The Efficacy and Safety of Sunscreen Use for the Prevention of Skin Cancer

Total Page:16

File Type:pdf, Size:1020Kb

The Efficacy and Safety of Sunscreen Use for the Prevention of Skin Cancer REVIEW CPD The efficacy and safety of sunscreen use for the prevention of skin cancer Megan Sander MD, Michael Sander DMD, Toni Burbidge MD, Jennifer Beecker MD n Cite as: CMAJ 2020 December 14;192:E1802-8. doi: 10.1503/cmaj.201085 n Canada, more than 80 000 cases of skin cancer are diagnosed every year.1 Because exposure to ultraviolet radiation is esti- KEY POINTS mated to be associated with 80%–90% of skin cancers, the use • Several well-conducted randomized controlled trials with long Iof sunscreen — which blocks ultraviolet radiation — is promoted as follow-up showed that sunscreen use reduces the risk of an important means of preventing skin cancers,2,3 as well as sun- squamous cell and melanoma skin cancers. burn and skin photoaging (see definitions in Appendix 1, available • Commercial sunscreens protect against the skin-damaging at www.cmaj.ca/lookup/doi/10.1503/cmaj.201085/tab-related effects of ultraviolet radiation through either chemical or -content). Use of sunscreen has been shown to reduce the inci- physical ingredients. dence of both melanoma and nonmelanoma skin cancers.4,5 Both • The Canadian Dermatology Association recommends the use of the Canadian Dermatology Association and the American Academy an adequate dose of a broad-spectrum sunscreen with a sun protection factor of at least 30 for most children and adults, as of Dermatology recommend the use of sunscreen for the preven- part of a comprehensive photoprotection strategy. tion of skin cancer.6,7 Yet, since the development of the first com- • Emerging evidence suggests that some chemical sunscreen mercial sunscreen in 1928, questions regarding the safety and effi- ingredients are systemically absorbed, but the clinical cacy of sunscreen have been raised, and more recently, the impact importance of this remains unclear; further research is required of sunscreens on the environment has become a cause for concern. to establish whether this results in harm. We summarize evidence related to the effectiveness and harms of • Ultraviolet filters found within chemical sunscreens may be sunscreen to help physicians counsel their patients (Box 1). harmful to the environment. How do sunscreens work? high-intensity ultraviolet radiation, resulting in excitation to higher Sunscreens contain chemical (organic) or physical (inorganic) energy states. When these molecules return to their ground states, compounds that act to block ultraviolet radiation, which is light the result is conversion of the absorbed energy into lower-energy with wavelengths shorter than visible light (subdivided into ultra- wavelengths, such as infrared radiation (i.e., heat).8 violet A [UVA]1, UVA2, ultraviolet B [UVB] and ultraviolet C [UVC]), Physical sunscreen filters, such as titanium dioxide and zinc as shown in Figure 1. Generally, the shorter the wavelength, the oxide, reflect or refract ultraviolet radiation away from the skin; greater the potential for light radiation to cause biological dam- however, experimental studies have shown that when particle age. Sunscreen filters are active against UVA1, UVA2 and UVB radi- sizes are very small, as in micronized sunscreens, the mechanism ation. Chemical filters, such as oxybenzone, avobenzone, octo- of action is similar to that of chemical filters. More specifically, crylene and ecamsule, are aromatic compounds that absorb micronized zinc oxide and titanium dioxide behave as semicon- ductor metals, which absorb ultraviolet light throughout most of the electromagnetic spectrum.9 The sunscreen ingredients that Box 1: Evidence used in this review are currently approved by Health Canada are listed in Table 1.10 We conducted a targeted search of MEDLINE using a combination of the search terms “sunscreen,” “skin cancer,” “melanoma,” What is the effectiveness of sunscreens in “squamous cell carcinoma,” “basal cell carcinoma,” “photoaging,” preventing photoaging and skin cancer? “safety” and “environment” to identify studies published from 1984 to 2020. We particularly sought randomized controlled trials, Evidence from observational studies,11 a large randomized con- systematic reviews and meta-analyses relevant to this article’s 12 clinical questions. We also identified relevant review articles, basic trolled trial (RCT) and smaller, nonrandomized experimental 13–15 science publications and institutional guidelines. We studies support the effectiveness of sunscreens in preventing supplemented our search with literature from our own collections. the signs of photoaging, including wrinkles, telangiectasia and pig- mentary alterations induced by ultraviolet radiation.11–15 Despite E1802 CMAJ | DECEMBER 14, 2020 | VOLUME 192 | ISSUE 50 © 2020 Joule Inc. or its licensors Visible light Ultraviolet light UVA UVB UVC UVA1: 300–400 nm 280–315 nm 100–280 nm REVIEW UVA2: 315–340 nm • Accounts for • Accounts for 5% of • Accounts for less 95% of UVR UVR that reaches than 1% of UVR that reaches the Earth’s surface that reaches the the Earth’s with varied Earth’s surface surface with intensity that • Not absorbed fairly constant peaks around deeply into the intensity over midday skin the course of • Partially absorbed • Absorbed by the the day by the ozone and atmosphere and • Penetrates the clouds, does not ozone layer ozone, clouds, penetrate window • Germicidal and window glass glass • Not absorbed as • Penetrates deeply into the human skin skin as UVA more deeply • Primarily • Responsible for responsible for photoaging and tanning and carcinogenesis, burning, less so less so tanning photoaging and Epidermis and burning carcinogenesis Dermis Figure 1: Schematic representation of the electromagnetic spectrum of light, emphasizing ultraviolet radiation (UVR) frequencies and their effect on human skin. Generally, the shorter the wavelength of radiation, the greater the potential for biological damage. Note: UVA = ultraviolet A, UVB = ultraviolet B, UVC = ultraviolet C. Sunscreen filters are active against UVA1, UVA2 and UVB radiation. the challenges of studying skin cancer, owing to its multifactorial arrest signs of skin aging caused by photodamage.12 Another large pathogenesis and long lead time, the following evidence supports Australian RCT showed a significantly reduced rate of development the use of sunscreen in the prevention of skin cancer. of actinic keratoses (a precursor to squamous cell carcinoma) Experimental studies from the 1980s and 1990s showed that among participants randomized to regular use of sunscreen, com- sunscreens protect against cell damage consistent with carcinogen- pared with controls who used a nonactive base cream over 1 sum- esis in animal models.16,17 A well-conducted community-based 4.5- mer season (rate ratio 0.62, 95% CI 0.54 to –0.71).19 year RCT of 1621 adult Australians, with follow-up for more than a In organ transplant recipients, a population at high risk of decade, found a 40% lower incidence of squamous cell carcinomas morbidity and death from skin cancer, a prospective single-centre among participants randomized to recommended daily sunscreen study of 120 matched patients showed that the use of sun protec- compared with participants assigned to use sunscreen on a discre- tion factor (SPF) 50 sunscreen over 24 months reduced the devel- tionary basis (rate ratio 0.61, 95% confidence interval [CI] 0.46 to opment of actinic keratoses, squamous cell carcinomas and, to a 0.81).4,18 However, the incidence of basal cell carcinomas was not lesser extent, basal cell carcinomas.20 Recent meta-analyses have significantly reduced, possibly owing to the protracted pathogen- not supported the findings of these RCTs, finding no significant esis of basal cell carcinomas.18 Almost 15 years after the completion effectiveness of sunscreen for preventing either melanoma or of the study, participants who used sunscreen daily throughout the nonmelanoma skin cancers.21,22 However, these meta-analyses 4.5-year study period showed a significantly reduced risk of invasive included studies with retrospective designs with methodological melanoma (hazard ratio [HR] 0.27, 95% CI 0.08 to –0.97), although inconsistencies among studies, and 1 included studies that used very few invasive melanomas were noted, given the long lead time only UVB filters (rather than broad-spectrum sunscreens).21 Over- for this type of tumour.5 A predefined subgroup analysis in this trial all, the highest-quality evidence available suggests that sun- confirmed that regular use of sunscreen over a 4.5-year period can screens do prevent skin cancer. CMAJ | DECEMBER 14, 2020 | VOLUME 192 | ISSUE 50 E1803 Who should use sunscreen? shown that sunscreens with an SPF of 100 are superior to sunscreens with an SPF of 50 for preventing sunburns under actual use condi- The American Academy of Dermatology recommends regular sun- tions, in both a beach setting25 and a high-altitude skiing setting.26 screen use with an SPF of 30 or higher for people of all skin types,23 Health Canada does not recommend the use of sunscreen for although skin cancers are far more prevalent in White individuals children younger than 6 months because of the theoretical risk of than people with darker skin.24 There have been no studies to increased absorption of sunscreen ingredients as a result of assess the effectiveness of regular sunscreen use in reducing the higher body surface-to-volume ratios and thinner epidermis.27 REVIEW risk of skin cancers among people who are not White. The mainstays of sun safety in infants include sun avoidance and For children older than 6 months, as well as adults,
Recommended publications
  • A Thesis Entitled Evaluating UVB and UVA Boosting Technologies For
    A Thesis entitled Evaluating UVB and UVA Boosting Technologies for Chemical and Physical Sunscreens by An Ngoc Hiep Huynh Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Master of Science Degree in Pharmaceutical Sciences Industrial Pharmacy ___________________________________________ Gabriella Baki, Ph.D., Committee Chair ___________________________________________ Jerry Nesamony, Ph.D., Committee Member ___________________________________________ Matthew W. Liberatore, Ph.D., Committee Member ___________________________________________ Dr. Amanda C. Bryant-Friedrich, Dean College of Graduate Studies The University of Toledo May 2020 Copyright 2020 An Ngoc Hiep Huynh This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of Evaluating UVB and UVA Boosting Technologies for Chemical and Physical Sunscreens by An Ngoc Hiep Huynh Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Master of Science Degree in Pharmaceutical Sciences Industrial Pharmacy The University of Toledo May 2020 There are currently 14 organic and 2 inorganic UV filters approved in the United States. Due to coral reef safety concerns, octinoxate and oxybenzone have been banned in Hawaii, Key West, FL and the US Virgin Islands; and octocrylene is also being studied for its potential impact on coral reef safety, leaving 11 organic UV filters as viable options for sunscreen manufacturers – with limitations on their combination. Since consumers are always looking for sunscreens with high SPF and broad-spectrum protection, the need for UVB and UVA protection boosting technologies is greater than ever. In a preliminary study, about two dozen emollients were scanned for their SPF boosting capability with selected organic UV filters.
    [Show full text]
  • GAO-18-61, SUNSCREEN: FDA Reviewed Applications For
    United States Government Accountability Office Report to Congressional Committees November 2017 SUNSCREEN FDA Reviewed Applications for Additional Active Ingredients and Determined More Data Needed GAO-18-61 November 2017 SUNSCREEN FDA Reviewed Applications for Additional Active Ingredients and Determined More Data Needed Highlights of GAO-18-61, a report to congressional committees Why GAO Did This Study What GAO Found Using sunscreen as directed with other The Food and Drug Administration (FDA), within the Department of Health and sun protective measures may help Human Services, implemented requirements for reviewing applications for reduce the risk of skin cancer—the sunscreen active ingredients within time frames set by the Sunscreen Innovation most common form of cancer in the Act, which was enacted in November 2014. For example, the agency issued a United States. In the United States, guidance document on safety and effectiveness testing in November 2016. sunscreen is considered an over-the- counter drug, which is a drug available As of August 2017, all applications for sunscreen active ingredients remain to consumers without a prescription. pending after the agency determined more safety and effectiveness data are Some sunscreen active ingredients not needed. By February 2015, FDA completed its initial review of the safety and currently marketed in the United States effectiveness data for each of the eight pending applications, as required by the have been available in products in act. FDA concluded that additional data are needed to determine that the other countries for more than a ingredients are generally recognized as safe and effective (GRASE), which is decade. Companies that manufacture needed so that products using the ingredients can subsequently be marketed in some of these ingredients have sought the United States without FDA’s premarket approval.
    [Show full text]
  • Octinoxate, Octisalate, Avobenzone, Ensulizole, Homosalate
    TONYMOLY MAGIC FOOD MANGO MILD SUN BLOCK- octinoxate, octisalate, avobenzone, ensulizole, homosalate cream TONYMOLY CO.,LTD Disclaimer: Most OTC drugs are not reviewed and approved by FDA, however they may be marketed if they comply with applicable regulations and policies. FDA has not evaluated whether this product complies. ---------- ACTIVE INGREDIENT Active ingredients: Ethylhexyl Methoxycinnamate 6.9%, Ethylhexyl Salicylate 4.5%, Butyl Methoxydibenzoylmethane 3.5%, Phenylbenzimidazole Sulfonic Acid 3.5%, Homosalate 3.0% INACTIVE INGREDIENT Inactive ingredients: Water, Butylene Glycol, Alcohol Denat., Octocrylene, Phenethyl Benzoate, Aminomethyl Propanol, Bis-Ethylhexyloxyphenol Methoxyphenyl Triazine, Triceteareth-4 Phosphate, Glycol Stearate, Ammonium Acryloyldimethyltaurate/VP Copolymer, Carbomer, PEG-2 Stearate, Fragrance(Parfum), Phenoxyethanol, Glyceryl Caprylate, Caprylyl Glycol, Mangifera Indica (Mango) Seed Butter, Disodium EDTA, Citrus Limon (Lemon) Fruit Extract, Musa Sapientum (Banana) Fruit Extract, Propylene Glycol, 1,2-Hexanediol, Citrus Aurantium Dulcis (Orange) Fruit Extract, Mangifera Indica (Mango) Fruit Extract, Psidium Guajava Fruit Extract, Citrus Paradisi (Grapefruit) Fruit Extract, Cocos Nucifera (Coconut) Fruit Extract, Actinidia Chinensis (Kiwi) Fruit Extract, Carica Papaya (Papaya) Fruit Extract, Ethylhexylglycerin PURPOSE Purpose: Sunscreen WARNINGS Warnings: For external use only Do not use on damaged or broken skin Stop use and ask a doctor if irritation occurs Keep out of reach of children DESCRIPTION Uses: - helps prevent sunburn - If used as directed with other sun protection measures Directions: decreases the risk of skin cancer and early skin aging caused by the sun Directions: For sunscreen use: - apply liberally 15 minutes before sun exposure - use a water resistant sunscreen if swimming or sweating - reapply at least every 2 hours - Sun Protection Measures. Spending time in the sun increases your risk of skin cancer and early skin aging.
    [Show full text]
  • Sun Lotion Chemicals As Endocrine Disruptors
    HORMONES 2015, 14(1):32-46 Review Sun lotion chemicals as endocrine disruptors Sotirios Maipas, Polyxeni Nicolopoulou-Stamati National and Kapodistrian University of Athens, School of Medicine, First Department of Pathology and Cytology Unit, 1st Pathology Laboratory, Athens, Greece Both authors contributed equally to this work ABSTRACT Ultraviolet solar radiation is a well-known environmental health risk factor and the use of sun lotions is encouraged to achieve protection mainly from skin cancer. Sun lotions are cosmetic commercial products that combine active and inactive ingredients and many of these are associated with health problems, including allergic reactions and endocrine disorders. This review focuses on their ability to cause endocrine and reproductive impairments, with empha- sis laid on the active ingredients (common and less common UV filters). In vitro and in vivo studies have demonstrated their ability to show oestrogenic/anti-oestrogenic and androgenic/ anti-androgenic activity. Many ingredients affect the oestrous cycle, spermatogenesis, sexual behaviour, fertility and other reproductive parameters in experimental animals. Their presence in aquatic environments may reveal a new emerging environmental hazard. Key words: Active ingredients, Endocrine disruptors, Environmental hazard, Reproductive impair- ments, Sun creams, Sun lotions, Sunscreens, UV filters 1. INTRODUCTION ing, but the level of photoprotection is insufficient to prevent the harmful effects of UV radiation.3,4 Ultraviolet (UV) solar radiation is one
    [Show full text]
  • Table 1 - Experimental and Predicted Physical-Chemical Parameters of the Most Recently Investigated UV-Absorbers
    Table 1 - Experimental and predicted physical-chemical parameters of the most recently investigated UV-absorbers. INCI name (INN/XAN) Chemical structure Brand name Absorption Molecula LogP Water solubility Melting spectrum range r weight (mg/L) point (°C) (g/mol)4 diethylamino Uvinul® A Plus UVA1 5.7-6.21 <0.01 (20°C) 1 54; 314 hydroxybenzoyl hexyl 397.515 (dec.) 1 benzoate Butyl Eusolex® 9020, UVA 310.393 4.514 2.2 (25°C)4 83.54 methoxydibenzoylmetha Parsol® 1789 ne (avobenzone) 4-methylbenzylidene Eusolex® 6300 UVB 258.397 4.95 1.3 (20°C) 66–68 camphor (enzacamene) Parsol® 5000 Uvinul® MBC 95 Octocrylene Eusolex® OCR, UVB 361.485 6.783 0.00383 N/A (octocrilene) Parsol® 340, Uvinul® N539T, NeoHeliopan® 303 USP isoamyl p- Neo Heliopan® UVB 248.322 3.61 4.9 (25°C)1 N/A methoxycinnamate E1000 (amiloxate) Ethylhexyl triazone Uvinul® T150 UVB 823.092 > 7(20 °C) 6 < 0.001 (20.0 °C) 6 1296 Ethylhexyl Parsol® MCX, UVB 290.403 6.14 0.041 (24 °C and N/A methoxycinnamate Heliopan® New pH 7.1) 4 (octinoxate) Ethylhexyl dimethyl Escalol™ 507 UVB 277.4084 5.774 0.54 (25 °C) 4 N/A PABA (padimate-O) Arlatone 507 Eusolex 6007 benzophenone-3 Eusolex® 4360 UVA2+ UVB 228.247 3.72 3.7 (20°C) 2 62-652 (oxybenzone) bis-ethylhexyloxyphenol Tinosorb® S UVA1+UVB 627.826 12.61 <10-4 80.401 methoxyphenol triazine (bemotrizinol) Phenylbenzimidazole Eusolex® 232 UVA2+ UVB 274.2945 -1.1 (pH 5) > 30% (As sodium N/A sulfonic acid Parsol® HS -2.1 (pH 8)5 or (ensulizole) Neo Heliopan® triethanolammoniu Hydro m salt at 20°C) 5 1 (3) 2 (34) 3 (44) 4 Pubchem 5 SCCP/1056/06 Opinion on phenylbenzimidazole sulfonic acid and its salts 6 BASF safety data sheet Table 2 – In vitro studies for the assessment of skin permeation/penetration of sunscreens.
    [Show full text]
  • Sun Protection, Sunscreens and Vitamin D
    SunSun protection,protection, sunscreenssunscreens andand VitaminVitamin DD GPGP NationalNational ConferenceConference RotoruaRotorua EnergyEnergy EventsEvents CentreCentre JuneJune 20092009 Dr. Louise Reiche Dermatologist New Zealand Dermatological Society Incorporated MelanomaMelanoma SkinSkin cancercancer andand sunlightsunlight Exposure to UVR causes > 90% of skin cancers Skin cancer is commonest cancer in NZ >50,000 new cases per year ~300 deaths per year ~$33.4 NZ million per year International Agency for Research on Cancer. IARC Monographs on the evaluation of carcinogenic risks to humans. Solar ultraviolet radiation. Lyon: International Agency for Research on Cancer, 1992. Armstrong BK. How sun exposure causes skin cancer. In: Hill D, Elwood JM, English DR, Eds. Prevention of Skin Cancer. Dordrecht: Kluwer Academic Publishers, 2004. O’Dea D. The Costs of Skin Cancer to New Zealand. Wellington: Cancer Society of New Zealand, 2000. New Zealand Health Information Service. Cancer, New Registrations and Deaths. Wellington: New Zealand Health Information Service, 2004. MelanomaMelanoma 1842 new cases in 2002 328 directly attributable to severe sunburn (Sneyd and Cox 2006) Authors recommended, “to reduce burden of melanoma in NZ, need to prevent excessive sun exposure and (facilitate) early diagnosis” Whilst cancer overall is rare in adolescence, melanoma was commonest cancer MelanomaMelanoma NZ incidence and death rate among world highest 56.2/100,000 in European population of Auckland highest reported worldwide men
    [Show full text]
  • Sunscreen Enhancement of Octyl Methoxycinnamate Microcapsules by Using Two Biopolymers As Wall Materials
    polymers Article Sunscreen Enhancement of Octyl Methoxycinnamate Microcapsules by Using Two Biopolymers as Wall Materials Chuntao Xu 1,2 , Xuemin Zeng 3, Zujin Yang 4,* and Hongbing Ji 1,3,4,5,* 1 School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; [email protected] 2 School of Information Engineering, Zhongshan Polytechnic, Zhongshan 528400, China 3 Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China; [email protected] 4 School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai 519082, China 5 School of Chemical Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China * Correspondence: [email protected] (Z.Y.); [email protected] (H.J.) Abstract: Octyl methoxycinnamate (OMC) is widely used as a chemical sunscreen in sunscreen cosmetics. However, its direct contact with the skin would bring certain risks, such as skin photo- sensitive reaction. How to improve the effect of skin photodamage protection has become a current research hotspot. Encapsulating ultraviolet (UV) filters into microcapsules is an interesting method to increase the photostability of filters. In this study, sodium caseinate (SC) and arabic gum (GA) are chosen as wall materials to prepare synergistic sunscreen microcapsules by complex coacervation technology. A series of experiments are conducted to investigate the effects of pH, wall material concentration, and wall/core ratio on the formation of OMC microcapsules. The morphology, com- position, and stability of OMC microcapsules are characterized by scanning electron microscopy Citation: Xu, C.; Zeng, X.; Yang, Z.; Ji, (SEM), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA).
    [Show full text]
  • New Technology Provides Cosmetically Elegant Photoprotection Zoe Diana Draelos, MD; Christian Oresajo; Margarita Yatskayer; Angelike Galdi; Isabelle Hansenne
    COSMETIC CONSULTATION New Technology Provides Cosmetically Elegant Photoprotection Zoe Diana Draelos, MD; Christian Oresajo; Margarita Yatskayer; Angelike Galdi; Isabelle Hansenne he primary preventable cause of photoaging is United States, as there is no official rating system for exposure to UVA radiation. This wavelength UVA photoprotection yet. T emitted by the sun is present year round in all Ecamsule absorbs UVA radiation in the range of 320 to latitudes. Currently, the majority of sun-protective prod- 360 nm, but its peak absorbance occurs at 345 nm. It is ucts provide excellent UVB protection with minimal UVA typically combined with other organic sunscreen ingredi- protection. Although UVB protection is important in ents, such as avobenzone and octocrylene. Avobenzone, order to prevent sun damage to the skin from occurring, which is a photounstable photoprotectant, becomes UVA protection is equally important. New developments photostable when combined with octocrylene. These in raw material science have led to the manufacture of ingredients yield a photostable broad-spectrum sunscreen novel ingredients able to provide unprecedented photo- combination. However, the active sunscreen agents are protection COSin the UVA spectrum. DERMonly part of the formulation. Also important in sunscreen One of the most significant developments in cutaneous is the construction of the vehicle to deliver the photo- UVA protection was the discovery of ecamsule (Figure 1), protectants in an aesthetically pleasing manner, enticing also known as Mexoryl SX. Mexoryl SX, which has patients to wear the product. Sunscreens fail to be effec- the International Nomenclature of Cosmetic Ingredients tive if they remain in the bottle. name of terephthalylidene dicamphor sulfonic acid, is In order to evaluate the efficacy and tolerability of a water soluble.
    [Show full text]
  • Use of Vegetable Oils to Improve the Sun Protection Factor of Sunscreen Formulations
    cosmetics Article Use of Vegetable Oils to Improve the Sun Protection Factor of Sunscreen Formulations Lucia Montenegro * and Ludovica Maria Santagati Department of Drug Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-095-7384010 Received: 11 March 2019; Accepted: 1 April 2019; Published: 8 April 2019 Abstract: Some vegetable oils have many biological properties, including UV-absorbing capacity. Therefore, their use has been suggested to reduce the content of organic UV-filters in sunscreen products. In this work, we investigated the feasibility of developing oil-based vehicles with a high sun protection factor (SPF) using pomegranate oil (PMG) and shea oil (BPO) in association with different percentages of organic UV-filters (octyl– methoxycinnamate, butyl methoxydibenzoylmethane, and bemotrizinol). We characterized the spreadability, occlusion factor, pH, and required hydrophilic lipophilic balance of the resulting formulations, and did not observe relevant differences due to the incorporation of vegetable oils. The in vitro spectrophotometric determinations of SPF values highlighted that the addition of BPO (1% (w/w)) and PMG (1% (w/w)) resulted in an increase in SPF in comparison with the same formulations that contained only organic UV-filters. The SPF increase was more significant for the formulations that contained lower amounts of organic UV-filters. The results of this study supported the hypothesis that including suitable vegetable oils in sunscreen formulations could be a promising strategy to design products with a lower content of organic UV-filters. Keywords: sunscreens; vegetable oils; sun protection factor; oil-based vehicles; occlusion; spreadability 1.
    [Show full text]
  • FDA Proposes Sunscreen Regulation Changes February 2019
    FDA Proposes Sunscreen Regulation Changes February 2019 The U.S. Food and Drug Administration (FDA) regulates sunscreens to ensure they meet safety and eectiveness standards. To improve the quality, safety, and eectiveness of sunscreens, FDA issued a proposed rule that describes updated proposed requirements for sunscreens. Given the recognized public health benets of sunscreen use, Americans should continue to use broad spectrum sunscreen with SPF 15 or higher with other sun protective measures as this important rulemaking eort moves forward. Highlights of FDA’s Proposals Sunscreen active ingredient safety and eectiveness Two ingredients (zinc oxide and titanium dioxide) are proposed to be safe and eective for sunscreen use and two (aminobenzoic acid (PABA) and trolamine salicylate) are 1 proposed as not safe and eective for sunscreen use. FDA proposes that it needs more safety information for the remaining 12 sunscreen ingredients (cinoxate, dioxybenzone, ensulizole, homosalate, meradimate, octinoxate, octisalate, octocrylene, padimate O, sulisobenzone, oxybenzone, avobenzone). New proposed sun protection factor Sunscreen dosage forms (SPF) and broad spectrum Sunscreen sprays, oils, lotions, creams, gels, butters, pastes, ointments, and sticks are requirements 2 proposed as safe and eective. FDA 3 • Raise the maximum proposed labeled SPF proposes that it needs more data for from SPF 50+ to SPF 60+ sunscreen powders. • Require any sunscreen SPF 15 or higher to be broad spectrum • Require for all broad spectrum products SPF 15 and above, as SPF increases, broad spectrum protection increases New proposed label requirements • Include alphabetical listing of active ingredients on the front panel • Require sunscreens with SPF below 15 to include “See Skin Cancer/Skin Aging alert” on the front panel 4 • Require font and placement changes to ensure SPF, broad spectrum, and water resistance statements stand out Sunscreen-insect repellent combination 5 products proposed not safe and eective www.fda.gov.
    [Show full text]
  • Chemical UVR Absorbers
    Chemical UVR Absorbers The names given in bold and used Diisopropyl methyl cinnamate Glyceryl ethyihexanoate dimethoxy- throughout this handbook are those of Empirical formula: cinnamate the International Nomenclature of C 6H22O2 Chemical names. Cosmetic Ingredients. Glyceryl octanoate dimethoxycinnamate; Chemical names: 2-propenoic acid, 3-(4-methoxyphenyl)-, 2-Propenoic acid, 3-12,4bis(1 diester with 1 ,3-dihydroxy-2-(2-ethyl-1 - methylethyphenyl-methyl ester; 2,5- oxohexyl)oxypropane diisopropyl methyl cinnamate _ lsoamyl-para-methoxycinnamate Ethyihexyl methoxycinnamate Empirical formula: Empirical formula: C151-12003 C 8H26O3 Chemical names: Cinnamates Chemical names: Amyl4-methoxycinnamate; isopentyl-4- 2-Ethylhexyl-4-methoxycin nam ate; methoxycinnamate; isopenlyl-para- Cinoxate 2-ethyl-hexyl-para-methoxycinnamate; methoxy-cinnamate; 3-(4-methoxyphenyl)- Empirical formula: para-methoxycinnamic acid, 2-ethylhexyl 2-propenoic acid, isopentyl ester Ci4HieO4 ester; 3-(4-methoxyphenyl)-2-propenoic acid, 2-ethylhexyl ester; octinoxate; octyl Trade names: Chemical names: methoxycinnamate; 2-propenoic acid, 3- Neo Heliopan type E 1000; Solarum AMC 2- Ethoxyothyl-para-methoxyci n nam ate; (4-methoxyphenyl)-2-ethylhexyl ester 2-propenoic acid, 3-(4-methoxyphery- para-A minobenzoic acids (PA BAs) 2-ethoxyethyl ester; 2-ethoxyethyl-4- Trade names: methoxycinnamate AEC Octyl Methoxycinnamate; Escalol Amyl dimethyl FABA 557; Eusolex 2292; Heliosol 3; Empirical formula: Trade names: Jeescreen OMC; Katoscreen OMC; Nec C14H21 NO2 Giv Tan F; Phiasol
    [Show full text]
  • WO 2013/036901 A2 14 March 2013 (14.03.2013) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2013/036901 A2 14 March 2013 (14.03.2013) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 8/30 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/US2012/054376 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, 10 September 2012 (10.09.2012) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (25) Filing Language: English NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, (26) Publication Language: English RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, (30) Priority Data: ZM, ZW. 61/532,701 9 September 201 1 (09.09.201 1) US (84) Designated States (unless otherwise indicated, for every (71) Applicant (for all designated States except US): UNIVER¬ kind of regional protection available): ARIPO (BW, GH, SITY OF FLORIDA RESEARCH FOUNDATION, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, INC.
    [Show full text]