FAU Institutional Repository

Total Page:16

File Type:pdf, Size:1020Kb

FAU Institutional Repository FAU Institutional Repository http://purl.fcla.edu/fau/fauir This paper was submitted by the faculty of FAU’s Harbor Branch Oceanographic Institute. Notice: ©1997 Inter-Research Science Center. This manuscript is available at http://www.int-res.com/ and may be cited as: Maldonado, M., George, S. B., Young, C. M., & Vaquerizo, I. (1997). Depth regulation in parenchymella larvae of a demosponge: relative roles of skeletogenesis, biochemical changes and behavior. Marine Ecology Progress Series, 148, 115-124. doi:10.3354/meps148115 MARINE ECOLOGY PROGRESS SERIES Vol. 148: 115-124, 1997 Published March 20 Mar Ecol Prog Ser /"'> Depth regulation in parenchymella larvae of a demosponge: relative roles of skeletogenesis, biochemical changes and behavior Manuel Maldonado", Sophie B. George··, Craig M. Young, Isabel Vaquerizo Department of Larval Ecology, Harbor Branch Oceanographic Institution, 5600 U.S. Hwy 1 North, Fort Pierce, Florida 34946, USA ABSTRACT: To assess factors that influence depth regulation of sponge larvae, we documented onto­ genetic changes in larval size and shape, lipid and protein content, skeletal development, and photo­ response in Sigmadocia caerulea, a shallow-water demosponge in the order Haplosderida. We also measured size and biochemical differences among larvae from different parents to determine how depth regulation might vary across the population. Larvae were photonegative during the entire free­ swimming period. Younger larvae swam faster than older larvae, but older larvae swam away from light for greater time and distances. Sinking rates of anesthetized larvae increased as a function of age, not because of lipid depletion or shape changes, but because addition of spicules increased density. Neither lipid nor protein changed significantly during larval life, but protein content increased abruptly just after settlement. Minor differences in length and protein content among offspring from different parents had no apparent effect on depth regulation. Both active movement and passive sinking play roles in moving late-stage larvae towards the sea floor, but increase in larval spicular mass appears to be the most important factor. KEY WORDS: Depth regulation' Larval behavior· Larval composition' Photobehavior· Sponge larvae INTRODUCTION vae experience an increase in mass and a commensu­ rate reduction in buoyancy near the end of larval life. Marine invertebrate larvae must generally have The relative roles of active behaviors and passive sink­ mechanisms for remaining suspended while dispers­ ing have been discussed for crustacean (Sulkin 1984) ing and for returning to the bottom prior to settlement. and echinoderm (Emlet 1983) larvae, but the proxi­ Thorson (1964) proposed that ontogenetic changes in mate factors influencing sinking rate have seldom behavior, particularly photoresponses, often mediate been analyzed. the transition from the plankton to the benthos. How­ Passive sinking rate of a small larva heavier than ever, changes in the buoyancy of larvae can also playa seawater is determined by the balance between the significant role. For example, ophiuroid larvae often upward force of drag and the downward force of grav­ undergo metamorphosis in the water column, there­ ity pulling on the larva's mass. If we assume a Reynolds after falling to the bottom passively as heavy ossicles number (Re) less than 1. a spherical larva of radius a develop and ciliary swimming ability is lost (Emlet sinks at a terminal velocity U calculated as 1983). Anecdotal observations indicate that many lar- where II is the dynamic viscosity of seawater, P is the Present addresses: density of the larva, Pois the density of seawater and g 'Department of Aquatic Ecology, Centro de Estudios Avan­ is the gravitational constant (Vogel 1981). Drag can be zados de Blanes (eSIC), Camino de Santa Barbara sin, E­ increased or decreased during ontogeny by shape 17300 Blanes, Girona, Spain. E-mail: [email protected] ..Department of Biology, Georgia Southern University, changes, though such differences tend to be small at Statesboro, Georgia 30460-8042, USA low Reynolds numbers. For example, at Re = 1, a pro- © Inter-Research 1997 Resale of full article not permitted 116 Mar Ecol Prog Ser 148: 115-124, 1997 late spheroid twice as long as its diameter has a in the Indian River Lagoon near Fort Pierce, Florida, slightly lower drag coefficient (11.17) than a sphere USA, during August and September 1994 and 1995. (11.69) of the same volume (Happel & Brenner 1973, Adult sponges in this region are light blue, usually Vogel 1981). Larvae may undergo ontogenetic erect and branched, and up to 30 cm tall. changes in density by metabolizing buoyant lipids, Larval release often occurred spontaneously shortly synthesizing heavier proteins, or secreting skeletal after collection of ripe adults. Larval release was also elements. triggered artificially by exposing adults to air for a few Sponges have no integrated nervous system in either seconds (Maldonado & Young 1996). Larvae were cul­ the adult or larval stage, so their behaviors should be tured at room temperature in glass or polystyrene very limited. Nevertheless, it has been reported that bowls of 0.45 urn filtered seawater that was replaced sponge larvae switch the signs of their phototactic and daily (salinity = 34 %0, temperature = 22 to 24°C). geotactic responses with age (e.g. Wilson 1935, Hart­ Larval size and shape. All experimental data were man 1958, Warburton 1966, Berqquist et al. 1970, 1979, checked for normality (Kolmogorov-Smirnov test) and Fell 1974, Wapstra & van Soest 1987). Forward (1988) homoscedasticity (Levene median test) prior to analy­ has discussed potential laboratory artifacts associated sis. When, after appropriate transformation, data failed with measurements of phototaxis, and Sulkin (1990) either normality or homoscedasticity tests, they were has encompassed the conditions under which such analyzed by appropriate non-parametric methods. measurements are useful. Although the responses to Changes in larval length and larval shape over time light and gravity in the laboratory may not resemble were determined by diqitizinq the images of live lar­ the actual behaviors exhibited in the field, changes in vae with a Microcomp image analysis system linked to response between stages are nevertheless indicative of a Zeiss dissecting microscope. physiological processes taking place within the larvae. Lengths of 413 larvae were used to estimate the lar­ All known sponge larvae are lecithotrophic and pre­ val size distribution at the population level. Differences sumably metabolize storage products durinq the in length among 5 age groups of larvae (2, 6, 12, 24, course of larval life, so it is also possible that density and 30 h old larvae; N =50,25,50,87, and 76, respec­ changes help larvae move toward the bottom. There tively) from a single parent were tested by l-way are, however, no data Whatsoever on the biochemical analysis of variance. Differences in the lengths of 6 h composition of larval or juvenile demosponges. old larvae obtained from 5 different parents collected In this study, we document various changes that from the same population were also examined by 1­ occur during larval life of Sigmadocia caerulea (Hech­ way analysis of variance (N = 25). tel 1965), a shallow-water demonsponge in the order Overall changes in larval shape over time were Haplosclerida. This species is common throughout the assessed by use of the circularity index (C) of Turon & Caribbean and on the Pacific coast of Panama (Zea Becerro (1992): C = A.IAp , where A. is the area of the 1987). Our goal was to measure ontogenetic changes object, and A p is the area of a circle with a perimeter in the various parameters that could influence the abil­ equivalent to that of the object. Areas and perimeters ity of larvae to find the bottom at the end of larval life, projected by larvae on the bottoms of the containers namely: (1) changes in larval shape and size that might were used to calculate the larval circularity index. Dif­ influence drag, (2) changes in photoresponse and ferences in the circularity index among 5 age groups swimming speed that might cause larvae to move (2,6, 12,24, and 30 h old larvae; N = 50,27,50,51, and away from the surface, and (3) changes in biochemical 26, respectively) were tested by l-way analysis of vari­ composition [i.e. relative amounts of proteins and ance. buoyant lipids) and in secreted inorganic spicules that Larval swimming, orientation, and sinking. The could influence larval density. In this way, we hoped to length of the swimming period under laboratory condi­ determine which factors were most important in bring­ tions was determined by monitoring larvae held in 15 ing larvae to the bottom for settlement. We also mea­ small polystyrene petri dishes over a period of 17.5 d. sured some of these parameters in larvae from differ­ Each dish contained 10 larvae in 30 ml of 0.45 urn fil­ ent parents to determine how the factors influencing tered seawater (salinity = 34 %0, temperature = 22 to depth regulation might vary across a population. 24°C). Phototactic and photokinetic responses were investi­ gated by recording movements of 6 and 30 h old larvae MATERIALS AND METHODS (N = 25 at each age) in the presence of a bright unidi­ rectional light. As we were only interested in the Collection and maintenance of adults and larvae. intrinsic ability of larvae to respond to light, we made We collected ripe individuals of Sigmadocia caerulea no attempt to mimic the angular light distributions in from boulders and cobbles between 0.5 and 2 m deep the field (Forward 1988). Instead, we used a standard- Maldonado et al.: Depth regulation in demosponge parenchymella larvae 117 ized light source for all tests. The light source was a 3.4 % ammonium formate, mounted on tared alu­ 150 W, cold fiber-optic incandescent light filtered minum boats and dried to constant weight at 80°C. through a neutral density diffuser.
Recommended publications
  • Spicule Formation in Calcareous Sponges: Coordinated Expression
    www.nature.com/scientificreports OPEN Spicule formation in calcareous sponges: Coordinated expression of biomineralization genes and Received: 17 November 2016 Accepted: 02 March 2017 spicule-type specific genes Published: 13 April 2017 Oliver Voigt1, Maja Adamska2, Marcin Adamski2, André Kittelmann1, Lukardis Wencker1 & Gert Wörheide1,3,4 The ability to form mineral structures under biological control is widespread among animals. In several species, specific proteins have been shown to be involved in biomineralization, but it is uncertain how they influence the shape of the growing biomineral and the resulting skeleton. Calcareous sponges are the only sponges that form calcitic spicules, which, based on the number of rays (actines) are distinguished in diactines, triactines and tetractines. Each actine is formed by only two cells, called sclerocytes. Little is known about biomineralization proteins in calcareous sponges, other than that specific carbonic anhydrases (CAs) have been identified, and that uncharacterized Asx-rich proteins have been isolated from calcitic spicules. By RNA-Seq and RNA in situ hybridization (ISH), we identified five additional biomineralization genes inSycon ciliatum: two bicarbonate transporters (BCTs) and three Asx-rich extracellular matrix proteins (ARPs). We show that these biomineralization genes are expressed in a coordinated pattern during spicule formation. Furthermore, two of the ARPs are spicule- type specific for triactines and tetractines (ARP1 orSciTriactinin ) or diactines (ARP2 or SciDiactinin). Our results suggest that spicule formation is controlled by defined temporal and spatial expression of spicule-type specific sets of biomineralization genes. By the process of biomineralization many animal groups produce mineral structures like skeletons, shells and teeth. Biominerals differ in shape considerably from their inorganic mineral counterparts1.
    [Show full text]
  • Bryozoan Studies 2019
    BRYOZOAN STUDIES 2019 Edited by Patrick Wyse Jackson & Kamil Zágoršek Czech Geological Survey 1 BRYOZOAN STUDIES 2019 2 Dedication This volume is dedicated with deep gratitude to Paul Taylor. Throughout his career Paul has worked at the Natural History Museum, London which he joined soon after completing post-doctoral studies in Swansea which in turn followed his completion of a PhD in Durham. Paul’s research interests are polymatic within the sphere of bryozoology – he has studied fossil bryozoans from all of the geological periods, and modern bryozoans from all oceanic basins. His interests include taxonomy, biodiversity, skeletal structure, ecology, evolution, history to name a few subject areas; in fact there are probably none in bryozoology that have not been the subject of his many publications. His office in the Natural History Museum quickly became a magnet for visiting bryozoological colleagues whom he always welcomed: he has always been highly encouraging of the research efforts of others, quick to collaborate, and generous with advice and information. A long-standing member of the International Bryozoology Association, Paul presided over the conference held in Boone in 2007. 3 BRYOZOAN STUDIES 2019 Contents Kamil Zágoršek and Patrick N. Wyse Jackson Foreword ...................................................................................................................................................... 6 Caroline J. Buttler and Paul D. Taylor Review of symbioses between bryozoans and primary and secondary occupants of gastropod
    [Show full text]
  • Sponge–Microbe Interactions on Coral Reefs: Multiple Evolutionary Solutions to a Complex Environment
    fmars-08-705053 July 14, 2021 Time: 18:29 # 1 REVIEW published: 20 July 2021 doi: 10.3389/fmars.2021.705053 Sponge–Microbe Interactions on Coral Reefs: Multiple Evolutionary Solutions to a Complex Environment Christopher J. Freeman1*, Cole G. Easson2, Cara L. Fiore3 and Robert W. Thacker4,5 1 Department of Biology, College of Charleston, Charleston, SC, United States, 2 Department of Biology, Middle Tennessee State University, Murfreesboro, TN, United States, 3 Department of Biology, Appalachian State University, Boone, NC, United States, 4 Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, United States, 5 Smithsonian Tropical Research Institute, Panama City, Panama Marine sponges have been successful in their expansion across diverse ecological niches around the globe. Pioneering work attributed this success to both a well- developed aquiferous system that allowed for efficient filter feeding on suspended organic matter and the presence of microbial symbionts that can supplement host Edited by: heterotrophic feeding with photosynthate or dissolved organic carbon. We now know Aldo Cróquer, The Nature Conservancy, that sponge-microbe interactions are host-specific, highly nuanced, and provide diverse Dominican Republic nutritional benefits to the host sponge. Despite these advances in the field, many current Reviewed by: hypotheses pertaining to the evolution of these interactions are overly generalized; these Ryan McMinds, University of South Florida, over-simplifications limit our understanding of the evolutionary processes shaping these United States symbioses and how they contribute to the ecological success of sponges on modern Alejandra Hernandez-Agreda, coral reefs. To highlight the current state of knowledge in this field, we start with seminal California Academy of Sciences, United States papers and review how contemporary work using higher resolution techniques has Torsten Thomas, both complemented and challenged their early hypotheses.
    [Show full text]
  • Examples of Sea Sponges
    Examples Of Sea Sponges Startling Amadeus burlesques her snobbishness so fully that Vaughan structured very cognisably. Freddy is ectypal and stenciling unsocially while epithelial Zippy forces and inflict. Monopolistic Porter sailplanes her honeymooners so incorruptibly that Sutton recirculates very thereon. True only on water leaves, sea of these are animals Yellow like Sponge Oceana. Deeper dives into different aspects of these glassy skeletons are ongoing according to. Sponges theoutershores. Cell types epidermal cells form outer covering amoeboid cells wander around make spicules. Check how These Beautiful Pictures of Different Types of. To be optimal for bathing, increasing with examples of brooding forms tan ct et al ratios derived from other microscopic plants from synthetic sponges belong to the university. What is those natural marine sponge? Different types of sponges come under different price points and loss different uses in. Global Diversity of Sponges Porifera NCBI NIH. Sponges EnchantedLearningcom. They publish the outer shape of rubber sponge 1 Some examples of sponges are Sea SpongeTube SpongeVase Sponge or Sponge Painted. Learn facts about the Porifera or Sea Sponges with our this Easy mountain for Kids. What claim a course Sponge Acme Sponge Company. BG Silicon isotopes of this sea sponges new insights into. Sponges come across an incredible summary of colors and an amazing array of shapes. 5 Fascinating Types of what Sponge Leisure Pro. Sea sponges often a tube-like bodies with his tiny pores. Sponges The World's Simplest Multi-Cellular Creatures. Sponges are food of various nudbranchs sea stars and fish. Examples of sponges Answers Answerscom. Sponges info and games Sheppard Software.
    [Show full text]
  • Review of the Mineralogy of Calcifying Sponges
    Dickinson College Dickinson Scholar Faculty and Staff Publications By Year Faculty and Staff Publications 12-2013 Not All Sponges Will Thrive in a High-CO2 Ocean: Review of the Mineralogy of Calcifying Sponges Abigail M. Smith Jade Berman Marcus M. Key, Jr. Dickinson College David J. Winter Follow this and additional works at: https://scholar.dickinson.edu/faculty_publications Part of the Paleontology Commons Recommended Citation Smith, Abigail M.; Berman, Jade; Key,, Marcus M. Jr.; and Winter, David J., "Not All Sponges Will Thrive in a High-CO2 Ocean: Review of the Mineralogy of Calcifying Sponges" (2013). Dickinson College Faculty Publications. Paper 338. https://scholar.dickinson.edu/faculty_publications/338 This article is brought to you for free and open access by Dickinson Scholar. It has been accepted for inclusion by an authorized administrator. For more information, please contact [email protected]. © 2013. Licensed under the Creative Commons http://creativecommons.org/licenses/by- nc-nd/4.0/ Elsevier Editorial System(tm) for Palaeogeography, Palaeoclimatology, Palaeoecology Manuscript Draft Manuscript Number: PALAEO7348R1 Title: Not all sponges will thrive in a high-CO2 ocean: Review of the mineralogy of calcifying sponges Article Type: Research Paper Keywords: sponges; Porifera; ocean acidification; calcite; aragonite; skeletal biomineralogy Corresponding Author: Dr. Abigail M Smith, PhD Corresponding Author's Institution: University of Otago First Author: Abigail M Smith, PhD Order of Authors: Abigail M Smith, PhD; Jade Berman, PhD; Marcus M Key Jr, PhD; David J Winter, PhD Abstract: Most marine sponges precipitate silicate skeletal elements, and it has been predicted that they would be among the few "winners" in an acidifying, high-CO2 ocean.
    [Show full text]
  • Recovery in Antarctic Benthos After Iceberg Disturbance: Trends in Benthic Composition, Abundance and Growth Forms
    MARINE ECOLOGY PROGRESS SERIES Vol. 278: 1–16, 2004 Published September 7 Mar Ecol Prog Ser Recovery in Antarctic benthos after iceberg disturbance: trends in benthic composition, abundance and growth forms N. Teixidó1, 3,*, J. Garrabou2, J. Gutt1, W. E. Arntz1 1Alfred Wegener Institut für Polar- und Meeresforschung, Columbusstraße, 27568 Bremerhaven, Germany 2Marine d’Endoume, Centre d’Océanologie de Marseille, rue Batterie des Lions, 13007 Marseille, France 3Present address: Institut de Ciències del Mar (CMIMA-CSIC), Passeig Marítim de la Barceloneta 37–49, 08003 Barcelona, Spain ABSTRACT: The response of an Antarctic benthic community to iceberg disturbance was investi- gated using underwater photographs (1 m2 each) on the SE Weddell Sea shelf. This study: (1) char- acterises composition, coverage, number of patches and area of sessile benthic fauna, (2) describes faunal heterogeneity using MDS ordination and identifies ‘structural taxa’ of each recovery stage, and (3) analyses changes of growth-form patterns during Antarctic recovery. We observed changes in the space occupation of benthic organisms along the recolonisation stages. Uncovered sediment characterised the early stages ranging from 98 to 91% of the coverage. The later stages showed high (70.5%) and intermediate (52.5%) values of benthic coverage, where demosponges, bryozoans and ascidians exhibited a high number of patches and taxa. Several ‘structural species’ were identified among the stages, and information is provided on their coverage, number of patches and area. Over- all, maximum areas of patches increased as recovery proceeded. Early stages were characterised by the presence of pioneer taxa, which only partly covered the bottom sediment but were locally abun- dant (e.g.
    [Show full text]
  • Arctic and Antarctic Bryozoan Communities and Facies
    © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Bryozoans in polar latitudes: Arctic and Antarctic bryozoan communities and facies B. BADER & P. SCHÄFER Abstract: Bryozoan community patterns and facies of high to sub-polar environments of both hemi- spheres were investigated. Despite the overall similarities between Arctic/Subarctic and Antarctic ma- rine environments, they differ distinctly regarding their geological history and hydrography which cause differences in species characteristics and community structure. For the first time six benthic communi- ties were distinguished and described for the Artie realm where bryozoans play an important role in the community structure. Lag deposits resulting from isostatic uplift characterise the eastbound shelves of the Nordic Seas with bryozoan faunas dominated by species encrusting glacial boulders and excavated infaunal molluscs. Bryozoan-rich carbonates occur on shelf banks if terrigenous input is channelled by fjords and does not affect sedimentary processes on the banks. Due to strong terrigenous input on the East Greenland shelf, benthic filter feeding communities including a larger diversity and abundance of bryozoans are rare and restricted to open shelf banks separated from the continental shelf. Isolated ob- stacles like seamount Vesterisbanken, although under fully polar conditions, provide firm substrates and high and seasonal food supply, which favour bryozoans-rich benthic filter-feeder communities. In con- trast, the Weddell Sea/Antarctic shelf is characterised by iceberg grounding that causes considerable damage to the benthic communities. Sessile organisms are eradicated and pioneer species begin to grow in high abundances on the devastated substrata. Whereas the Arctic bryozoan fauna displays a low de- gree of endemism due to genera with many species, Antarctic bryozoans show a high degree of en- demism due to a high number of genera with only one or few species.
    [Show full text]
  • 3D Chitin Scaffolds of Marine Demosponge
    marine drugs Article 3D Chitin Scaffolds of Marine Demosponge Origin for Biomimetic Mollusk Hemolymph-Associated Biomineralization Ex-Vivo Marcin Wysokowski 1,2,* , Tomasz Machałowski 1,2 , Iaroslav Petrenko 2, Christian Schimpf 3, David Rafaja 3 , Roberta Galli 4, Jerzy Zi˛etek 5, Snežana Pantovi´c 6, Alona Voronkina 7 , Valentine Kovalchuk 8, Viatcheslav N. Ivanenko 9 , Bert W. Hoeksema 10,11 , Cristina Diaz 12, Yuliya Khrunyk 13,14 , Allison L. Stelling 15, Marco Giovine 16, Teofil Jesionowski 1 and Hermann Ehrlich 2,17,* 1 Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland; [email protected] (T.M.); teofi[email protected] (T.J.) 2 Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany; [email protected] 3 Institute of Materials Science, TU Bergakademie Freiberg, 09599 Freiberg, Germany; [email protected] (C.S.); [email protected] (D.R.) 4 Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany; [email protected] 5 Faculty of Veterinary Medicine, Department of Epizootiology and Clinic of Infectious Diseases, University of Life Sciences, Gł˛eboka30, 20612 Lublin, Poland; [email protected] 6 Faculty of Medicine, University of Montenegro, Kruševac bb, 81000 Podgorica, Montenegro; [email protected] 7 Department of Pharmacy,
    [Show full text]
  • The Comparative Embryology of Sponges Alexander V
    The Comparative Embryology of Sponges Alexander V. Ereskovsky The Comparative Embryology of Sponges Alexander V. Ereskovsky Department of Embryology Biological Faculty Saint-Petersburg State University Saint-Petersburg Russia [email protected] Originally published in Russian by Saint-Petersburg University Press ISBN 978-90-481-8574-0 e-ISBN 978-90-481-8575-7 DOI 10.1007/978-90-481-8575-7 Springer Dordrecht Heidelberg London New York Library of Congress Control Number: 2010922450 © Springer Science+Business Media B.V. 2010 No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Preface It is generally assumed that sponges (phylum Porifera) are the most basal metazoans (Kobayashi et al. 1993; Li et al. 1998; Mehl et al. 1998; Kim et al. 1999; Philippe et al. 2009). In this connection sponges are of a great interest for EvoDevo biolo- gists. None of the problems of early evolution of multicellular animals and recon- struction of a natural system of their main phylogenetic clades can be discussed without considering the sponges. These animals possess the extremely low level of tissues organization, and demonstrate extremely low level of processes of gameto- genesis, embryogenesis, and metamorphosis. They show also various ways of advancement of these basic mechanisms that allow us to understand processes of establishment of the latter in the early Metazoan evolution.
    [Show full text]
  • The Evolution of the Mitochondrial Genomes of Calcareous Sponges and Cnidarians Ehsan Kayal Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2012 The evolution of the mitochondrial genomes of calcareous sponges and cnidarians Ehsan Kayal Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Evolution Commons, and the Molecular Biology Commons Recommended Citation Kayal, Ehsan, "The ve olution of the mitochondrial genomes of calcareous sponges and cnidarians" (2012). Graduate Theses and Dissertations. 12621. https://lib.dr.iastate.edu/etd/12621 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. The evolution of the mitochondrial genomes of calcareous sponges and cnidarians by Ehsan Kayal A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Ecology and Evolutionary Biology Program of Study Committee Dennis V. Lavrov, Major Professor Anne Bronikowski John Downing Eric Henderson Stephan Q. Schneider Jeanne M. Serb Iowa State University Ames, Iowa 2012 Copyright 2012, Ehsan Kayal ii TABLE OF CONTENTS ABSTRACT ..........................................................................................................................................
    [Show full text]
  • OEB51: the Biology and Evolu on of Invertebrate Animals
    OEB51: The Biology and Evoluon of Invertebrate Animals Lectures: BioLabs 2062 Labs: BioLabs 5088 Instructor: Cassandra Extavour BioLabs 4103 (un:l Feb. 11) BioLabs2087 (aer Feb. 11) 617 496 1935 [email protected] Teaching Assistant: Tauana Cunha MCZ Labs 5th Floor [email protected] Basic Info about OEB 51 • Lecture Structure: • Tuesdays 1-2:30 Pm: • ≈ 1 hour lecture • ≈ 30 minutes “Tech Talk” • the lecturer will explain some of the key techniques used in the primary literature paper we will be discussing that week • Wednesdays: • By the end of lab (6pm), submit at least one quesBon(s) for discussion of the primary literature paper for that week • Thursdays 1-2:30 Pm: • ≈ 1 hour lecture • ≈ 30 minutes Paper discussion • Either the lecturer or teams of 2 students will lead the class in a discussion of the primary literature paper for that week • There Will be a total of 7 Paper discussions led by students • On Thursday January 28, We Will have the list of Papers to be discussed, and teams can sign uP to Present Basic Info about OEB 51 • Bocas del Toro, Panama Field Trip: • Saturday March 12 to Sunday March 20, 2016: • This field triP takes Place during sPring break! • It is mandatory to aend the field triP but… • …OEB51 Will not meet during the Week folloWing the field triP • Saturday March 12: • fly to Panama City, stay there overnight • Sunday March 13: • fly to Bocas del Toro, head out for our first collec:on! • Monday March 14 – Saturday March 19: • breakfast, field collec:ng (lunch on the boat), animal care at sea tables,
    [Show full text]
  • Nanostructural Features of Demosponge Biosilica
    Journal of Structural Biology Journal of Structural Biology 144 (2003) 271–281 www.elsevier.com/locate/yjsbi Nanostructural features of demosponge biosilica James C. Weaver,a,1 Lııa I. Pietrasanta,b,1 Niklas Hedin,c,1 Bradley F. Chmelka,c Paul K. Hansma,b and Daniel E. Morsea,* a Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA b Department of Physics, University of California, Santa Barbara, CA 93106, USA c Department of Chemical Engineering, and the Materials Research Laboratory, University of California, Santa Barbara, CA 93106, USA Received 8 April 2003, and in revised form 17 September 2003 Abstract Recent interest in the optical and mechanical properties of silica structures made by living sponges, and the possibility of harnessing these mechanisms for the synthesis of advanced materials and devices, motivate our investigation of the nanoscale structure of these remarkable biomaterials. Scanning electron and atomic force microscopic (SEM and AFM) analyses of the annular substructure of demosponge biosilica spicules reveals that the deposited material is nanoparticulate, with a mean particle diameter of 74 Æ 13 nm. The nanoparticles are deposited in alternating layers with characteristic etchant reactivities. Further analyses of longitudinally fractured spicules indicate that each deposited layer is approximately monoparticulate in thickness and exhibits extensive long range ordering, revealing an unanticipated level of nanoscale structural complexity. NMR data obtained from differentially heated spicule samples suggest that the etch sensitivity exhibited by these annular domains may be related to variation in the degree of silica condensation, rather than variability in the inclusion of organics.
    [Show full text]