trying to put on socks or rising from a seated position. You may find yourself leading with your other leg when going up the stairs to avoid lifting the painful leg. The pain may extend from the groin to the inside of the thigh area. Snapping or clicking within the front of the hip can also be experienced. Do not worry this is not your hip trying to pop out of socket but it is usually the iliopsoas tendon rubbing over the hip joint or pelvis. Treatment Conservative treatment in the form of stretching and strengthening usually helps with the majority of patients with iliopsoas bursitis. This issue is the result of soft tissue inflammation, therefore rest, ice, anti- inflammatory medications, physical therapy exercises, and/or injections are effective treatment options.
    [Show full text]
  • 14-Anatomy of Forearm
    FOREARM By : Prof.Saeed Abulmakarem. Dr. Sanaa Al-Sharawy OBJECTIVES §At the end of this lecture, the student should able to : §List the names of the Flexors Group of Forearm (superficial & deep muscles). §Identify the common flexor origin of flexor muscles and their innervation & movements. §Identify supination & poronation and list the muscles produced these 2 movements. §List the names of the Extensor Group of Forearm (superficial & deep muscles). §Identify the common extensor origin of extensor musles and their innervation & movements. n The forearm extends from elbow to wrist. n It posses two bones radius laterally & Ulna medially. n The two bones are connected together by the interosseous membrane. n This membrane allows movement of Pronation and Supination while the two bones are connected together. n Also it gives origin for the deep muscles. § The forearm is Fascial Compartments of the Forearm enclosed in a sheath of deep fascia, which is attached to the posterior border of the ulna . §This fascial sheath, together with the interosseous membrane & fibrous intermuscular septa, divides the forearm into compartments, each having its own muscles, nerves, and blood supply. These muscles: 8 FLEXOR GROUP § Act on the elbow & wrist joints and those of the fingers. § Form fleshy masses in the proximal part and become tendinous in the distal part of the forearm. •Arranged in three groups: I-Superficial: 4 Ø Pronator teres Ø Flexor carpi radialis Ø Palmaris longus III- Deep: 3 Ø Flexor carpi ulnaris Ø Flexor digitorum profundus II-Intermediate: 1 Ø Flexor pollicis longus Ø Ø Flexor digitorum superficialis Pronator quadratus n Superficial Flexors: n They arise - more or less- from the common flexor origin (front of medial epicondyle).
    [Show full text]
  • The Effect of Stretching Hamstring, Gastrocnemius, Iliopsoas
    Open Journal of Therapy and Rehabilitation, 2015, 3, 139-145 Published Online November 2015 in SciRes. http://www.scirp.org/journal/ojtr http://dx.doi.org/10.4236/ojtr.2015.34019 The Effect of Stretching Hamstring, Gastrocnemius, Iliopsoas and Back Muscles on Pain and Functional Activities in Patients with Chronic Low Back Pain: A Randomized Clinical Trial Hamada E. Seif1, Aqeel Alenazi2, Sahar Mahmoud Hassan1, Shaji John Kachanathu3, Ashraf R. Hafez1* 1Cairo UniversityHospital, Cairo University, Cairo, Egypt 2Physical Therapy and Rehabilitation Department, College of Applied Medical Sciences, Salman Bin Abdulaziz University, Alkharj, Saudi Arabia 3Collage of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia Received 15 September 2015; accepted 6 November 2015; published 9 November 2015 Copyright © 2015 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract A back pain lasting more than 12 weeks has been defined as a chronic low back pain (LBP) [1]. More than half of people suffer from LBP [1]. The purpose of this study was to examine the effect of gastrocnemius muscle stretching in the treatment of chronic low back pain. Methods: Forty pa- tients with chronic low back pain, ages ranging from 25 to 40 years, were recruited and divided randomly into two groups. The control group followed a physical therapy program that included stretching exercises for back, hamstring and iliopsoas muscles. Strengthening exercises for abdo- minal muscle and postural instructions for activities of daily living were also performed. The ex- perimental group followed the same control-group exercises with the addition of stretching exer- cises for gastrocnemius muscles.
    [Show full text]
  • Gross Anatomy
    www.BookOfLinks.com THE BIG PICTURE GROSS ANATOMY www.BookOfLinks.com Notice Medicine is an ever-changing science. As new research and clinical experience broaden our knowledge, changes in treatment and drug therapy are required. The authors and the publisher of this work have checked with sources believed to be reliable in their efforts to provide information that is complete and generally in accord with the standards accepted at the time of publication. However, in view of the possibility of human error or changes in medical sciences, neither the authors nor the publisher nor any other party who has been involved in the preparation or publication of this work warrants that the information contained herein is in every respect accurate or complete, and they disclaim all responsibility for any errors or omissions or for the results obtained from use of the information contained in this work. Readers are encouraged to confirm the infor- mation contained herein with other sources. For example and in particular, readers are advised to check the product information sheet included in the package of each drug they plan to administer to be certain that the information contained in this work is accurate and that changes have not been made in the recommended dose or in the contraindications for administration. This recommendation is of particular importance in connection with new or infrequently used drugs. www.BookOfLinks.com THE BIG PICTURE GROSS ANATOMY David A. Morton, PhD Associate Professor Anatomy Director Department of Neurobiology and Anatomy University of Utah School of Medicine Salt Lake City, Utah K. Bo Foreman, PhD, PT Assistant Professor Anatomy Director University of Utah College of Health Salt Lake City, Utah Kurt H.
    [Show full text]
  • Take Care of Your Feet .Pub
    Newsletter Feb / Mar 2018 www.chiropractorcapalaba.websyte.com.au Publisher Dr. Patrick J. Shwaluk Educated - Safe - Effective Doctor of Chiropractic Spine Care Certified Chiropractic Sports Physician Many patients consider this Take care of your feet Feet are complicated. Immobilizing feet by newsletter as a squeezing them into tight fitting reminder to come in shoes and standing on them all for their monthly day can causes the muscles to good spinal health shorten and cramp. When the check up. Now is a arches drop the joints, fascia, tendons and ligaments to get over good time to book stretched, thicken with scar tissue, your “tune up” stiffen, become brittle and painful. appointment . By the time someone experiences plantar fasciitis they have a drop in one or more of the arches, stiffening Figure 2: Plantar Facia of some of the joints of the feet Clinic Hours and a 50% thickening Figure 1: 3 arches The stretches in figure 3 should be held for of the plantar fascia three minutes each. Long duration stretches, - Mon 10am 7pm ligament, figure 2. referred to as “melting stretches”, are required - Tues 9 am 12pm to cause plastic deformation of the fascia and - Wed 10am 6pm Each foot has 26 bones and 3 arches, an increase in its length. Short duration - Thurs 3pm 7pm figure 1 . The transverse arch, A-B, is stretches will feel good and mobilize the feet - Fri 9am 4pm associated with metatarsalgia and Morton’s but not change the overall length of the fascia. - Sat 9:30 am 12:30pm neuromas. The lateral longitudinal arch, B-C, is associated with lateral foot pain.
    [Show full text]
  • Lower Limb Osteofascial Compartments
    Lower limb Osteofascial compartments Zdenek Halata, Department of Anatomy, First Faculty of Medicine, Charles University, Prague Pelvis – osteofascial compartments: 1. Lacuna vasorum et Lacuna musculorum: between lig. inguinale (spina iliaca ant. sup. and tuberculum pubicum) and os ilium and ramus superior ossis pubis a) Lacuna vasorum – A.iliaca externa – A. femoralis V.iliaca externa – V. femoralis b) Lacuna musculorum M. iliopsoas N. femoralis N. cutaneus femoris lateralis 2. Canalis obturatorius Vasa obturatoria et N. obturatorius 3. Foramen suprapiriforme Vasa glutea sup., N. gluteus superior 4. Foramen infrapiriforme Vasa glutea inf., N.gluteus inf., N.cutaneus femoris post., N. ischiadicus Thigh – osteofascial compartments: 1. compartment of adductor muscles: m. adductor magnus, longus and brevis m. gracilis with separate compartment 1. compartment of extensor muscles: m.quadriceps femoris, m.sartorius with separate compartment 3. compartment of flexor muscles: m.semimebranosus, m.semitendinosus m.biceps femoris Septum intermusculare femoris laterale Septum intermusculare femoris mediale: with a. and v. femoralis and N. saphenus Septum intermusculare femoris posterius: with n.ischiadicus, aa.perforantes and vv.perforantes 4. Canalis vastoadductorius: between fossa iliopectinea and fossa poplitea Calf - osteofascial compartments Compartment of extensor muscles: m.tibialis anterior, m.extensor hallucis longus, m.extensor digitorum longus Compartment of superficial flexor muscles: m.soleus, m.gastrocnemius Compartment of deep flexor muscles: m.tibialis posterior, m.flexor hallucis longus, m.flexor digitorum longus Compartment of peroneus muscles: m.peroneus longus, m.peroneus brevis Fascia cruris with superficial and deep layer (lamina superficialis and profunda) Membrana interossea cruris Septum intermusculare cruris anterius Septum intermusculare cruris posterius Foot - osteofascial compartments Compartment with extensor tendons in synovial sheaths Compartment with flexors for the 5.
    [Show full text]
  • Head & Neck Surgery Course
    Head & Neck Surgery Course Parapharyngeal space: surgical anatomy Dr Pierfrancesco PELLICCIA Pr Benjamin LALLEMANT Service ORL et CMF CHU de Nîmes CH de Arles Introduction • Potential deep neck space • Shaped as an inverted pyramid • Base of the pyramid: skull base • Apex of the pyramid: greater cornu of the hyoid bone Introduction • 2 compartments – Prestyloid – Poststyloid Anatomy: boundaries • Superior: small portion of temporal bone • Inferior: junction of the posterior belly of the digastric and the hyoid bone Anatomy: boundaries Anatomy: boundaries • Posterior: deep fascia and paravertebral muscle • Anterior: pterygomandibular raphe and medial pterygoid muscle fascia Anatomy: boundaries • Medial: pharynx (pharyngobasilar fascia, pharyngeal wall, buccopharyngeal fascia) • Lateral: superficial layer of deep fascia • Medial pterygoid muscle fascia • Mandibular ramus • Retromandibular portion of the deep lobe of the parotid gland • Posterior belly of digastric muscle • 2 ligaments – Sphenomandibular ligament – Stylomandibular ligament Aponeurosis and ligaments Aponeurosis and ligaments • Stylopharyngeal aponeurosis: separates parapharyngeal spaces to two compartments: – Prestyloid – Poststyloid • Cloison sagittale: separates parapharyngeal and retropharyngeal space Aponeurosis and ligaments Stylopharyngeal aponeurosis Muscles stylohyoidien Stylopharyngeal , And styloglossus muscles Prestyloid compartment Contents: – Retromandibular portion of the deep lobe of the parotid gland – Minor or ectopic salivary gland – CN V branch to tensor
    [Show full text]
  • Compiled for Lower Limb
    Updated: December, 9th, 2020 MSI ANATOMY LAB: STRUCTURE LIST Lower Extremity Lower Extremity Osteology Hip bone Tibia • Greater sciatic notch • Medial condyle • Lesser sciatic notch • Lateral condyle • Obturator foramen • Tibial plateau • Acetabulum o Medial tibial plateau o Lunate surface o Lateral tibial plateau o Acetabular notch o Intercondylar eminence • Ischiopubic ramus o Anterior intercondylar area o Posterior intercondylar area Pubic bone (pubis) • Pectineal line • Tibial tuberosity • Pubic tubercle • Medial malleolus • Body • Superior pubic ramus Patella • Inferior pubic ramus Fibula Ischium • Head • Body • Neck • Ramus • Lateral malleolus • Ischial tuberosity • Ischial spine Foot • Calcaneus Ilium o Calcaneal tuberosity • Iliac fossa o Sustentaculum tali (talar shelf) • Anterior superior iliac spine • Anterior inferior iliac spine • Talus o Head • Posterior superior iliac spine o Neck • Posterior inferior iliac spine • Arcuate line • Navicular • Iliac crest • Cuboid • Body • Cuneiforms: medial, intermediate, and lateral Femur • Metatarsals 1-5 • Greater trochanter • Phalanges 1-5 • Lesser trochanter o Proximal • Head o Middle • Neck o Distal • Linea aspera • L • Lateral condyle • L • Intercondylar fossa (notch) • L • Medial condyle • L • Lateral epicondyle • L • Medial epicondyle • L • Adductor tubercle • L • L • L • L • 1 Updated: December, 9th, 2020 Lab 3: Anterior and Medial Thigh Anterior Thigh Medial thigh General Structures Muscles • Fascia lata • Adductor longus m. • Anterior compartment • Adductor brevis m. • Medial compartment • Adductor magnus m. • Great saphenous vein o Adductor hiatus • Femoral sheath o Compartments and contents • Pectineus m. o Femoral canal and ring • Gracilis m. Muscles & Associated Tendons Nerves • Tensor fasciae lata • Obturator nerve • Iliotibial tract (band) • Femoral triangle: Boundaries Vessels o Inguinal ligament • Obturator artery o Sartorius m. • Femoral artery o Adductor longus m.
    [Show full text]
  • Neurology of the Upper Limb
    Neurology of the Upper limb Donald Sammut Hand Surgeon Kings Upper Limb Anatomy plus lecture notes The$Neck$ The$Nerve$roots$which$supply$the$Upper$Limb$are$C5$to$T1$ Pre<fixed$(C4$to$C8)$and$Post<fixed$(C6$to$T2)$plexus$not$uncommon.$ Also$common$contributions$from$C4$and$from$T2$in$a$normally$rooted$plexus.$ $ The$anterior$nerve$roots$emerge$between$the$vertebrae$and$immediately$pass$ $through$the$first$area$of$possible$compression:$ The$root$nerve$canal$is$bounded$$ Anteriorly$by$the$posterior$margin$of$the$intervertebral$disc$and$$ Posteriorly,$by$the$facet$joint$between$vertebrae.$ $ Pathology$of$the$disc,$or$joint,$or$both,$can$narrow$this$channel$and$compress$ $the$nerve$root$ The$roots$emerge$from$the$cervical$spine$into$the$plane$between$$ Scalenius$Anterior$and$Scalenius$Medius.$$ $ Scalenius*Anterior:** Origin:$Anterior$tubercles$of$Cervical$vertebae$C3$to$6$(C6$tubercle$is$the$Carotid$tubercle)$ Insertion:$The$scalene$tubercle$on$inner$border/upper$surface$1st$rib$ $ Scalenius*Medius:* Origin:$Posterior$tubercles$of$all$cervical$vertebrae$ Insertion:$Quadrangular$area$between$the$neck$and$subclavian$groove$1st$rib$ $ Exiting$from$the$Scalenes,$the$trunks$lie$in$the$posterior$triangle$of$the$neck.$ The$posterior$triangle$is$bounded$anteriorly$by$SternoCleidoMastoid$and$$ posteriorly$by$the$Trapezius.$ The$inferior$border$is$the$clavicle$.$ The$apex$of$the$triangle$superiorly$is$at$the$back$of$the$skull$on$the$superior$nuchal$line$ $ $ The$Posterior$Triangle$ SternoCleidoMastoid$ Trapezius$ Scalenius$Medius$ Scalenius$Anterior$
    [Show full text]
  • Deep Neck Infections 55
    Deep Neck Infections 55 Behrad B. Aynehchi Gady Har-El Deep neck space infections (DNSIs) are a relatively penetrating trauma, surgical instrument trauma, spread infrequent entity in the postpenicillin era. Their occur- from superfi cial infections, necrotic malignant nodes, rence, however, poses considerable challenges in diagnosis mastoiditis with resultant Bezold abscess, and unknown and treatment and they may result in potentially serious causes (3–5). In inner cities, where intravenous drug or even fatal complications in the absence of timely rec- abuse (IVDA) is more common, there is a higher preva- ognition. The advent of antibiotics has led to a continu- lence of infections of the jugular vein and carotid sheath ing evolution in etiology, presentation, clinical course, and from contaminated needles (6–8). The emerging practice antimicrobial resistance patterns. These trends combined of “shotgunning” crack cocaine has been associated with with the complex anatomy of the head and neck under- retropharyngeal abscesses as well (9). These purulent col- score the importance of clinical suspicion and thorough lections from direct inoculation, however, seem to have a diagnostic evaluation. Proper management of a recog- more benign clinical course compared to those spreading nized DNSI begins with securing the airway. Despite recent from infl amed tissue (10). Congenital anomalies includ- advances in imaging and conservative medical manage- ing thyroglossal duct cysts and branchial cleft anomalies ment, surgical drainage remains a mainstay in the treat- must also be considered, particularly in cases where no ment in many cases. apparent source can be readily identifi ed. Regardless of the etiology, infection and infl ammation can spread through- Q1 ETIOLOGY out the various regions via arteries, veins, lymphatics, or direct extension along fascial planes.
    [Show full text]
  • Brachial Plexus and Branches  Axillary A
    Regional Anatomy of the Upper Limb 1 Wu Genghua Medical College Yangzhou University Anterior surface of the •Incisions: Upper Limb Make the skin incisions indicated in figure and reflect the skin flaps. Be careful not to cut too deep. As you remove the skin, look for the cephalic v., basilic v. and median cubital v. Superficial veins and nerves Mamma Structures Contains skin, mammary glands and adipose tissue Consists of 15 to 20 Lobes of mammary gland that radiate outward from the nipple lactiferous duct lactiferous sinuse Suspensory ligaments of breast (cooper’s ligaments): connective tissue septa that extend from the skin to the deep fascia Pectoral Region Superficial structures Superficial n. Supraclavicular n. Anterior cutaneous branches of intercostal n. lateral cutaneous branches of intercostal n. Muscles connecting the upper limb to the thoracic wall Pectoralis major 胸大肌 Subclevius 锁骨下肌 Pectoralis minor 胸小肌 Serratus anterior 前锯肌 Pectoral Region Deep structures clavipectoral fascia The deep fascia which extends between subclavius, coracoid process and pectoralis minor muscles The structures pass through the clavipectoral fascia . Cephalic v. Thoracoacromial a. Lateral pectoral n. Axillary region 腋区 Boundaries of the axillary fossa Apex is bounded by Middle 1/3 of clavicle Lateral border of first rib Upper border of the scapula Base is formed by the skin stretching between the anterior and posterior walls Anterior wall Formed by pectoralis major, pectoralis minor and subclavius muscles Boundaries of the axillary fossa The posterior wall latissimus dorsi teres major subscapularis and scapula Trilateral and quadrilateral space The posterior humeral circumflex a. and axillary n. pass through the quadrilateral foramen.
    [Show full text]