Symbiosis Between Methane-Oxidizing Bacteria and a Deep-Sea Carnivorous Cladorhizid Sponge

Total Page:16

File Type:pdf, Size:1020Kb

Symbiosis Between Methane-Oxidizing Bacteria and a Deep-Sea Carnivorous Cladorhizid Sponge MARINE ECOLOGY PROGRESS SERIES Published December 31 Mar Ecol Proy Ser Symbiosis between methane-oxidizing bacteria and a deep-sea carnivorous cladorhizid sponge Jean ~acelet'v*,Aline ~iala-~edioni~,C. R. is her^, Nicole Boury-Esnaultl 'Centre d'oceanologie de Marseille, Universite de la Mediterranee - UMR CNRS no. 6540, Station Marine d'Endoume, F-13007 Marseille, France 20bservatoireOceanoloyique. Laboratoire Arayo, F-66650 Banyuls-sur-Mer, France 3Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802. USA ABSTRACT Dense bush-l~keclumps of several hundred ~nd~vldualsof a new specles of Cladorhiza (Demosponglae, Poeciloscler~da)were observed near methane sources in mud volcanoes 4718 to 4943 m dcep In the Barbddos Trench The sponge tissue contalns 2 maln mo~pholog~caltypes of extra- cellular symbiotic bacteria small rod-shaped cells and larger cocco~dcells with stacked membranes Stdble carbon ~sotopevalues, the presence of methanol dehydrogenase and ultrastructural observa- tlons all lndlcate that at least some of the syrnblonts are methdnotrophic Ultrastructural ev~denceof ~nlracell~~lard~gest~on of thp syn~b~ontsand the stable C and X values suggest that thc sponge obtalns a slgnlflcdnt portion of its nutr~tlonfrom the symbionts Ultrdstructure of the sponqe embryo suggests d~recttransmission throuqh qc.neratlons In brooded embryos The sponge also ma~ntrilnsa carnivorous feed~nghdblt on tin\ swlmmlng prey, as do other cladorhlzlds KEY L\/ORDS. Methanotrophy POI-~fera. Deep-sea . Symbiosis . Cold-seep communities INTRODUCTION although they are sometimes abundant on extinct chimneys (Boury-Esnault & De Vos 1988) or in vent Associations between several phyla of marine inver- peripheral areas. The lack of sponges in most tebrates and chemoautotrophic sulfur-oxidizing and/or chemosynthetic communities i.s rather surprising as methanotrophic bacteria are frequently found in they are probably the marine invertebrates in which marine communities surrounding hydrothermal vents, symbiosis with the widest variety of microsymbionts, cold seeps, and other reducing envi.ronments (Chil- algae and heterotrophic bacteria occurs (Vacelet & dress et al. 1986, Fiala-Medioni & Felbeck 1990, Donadey 1977, Wilkinson 1987, 1992). All sponge spe- Cavanaugh 1993, Nelson & Fisher 1995).These associ- cies examined to date are associated with microsym- ations often dominate deep-sea communities depend- bionts, and in the case of 'bacteriosponges' the sym- ing on chernosynthesis, locally resulting in a high den- bionts may constitute more than one-third of the total sity of invertebrates. These oases of life have a fauna1 tissue volume (Vacelet 1975, Reiswig 1981). However, biornass several orders of magnitude higher than that until very recently, associations with methanotrophic of the surrounding deep sea (Grassle 1986, Tunnicliffe bacteria were not described in the Porifera. 1991). The discrete participation of sponges in deep-sea Sponges had not previously been documented ecosystems directly depending on chemosynthesis among the dense assemblages of invertebrates thriv- may be due to the absence of adaptations of these ing in hydrothermal vent effl.uents (Tunnicliffe 1991), sedentary organisms to life in such harsh, rapidly changing environments (Grassle 1986). However, it is also possible that sponges are more abundant in these assemblages than previously thought, given the poor knowledge of the distribution, biology and cytology of 0 Inter-Research 1996 Resale of full at-tide not permitted Mar Ecol Proy Ser 145: 77-85, 1996 deep-sea sponges. Recently, associations between for direct transmission of the bacteria through genera- demosponges and methanotrophic bacteria occurring tions. near methane sources have been reported in the deep sea (Harrison et al. 1994, Vacelet et al. 1995) and in the deep lake Baikal, Irkutsh (Efremova et al. 1995). The MATERIALS AND METHODS association apparently results in an unusual abun- dance of sponges near the hydrocarbon sources. Sampling. Specimens (Fig 1) were collected from Here we describe one of these associations, which mud volcano fields in the Barbados Trench during the was first reported, in 1995 (Vacelet & Boury-Esnault 'Baresnaut' (1987) and 'Manon' (1992) cruises (Henry 1995) The host, a carnivorous sponge without an et al. 1990, Le Plchon et al. 1990, Olu et al. in press). aquiferous system, is abundant around deep-sea mud Field observations and collections were made by volca.noes near the Barbados accretionary prism. It means of the submersible 'Nautile' (IFREMER) on the harbors 2, possibly 3, morphological types of bacteria. diatreme Atalante during the d.i.ves Manon MAO1 The tissue 6'" and diNvalues, the presence of a key (13" 49' 36" N, 57" 39' 58" W, 4943 m) and Baresnaut enzyme of methanotrophy in the sponge tissue, the PL 94/3 (13" 49' N, 57" 38' W, 4935 m), and on the habitus and distribution of the animal, and the ultra- diapir Mount Manon during the dive Manon MA06 structure of some symbionts all support the thesis that (13" 46' 74" N. 57" 32' 51" W, 4718 m). at least some of the symbionts are methanotrophic. Immediately after recovery, small samples of the Ultrastructural evidence is presented for intracellular specimens from the Manon cruise were either pre- phagocytic digestion of the bacteria by the sponge and served for cytology or frozen. The remaining speci- Fig. 1. Cladorhiza sp. Large bush of cladorhizid sponges, approximately 40 cm high, observed from the submersible 'Nautile' at 4943 m in the mud volcano Atalante in the Barbados Trench. The bushes were most abundant and larger around the periphery of the mud-volcano eye where the largest amounts of methane were detected (OIFREMER) Vacelet et al.: Bacteria-sponge symbios~s 79 mens, approximately 100 individuals, were preserved nized around a dense central axis of spicules. It con- in alcohol. The sponge is a new species of Cladorhiza tained ovoid embryos 250 pm in maximum diameter. (Demospongiae, Cladorhizidae) which will be de- The tissue contained 2, possibly 3, morphological types scribed in a forthcoming paper. Reference specimens of bacteria, distinctly different in size and ultrastruc- have bee.n deposited in the Museum National d'His- ture. Both common types were present in several dif- toire Naturelle in Paris (no. MNHN D JV 57). ferent extra- or intracellular locations throughout the Cytology. The specimens were fixed in 3% glu- sponge. The lateral appendages of the sponge, which taraldehyde in 0.4 M cacodylate buffer (pH 7.4) and were not examined by electron microscopy, appeared postfixed in 1% osmiun~tetroxide in the same buffer. under light microscopy to have the same organization They were dehydrated through an alcohol series and as the body. No gradient in the structure and distribu- embedded in Araldite. Thin sections were cut after tion of bacteria and bacteriocytes in the diverse zones local desilicification in 5 % hydrofluoric acid applied on of the sponge body was discernible. No difference was the free surface of the trimmed block (Borojevic & Levi observed between the samples from the 2 locations 1967). Semi-thin sections were stalned with toluidine (diatreme Atalante and Mount Manon). blue. Thln sections were contrasted with uranyl Extracellular symbionts were found at low density acetate and lead citrate, and observed under a Hitachi in the matrix of the sponge body among collagen fib- Hu 600 or Zeiss EM 912 transmission electron micro- rils (Fig. 2A, B). Their distribution was patchy, al- scope. though large clusters of symbionts were occasionally Tissue analyses. Key enzymes of methylotrophic and seen. A rough estimate of the volume of the various chemoautotrophic sulfur-oxidizing bacteria were tissue components made from TEM micrographs indi- tested as follows. RUBISCO (EC 4.1.1.39) activity was cated that the extracellular bacteria never exceed assayed by the method of Wishnick & Lane (1971) as 12% of the total tissue volume in the areas examined. modified by Felbeck (1981).Methanol dehydrogenase When extracellular, the symbionts were intact with no was assayed by the method of Anthony & Zathman slgns of degradation, and division stages were ob- (1965).ATP sulfurylase (EC 2.7 7.4)and ATP reductase served (Fig. 2B). (EC 1.8.99.2) were determined spectrophotometrically The symbionts were also abundant intracellularly in as described in Felbeck (1981). the sponge mesohyl (Fig. 2C. D). Symbionts were Tissue stable carbon and nitrogen isotope analyses observed in all cell types, including the sclerocytes were conducted on freeze-dried and acidified samples which secrete the siliceous spicules. The symbionts using standard methods with combustion techniques occurred either singly or loosely grouped in vacuoles by J. Boulegue and A. Mariotti (Universite P. et M. of diverse size (Fig. 2C, D), or crowded in large, round Curie, Paris, Laboratoire de Geochimie et Chimie vacuoles (Fig. 3). The different symbiont types were isotopique). The analyses were accomplished on a generally found in separate inclusions or vacuoles, Finningan Delta E mass spectrophotometer. Carbon is although they were occasionally seen together. Many reported relative to PDB (PeeDee Belernnite) and of the intracellular symbionts appeared to be in various nitrogen to atmospheric molecular nitrogen. stages in degradation, especially those crowded in the large vacuoles, suggesting lysosomal digestion by the host cell. Because of their d~stinctultrastructure, the RESULTS larger bacteria with stacked lamellae
Recommended publications
  • Diversity of Bacteria and Archaea in the Deep-Sea Low-Temperature Hydrothermal Sulfide Chimney of the Northeastern Pacific Ocean
    African Journal of Biotechnology Vol. 11(2), pp. 337-345, 5 January, 2012 Available online at http://www.academicjournals.org/AJB DOI: 10.5897/AJB11.2692 ISSN 1684–5315 © 2012 Academic Journals Full Length Research Paper Diversity of bacteria and archaea in the deep-sea low-temperature hydrothermal sulfide chimney of the Northeastern Pacific Ocean Xia Ding1*, Xiao-Jue Peng1#, Xiao-Tong Peng2 and Huai-Yang Zhou3 1College of Life Sciences and Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, China. 2Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China. 3National Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China. Accepted 4 November, 2011 Our knowledge of the diversity and role of hydrothermal vents microorganisms has considerably expanded over the past decade, while little is known about the diversity of microorganisms in low-temperature hydrothermal sulfide chimney. In this study, denaturing gradient gel electrophoresis (DGGE) and 16S rDNA sequencing were used to examine the abundance and diversity of microorganisms from the exterior to the interior of the deep sea low-temperature hydrothermal sulfide chimney of the Northeastern Pacific Ocean. DGGE profiles revealed that both bacteria and archaea could be examined in all three zones of the chimney wall and the compositions of microbial communities within different zones were vastly different. Overall, for archaea, cell abundance was greatest in the outermost zone of the chimney wall. For bacteria, there was no significant difference in cell abundance among three zones. In addition, phylogenetic analysis revealed that Verrucomicrobia and Deltaproteobacteria were the predominant bacterial members in exterior zone, beta Proteobacteria were the dominant members in middle zone, and Bacillus were the abundant microorganisms in interior zone.
    [Show full text]
  • Spicule Formation in Calcareous Sponges: Coordinated Expression
    www.nature.com/scientificreports OPEN Spicule formation in calcareous sponges: Coordinated expression of biomineralization genes and Received: 17 November 2016 Accepted: 02 March 2017 spicule-type specific genes Published: 13 April 2017 Oliver Voigt1, Maja Adamska2, Marcin Adamski2, André Kittelmann1, Lukardis Wencker1 & Gert Wörheide1,3,4 The ability to form mineral structures under biological control is widespread among animals. In several species, specific proteins have been shown to be involved in biomineralization, but it is uncertain how they influence the shape of the growing biomineral and the resulting skeleton. Calcareous sponges are the only sponges that form calcitic spicules, which, based on the number of rays (actines) are distinguished in diactines, triactines and tetractines. Each actine is formed by only two cells, called sclerocytes. Little is known about biomineralization proteins in calcareous sponges, other than that specific carbonic anhydrases (CAs) have been identified, and that uncharacterized Asx-rich proteins have been isolated from calcitic spicules. By RNA-Seq and RNA in situ hybridization (ISH), we identified five additional biomineralization genes inSycon ciliatum: two bicarbonate transporters (BCTs) and three Asx-rich extracellular matrix proteins (ARPs). We show that these biomineralization genes are expressed in a coordinated pattern during spicule formation. Furthermore, two of the ARPs are spicule- type specific for triactines and tetractines (ARP1 orSciTriactinin ) or diactines (ARP2 or SciDiactinin). Our results suggest that spicule formation is controlled by defined temporal and spatial expression of spicule-type specific sets of biomineralization genes. By the process of biomineralization many animal groups produce mineral structures like skeletons, shells and teeth. Biominerals differ in shape considerably from their inorganic mineral counterparts1.
    [Show full text]
  • Bryozoan Studies 2019
    BRYOZOAN STUDIES 2019 Edited by Patrick Wyse Jackson & Kamil Zágoršek Czech Geological Survey 1 BRYOZOAN STUDIES 2019 2 Dedication This volume is dedicated with deep gratitude to Paul Taylor. Throughout his career Paul has worked at the Natural History Museum, London which he joined soon after completing post-doctoral studies in Swansea which in turn followed his completion of a PhD in Durham. Paul’s research interests are polymatic within the sphere of bryozoology – he has studied fossil bryozoans from all of the geological periods, and modern bryozoans from all oceanic basins. His interests include taxonomy, biodiversity, skeletal structure, ecology, evolution, history to name a few subject areas; in fact there are probably none in bryozoology that have not been the subject of his many publications. His office in the Natural History Museum quickly became a magnet for visiting bryozoological colleagues whom he always welcomed: he has always been highly encouraging of the research efforts of others, quick to collaborate, and generous with advice and information. A long-standing member of the International Bryozoology Association, Paul presided over the conference held in Boone in 2007. 3 BRYOZOAN STUDIES 2019 Contents Kamil Zágoršek and Patrick N. Wyse Jackson Foreword ...................................................................................................................................................... 6 Caroline J. Buttler and Paul D. Taylor Review of symbioses between bryozoans and primary and secondary occupants of gastropod
    [Show full text]
  • Sponge–Microbe Interactions on Coral Reefs: Multiple Evolutionary Solutions to a Complex Environment
    fmars-08-705053 July 14, 2021 Time: 18:29 # 1 REVIEW published: 20 July 2021 doi: 10.3389/fmars.2021.705053 Sponge–Microbe Interactions on Coral Reefs: Multiple Evolutionary Solutions to a Complex Environment Christopher J. Freeman1*, Cole G. Easson2, Cara L. Fiore3 and Robert W. Thacker4,5 1 Department of Biology, College of Charleston, Charleston, SC, United States, 2 Department of Biology, Middle Tennessee State University, Murfreesboro, TN, United States, 3 Department of Biology, Appalachian State University, Boone, NC, United States, 4 Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, United States, 5 Smithsonian Tropical Research Institute, Panama City, Panama Marine sponges have been successful in their expansion across diverse ecological niches around the globe. Pioneering work attributed this success to both a well- developed aquiferous system that allowed for efficient filter feeding on suspended organic matter and the presence of microbial symbionts that can supplement host Edited by: heterotrophic feeding with photosynthate or dissolved organic carbon. We now know Aldo Cróquer, The Nature Conservancy, that sponge-microbe interactions are host-specific, highly nuanced, and provide diverse Dominican Republic nutritional benefits to the host sponge. Despite these advances in the field, many current Reviewed by: hypotheses pertaining to the evolution of these interactions are overly generalized; these Ryan McMinds, University of South Florida, over-simplifications limit our understanding of the evolutionary processes shaping these United States symbioses and how they contribute to the ecological success of sponges on modern Alejandra Hernandez-Agreda, coral reefs. To highlight the current state of knowledge in this field, we start with seminal California Academy of Sciences, United States papers and review how contemporary work using higher resolution techniques has Torsten Thomas, both complemented and challenged their early hypotheses.
    [Show full text]
  • Tube Worm Riftia Pachyptila to Severe Hypoxia
    l MARINE ECOLOGY PROGRESS SERIES Vol. 174: 151-158,1998 Published November 26 Mar Ecol Prog Ser Metabolic responses of the hydrothermal vent tube worm Riftia pachyptila to severe hypoxia Cordelia ~rndt',~.*,Doris Schiedek2,Horst Felbeckl 'University of California San Diego, Scripps Institution of Oceanography. La Jolla. California 92093-0202. USA '~alticSea Research Institute at the University of Rostock, Seestrasse 15. D-181 19 Rostock-Warnemuende. Germany ABSTRACT: The metabolic capabilit~esof the hydrothermal vent tube worm Riftia pachyptila to toler- ate short- and long-term exposure to hypoxia were investigated After incubating specimens under anaerobic conditions the metabolic changes in body fluids and tissues were analyzed over time. The tube worms tolerated anoxic exposure up to 60 h. Prior to hypoxia the dicarboxylic acid, malate, was found in unusually high concentrations in the blood (up to 26 mM) and tissues (up to 5 pm01 g-' fresh wt). During hypoxia, most of the malate was degraded very quickly, while large quantities of succinate accumulated (blood: about 17 mM; tissues: about 13 pm01 g-l fresh wt). Volatile, short-chain fatty acids were apparently not excreted under these conditions. The storage compound, glycogen, was mainly found in the trophosome and appears to be utilized only during extended anaerobiosis. The succinate formed during hypoxia does not account for the use of malate and glycogen, which possibly indicates the presence of yet unidentified metabolic end products. Glutamate concentration in the trophosome decreased markedly durlng hypoxia, presumably due to a reduction in the autotrophic function of the symb~ontsduring hypoxia. In conclusion, R. pachyptila is phys~ologicallywell adapted to the oxygen fluctuations freq.uently occurring In the vent habitat.
    [Show full text]
  • Nitrogen-Fixing, Photosynthetic, Anaerobic Bacteria Associated with Pelagic Copepods
    - AQUATIC MICROBIAL ECOLOGY Vol. 12: 105-113. 1997 Published April 10 , Aquat Microb Ecol Nitrogen-fixing, photosynthetic, anaerobic bacteria associated with pelagic copepods Lita M. Proctor Department of Oceanography, Florida State University, Tallahassee, Florida 32306-3048, USA ABSTRACT: Purple sulfur bacteria are photosynthetic, anaerobic microorganisms that fix carbon di- oxide using hydrogen sulfide as an electron donor; many are also nitrogen fixers. Because of the~r requirements for sulfide or orgamc carbon as electron donors in anoxygenic photosynthesis, these bac- teria are generally thought to be lim~tedto shallow, organic-nch, anoxic environments such as subtidal marine sediments. We report here the discovery of nitrogen-fixing, purple sulfur bactena associated with pelagic copepods from the Caribbean Sea. Anaerobic incubations of bacteria associated with fuU- gut and voided-gut copepods resulted in enrichments of purple/red-pigmented purple sulfur bacteria while anaerobic incubations of bacteria associated with fecal pellets did not yield any purple sulfur bacteria, suggesting that the photosynthetic anaerobes were specifically associated with copepods. Pigment analysis of the Caribbean Sea copepod-associated bacterial enrichments demonstrated that these bactena possess bacter~ochlorophylla and carotenoids in the okenone series, confirming that these bacteria are purple sulfur bacteria. Increases in acetylene reduction paralleled the growth of pur- ple sulfur bactena in the copepod ennchments, suggesting that the purple sulfur bacteria are active nitrogen fixers. The association of these bacteria with planktonic copepods suggests a previously unrecognized role for photosynthetic anaerobes in the marine S, N and C cycles, even in the aerobic water column of the open ocean. KEY WORDS: Manne purple sulfur bacterla .
    [Show full text]
  • The Anti-Viral Applications of Marine Resources for COVID-19 Treatment: an Overview
    marine drugs Review The Anti-Viral Applications of Marine Resources for COVID-19 Treatment: An Overview Sarah Geahchan 1,2, Hermann Ehrlich 1,3,4,5 and M. Azizur Rahman 1,3,* 1 Centre for Climate Change Research, Toronto, ON M4P 1J4, Canada; [email protected] (S.G.); [email protected] (H.E.) 2 Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 2E8, Canada 3 A.R. Environmental Solutions, University of Toronto, ICUBE-UTM, Mississauga, ON L5L 1C6, Canada 4 Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, 09599 Freiberg, Germany 5 Center for Advanced Technology, Adam Mickiewicz University, 61614 Poznan, Poland * Correspondence: [email protected] Abstract: The ongoing pandemic has led to an urgent need for novel drug discovery and potential therapeutics for Sars-CoV-2 infected patients. Although Remdesivir and the anti-inflammatory agent dexamethasone are currently on the market for treatment, Remdesivir lacks full efficacy and thus, more drugs are needed. This review was conducted through literature search of PubMed, MDPI, Google Scholar and Scopus. Upon review of existing literature, it is evident that marine organisms harbor numerous active metabolites with anti-viral properties that serve as potential leads for COVID- 19 therapy. Inorganic polyphosphates (polyP) naturally found in marine bacteria and sponges have been shown to prevent viral entry, induce the innate immune response, and downregulate human ACE-2. Furthermore, several marine metabolites isolated from diverse sponges and algae have been shown to inhibit main protease (Mpro), a crucial protein required for the viral life cycle. Sulfated polysaccharides have also been shown to have potent anti-viral effects due to their anionic properties and high molecular weight.
    [Show full text]
  • Examples of Sea Sponges
    Examples Of Sea Sponges Startling Amadeus burlesques her snobbishness so fully that Vaughan structured very cognisably. Freddy is ectypal and stenciling unsocially while epithelial Zippy forces and inflict. Monopolistic Porter sailplanes her honeymooners so incorruptibly that Sutton recirculates very thereon. True only on water leaves, sea of these are animals Yellow like Sponge Oceana. Deeper dives into different aspects of these glassy skeletons are ongoing according to. Sponges theoutershores. Cell types epidermal cells form outer covering amoeboid cells wander around make spicules. Check how These Beautiful Pictures of Different Types of. To be optimal for bathing, increasing with examples of brooding forms tan ct et al ratios derived from other microscopic plants from synthetic sponges belong to the university. What is those natural marine sponge? Different types of sponges come under different price points and loss different uses in. Global Diversity of Sponges Porifera NCBI NIH. Sponges EnchantedLearningcom. They publish the outer shape of rubber sponge 1 Some examples of sponges are Sea SpongeTube SpongeVase Sponge or Sponge Painted. Learn facts about the Porifera or Sea Sponges with our this Easy mountain for Kids. What claim a course Sponge Acme Sponge Company. BG Silicon isotopes of this sea sponges new insights into. Sponges come across an incredible summary of colors and an amazing array of shapes. 5 Fascinating Types of what Sponge Leisure Pro. Sea sponges often a tube-like bodies with his tiny pores. Sponges The World's Simplest Multi-Cellular Creatures. Sponges are food of various nudbranchs sea stars and fish. Examples of sponges Answers Answerscom. Sponges info and games Sheppard Software.
    [Show full text]
  • Review of the Mineralogy of Calcifying Sponges
    Dickinson College Dickinson Scholar Faculty and Staff Publications By Year Faculty and Staff Publications 12-2013 Not All Sponges Will Thrive in a High-CO2 Ocean: Review of the Mineralogy of Calcifying Sponges Abigail M. Smith Jade Berman Marcus M. Key, Jr. Dickinson College David J. Winter Follow this and additional works at: https://scholar.dickinson.edu/faculty_publications Part of the Paleontology Commons Recommended Citation Smith, Abigail M.; Berman, Jade; Key,, Marcus M. Jr.; and Winter, David J., "Not All Sponges Will Thrive in a High-CO2 Ocean: Review of the Mineralogy of Calcifying Sponges" (2013). Dickinson College Faculty Publications. Paper 338. https://scholar.dickinson.edu/faculty_publications/338 This article is brought to you for free and open access by Dickinson Scholar. It has been accepted for inclusion by an authorized administrator. For more information, please contact [email protected]. © 2013. Licensed under the Creative Commons http://creativecommons.org/licenses/by- nc-nd/4.0/ Elsevier Editorial System(tm) for Palaeogeography, Palaeoclimatology, Palaeoecology Manuscript Draft Manuscript Number: PALAEO7348R1 Title: Not all sponges will thrive in a high-CO2 ocean: Review of the mineralogy of calcifying sponges Article Type: Research Paper Keywords: sponges; Porifera; ocean acidification; calcite; aragonite; skeletal biomineralogy Corresponding Author: Dr. Abigail M Smith, PhD Corresponding Author's Institution: University of Otago First Author: Abigail M Smith, PhD Order of Authors: Abigail M Smith, PhD; Jade Berman, PhD; Marcus M Key Jr, PhD; David J Winter, PhD Abstract: Most marine sponges precipitate silicate skeletal elements, and it has been predicted that they would be among the few "winners" in an acidifying, high-CO2 ocean.
    [Show full text]
  • Freshwater Sponge Hosts and Their Green Algae Symbionts
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.12.247908; this version posted August 13, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Freshwater sponge hosts and their green algae 2 symbionts: a tractable model to understand intracellular 3 symbiosis 4 5 Chelsea Hall2,3, Sara Camilli3,4, Henry Dwaah2, Benjamin Kornegay2, Christine A. Lacy2, 6 Malcolm S. Hill1,2§, April L. Hill1,2§ 7 8 1Department of Biology, Bates College, Lewiston ME, USA 9 2Department of Biology, University of Richmond, Richmond VA, USA 10 3University of Virginia, Charlottesville, VA, USA 11 4Princeton University, Princeton, NJ, USA 12 13 §Present address: Department of Biology, Bates College, Lewiston ME USA 14 Corresponding author: 15 April L. Hill 16 44 Campus Ave, Lewiston, ME 04240, USA 17 Email address: [email protected] 18 19 20 21 22 23 24 25 26 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.12.247908; this version posted August 13, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 27 Abstract 28 In many freshwater habitats, green algae form intracellular symbioses with a variety of 29 heterotrophic host taxa including several species of freshwater sponge. These sponges perform 30 important ecological roles in their habitats, and the poriferan:green algae partnerships offers 31 unique opportunities to study the evolutionary origins and ecological persistence of 32 endosymbioses.
    [Show full text]
  • Dynamics of Microbial Community in the Marine Sponge Holichondria Sp
    July 30, 2003 Dynamics of microbial community in the marine sponge Holichondria sp. Microbial Diversity Course, Marine Biological Laboratory, Woods Hole, MA Gil Zeidner, Faculty of Biology, Technion, Haifa, Israel. 1 Abstract Marine sponges often harbor communities of symbiotic microorganisms that fulfill necessary functions for the well being of their hosts. Microbial communities are susceptible to environmental pollution and have previously been used as sensitive markers for anthropogenic stress in aquatic ecosystems. Previous work done on dynamics of the microbial community in sponges exposed to different copper concentrations have shown a significant reduction in the total density of bacteria and diversity. A combined strategy incorporating quantitative and qualitative techniques was used to monitor changes in the microbial diversity in sponge during transition into polluted environment. Introduction Sponges are known to be associated with large amounts of bacteria that can amount to 40% of the biomass of the sponge. Various microorganisms have evolved to reside in sponges, including cyanobacteria, diverse heterotrophic bacteria, unicellular algae and zoochlorellae(Webster et al., 2001b). Since sponges are filter feeders, a certain amount of transient bacteria are trapped within the vascular system or attached to the sponge surface. Microbial communities are susceptible to different environmentral pollution agents and have previously been used as sensitive markers for anthropogenic stress in aquatic ecosystems(Webster et al., 2001a). It is possible that shifts in symbiont community composition may result from pollution stress, and these shifts may, in turn, have detrimental effects on the host sponge. The breakdown of symbiotic relationships is a common indicator of sublethal stress in marine organisms.
    [Show full text]
  • Recovery in Antarctic Benthos After Iceberg Disturbance: Trends in Benthic Composition, Abundance and Growth Forms
    MARINE ECOLOGY PROGRESS SERIES Vol. 278: 1–16, 2004 Published September 7 Mar Ecol Prog Ser Recovery in Antarctic benthos after iceberg disturbance: trends in benthic composition, abundance and growth forms N. Teixidó1, 3,*, J. Garrabou2, J. Gutt1, W. E. Arntz1 1Alfred Wegener Institut für Polar- und Meeresforschung, Columbusstraße, 27568 Bremerhaven, Germany 2Marine d’Endoume, Centre d’Océanologie de Marseille, rue Batterie des Lions, 13007 Marseille, France 3Present address: Institut de Ciències del Mar (CMIMA-CSIC), Passeig Marítim de la Barceloneta 37–49, 08003 Barcelona, Spain ABSTRACT: The response of an Antarctic benthic community to iceberg disturbance was investi- gated using underwater photographs (1 m2 each) on the SE Weddell Sea shelf. This study: (1) char- acterises composition, coverage, number of patches and area of sessile benthic fauna, (2) describes faunal heterogeneity using MDS ordination and identifies ‘structural taxa’ of each recovery stage, and (3) analyses changes of growth-form patterns during Antarctic recovery. We observed changes in the space occupation of benthic organisms along the recolonisation stages. Uncovered sediment characterised the early stages ranging from 98 to 91% of the coverage. The later stages showed high (70.5%) and intermediate (52.5%) values of benthic coverage, where demosponges, bryozoans and ascidians exhibited a high number of patches and taxa. Several ‘structural species’ were identified among the stages, and information is provided on their coverage, number of patches and area. Over- all, maximum areas of patches increased as recovery proceeded. Early stages were characterised by the presence of pioneer taxa, which only partly covered the bottom sediment but were locally abun- dant (e.g.
    [Show full text]