ANNEXES Annex 1: Outcrops data (PhD and others) ...... 258 Annex 2: Biostratigraphic results for the Inambari area (Phd) ...... 263 Annex 3: Biostratigraphic results for the Pongo de Coñeq area (Phd)...... 266 Annex 4: Donnelick’s Report (2004) ...... 269 Annex 5: Editor’s and reviewers’ comments about the submitted article: “Evidences for a late Palaeocene marine incursion in Southern Amazonia (Madre de Dios Sub-Andean Zone, )” ...... 275 Annex 6: Marivaux et al., 2012 ...... 277 Annex 7: Antoine et al., 2013 ...... 277

MAP AND FIGURES MAP 1: Structural Map of the study area (focused on the Madre de Dios SAZ)

MAP 2: Structural Map of the study area (focused on the Madre de Dios SAZ) and position of the 2D seismic sections used in this study (bold yellow lines)

MAP 3: Outcrops described during the PhD (red dots) and previous outcrops from the University of Toulouse (blue dots)

MAP 4: Biostratigraphic results (PhD) and samples number in the Madre de Dios SAZ

MAP 5: Biostratigraphic results (PhD) and samples number in the Pongo de Coñeq Canyon area (southern flank of the Salvación syncline)

MAP 6: Biostratigraphic results (PhD) and samples number in the Pantiacolla anticline area (northern flank of the Salvación area)

MAP 7: Biostratigraphic results (PhD) and samples number in the Inambari area (southern flank of the Punquiri syncline)

MAP 8: Samples for the Nd/Sr isotopic composition analyses realized in the Madre de Dios SAZ

MAP 9: Geochronology results (Ar/Ar on muscovites/biotites and U-Pb) in the Eastern Cordillera and the Madre de Dios SAZ

FIGURE A: Pongo de Coñeq Stratigraphic Section 1, Southern flank of the Salvación Syncline

FIGURE B: Pongo de Coñeq Stratigraphic Sections 2 and 3, Northern flank of the Salvación Syncline

FIGURE C: Inambari Stratigraphic Section 4 (Part 1/3), Punquiri Syncline

FIGURE D: Inambari Stratigraphic Section 4 (Part 2/3), Punquiri Syncline

FIGURE E: Inambari Stratigraphic Section 4 (Part 3/3), Punquiri Syncline

FIGURE F: Inambari Stratigraphic Section 5 (Santa Rosa section), Northern flank of the Punquiri Syncline

FIGURE G: Legend for the stratigraphic sections

FIGURE H: The Inambari regional structural cross-section (focused on the eastern border of the EC and on the SAZ). 1= Punquiri syncline; 2= Nusiniscati syncline; 3= Imbricates Area (IA); 4= Inambari anticline; 5= Internal Duplex; 6=External Duplex; 7= Basement wedge (back-stop).

FIGURE I: The Inambari regional cross-section. AFT and AHe ages (Ma) are plotted on the section. Vitrinite reflectance (Ro% results) are also indicated.

257 ANNEXES | M. Louterbach (2014)

Annex 1: Outcrops data (PhD and others)

Outcrops X Y Z Mission Year MD 107 -70,8465 -13,334 Inambari ML 2010

MD 162-2011 -70,4487 -13,6154 Altiplano ML 2011 MD 108 -70,7782 -13,2522 Inambari ML 2010

MD 164-2011 -70,4668 -13,6879 1883 Altiplano ML 2011 MD 109 -70,7794 -13,2588 Inambari ML 2010

MD 210 -70,462 -13,648 Altiplano ML 2011 MD 109-2011 -70,7794 -13,2588 Inambari ML 2011

MD 211 -70,4775 -13,6679 1733 Altiplano ML 2011 MD 110 -70,7924 -13,2951 Inambari ML 2010

MD 212 -70,4719 -13,7984 Altiplano ML 2011 MD 111 -70,8319 -13,3175 Inambari ML 2010

MD 213 -70,4629 -13,6483 Altiplano ML 2011 MD 112 -70,8422 -13,3242 843 Inambari ML 2010

MD 214 -70,77769 -13,25337 645 Altiplano ML 2011 MD 112-2011 -70,8426 -13,3232 843 Inambari ML 2011

MD 215 -70,78055 -13,27081 681 Altiplano ML 2011 MD 113 -70,7543 -13,1615 Inambari ML 2010

MD 109-2011 -70,7794 -13,2588 Field Trip ML 2011 MD 114 -70,7685 -13,1738 Inambari ML 2010 FT MD 112-2011 -70,8426 -13,3232 843 Field Trip ML 2011 MD 115 -70,7685 -13,1753 Inambari ML 2010 FT MD 119-2011 -70,7214 -13,2155 Field Trip ML 2011 MD 116 -70,7695 -13,1783 Inambari ML 2010 FT MD 125-2011 -70,5357 -13,205 Field Trip ML 2011 MD 117 -70,7665 -13,1901 Inambari ML 2010

MD 136-2011 -70,3995 -13,1913 Field Trip ML 2011 MD 118 -70,768 -13,2136 Inambari ML 2010

MD 137-2011 -70,3841 -13,1964 Field Trip ML 2011 MD 119 -70,7214 -13,2155 Inambari ML 2010

MD 144-2011 -70,3826 -13,1813 Field Trip ML 2011 MD 120 -70,7214 -13,2155 Inambari ML 2010

MD 204 FT -70,4094 -13,1115 Field Trip ML 2011 MD 121 -70,71895 -13,2128 Inambari ML 2010

MD 216 -70,86083 -13,34566 986 Field Trip ML 2011 MD 122 -70,7082 -13,21 Inambari ML 2010

MD 217 -70,38991 -13,19037 486 Field Trip ML 2011 MD 123 -70,6846 -13,2017 Inambari ML 2010

MD 218 -70,387465 -13,18847 Field Trip ML 2011 MD 124 -70,6608 -13,1955 Inambari ML 2010

MD 219 -70,38292 -13,18389 351 Field Trip ML 2011 MD 125 -70,6017 -13,1821 Inambari ML 2010

MD 220 -70,38217 -13,18215 355 Field Trip ML 2011 MD 126 -70,5682 -13,1881 Inambari ML 2010

MD 221 -70,38246 -13,18116 389 Field Trip ML 2011 MD 127 -70,5558 -13,191 Inambari ML 2010

MD 222 -70,3973 -13,1308 Field Trip ML 2011 MD 128 -70,5327 -13,203 Inambari ML 2010

MD 223 -70,4029 -13,13827 325 Field Trip ML 2011 MD 129 -70,5258 -13,1948 Inambari ML 2010

MD 224 -70,40102 -13,12724 333 Field Trip ML 2011 MD 130 -70,508 -13,1872 Inambari ML 2010

MD 225 -70,40063 -13,12645 337 Field Trip ML 2011 MD 131 -70,4956 -13,1755 Inambari ML 2010

MD 226=202 -70,4008 -13,1191 Field Trip ML 2011 MD 132 -70,4805 -13,179 Inambari ML 2010

MD 51=90 -69,21098 -12,5823 Field Trip ML 2011 MD 133 -70,4393 -13,1854 Inambari ML 2010

AY 01 -70,0711 -15,4245 Inambari ML 2010 MD 134 -70,4121 -13,1912 Inambari ML 2010

AY 02 -69,7677 -15,2028 Inambari ML 2010 MD 135 -70,3995 -13,1913 Inambari ML 2010

AY 3 -69,7128 -15,2327 Inambari ML 2010 MD 136 -70,3995 -13,1913 Inambari ML 2010

MD 192 -70,9811 -13,5957 2986 Inambari ML 2011 MD 137 -70,3841 -13,1964 Inambari ML 2010

MD 100 -70,8963 -13,5177 Inambari ML 2010 MD 138 -70,389 -13,18925 Inambari ML 2010

MD 101 -70,8991 -13,5093 Inambari ML 2010 MD 139 -70,3876 -13,1881 Inambari ML 2011

MD 101-2011 -70,8991 -13,5093 Inambari ML 2011 MD 140 -70,3836 -13,1857 Inambari ML 2010

MD 102 -70,8996 -13,5052 Inambari ML 2010 MD 141 -70,382 -13,1733 Inambari ML 2010

MD 103 -70,9018 -13,4997 Inambari ML 2010 MD 142 -70,3883 -13,1416 Inambari ML 2010

MD 104 -70,9016 -13,4916 Inambari ML 2010 MD 143 -70,389 -13,1295 Inambari ML 2010

MD 105 -70,9004 -13,4811 Inambari ML 2010 MD 144 -70,3826 -13,1813 Inambari ML 2010

MD 106 -70,9005 -13,4812 Inambari ML 2010 MD 145 -70,508 -13,1872 Inambari ML 2010

M. Louterbach (2014) | ANNEXES 258

MD 146 -70,3761 -13,1996 Inambari ML 2010 MD 205 -70,4064 -13,1135 Inambari ML 2011

MD 147 -70,3493 -13,3692 Inambari ML 2010 MD 206 -70,4116 -13,1069 Inambari ML 2011

MD 148 -70,35 -13,3678 Inambari ML 2010 MD 207 -70,35 -12,919 Inambari ML 2011

MD 149 -70,3289 -13,3938 Inambari ML 2010 MD 208 -70,3039 -12,9322 Inambari ML 2011

MD 150 -70,3399 -13,4396 Inambari ML 2010 MD 208 2012 -70,3039 -12,9322 Inambari ML 2012

MD 151 -70,3369 -13,3517 Inambari ML 2010 MD 209 Début -70,3868 -13,135 Inambari ML 2011

MD 152 -70,3177 -13,3282 Inambari ML 2010 MD 209 Fin -70,3869 -13,1337 Inambari ML 2011

MD 153 -70,4092 -13,1009 Inambari ML 2010 MD 261 -70,3888 -13,1875 506 Inambari ML 2012

MD 154 -70,4124 -13,107 Inambari ML 2010 MD 262 -70,387904 -13,189117 416 Inambari ML 2012

MD 155 -70,4002 -13,1255 Inambari ML 2010 MD 263 -70,390445 -13,189111 523 Inambari ML 2012

MD 156 -70,4062 -13,1405 Inambari ML 2010 MD 264 -70,39004 -13,190325 449 Inambari ML 2012

MD 157 -70,4094 -13,1115 Inambari ML 2010 MD 265 -70,398273 -13,19115 413 Inambari ML 2012

MD 158 -70,3476 -12,9467 Inambari ML 2010 MD 266 -70,398699 -13,1919 Inambari ML 2012

MD 159 -70,3653 -13,0158 Inambari ML 2010 MD 267 -70,38447 -13,18153 Inambari ML 2012

MD 160 -70,3695 -13,0216 Inambari ML 2010 MD 268 -70,40094 -13,14937 Inambari ML 2012

MD 161 -70,4218 -13,5103 Inambari ML 2010 MD 269 -70,40063 -13,14937 Inambari ML 2012

MD 162 -70,4487 -13,6154 Inambari ML 2010 MD 270 -70,461 -13,14897 Inambari ML 2012

MD 163 -70,4606 -13,6411 Inambari ML 2010 MD 271 -70,394365 -13,148472 363 Inambari ML 2012

MD 164 -70,4668 -13,6879 1883 Inambari ML 2010 MD 272 -70,395584 -13,149689 366 Inambari ML 2012

MD 165 -70,4663 -13,7537 Inambari ML 2010 MD 273 -70,395682 -13,149925 Inambari ML 2012

MD 166 -70,4664 -13,7538 Inambari ML 2010 MD 274 -70,39625369 -13,1967439 Inambari ML 2012

MD 167 -70,4572 -13,7086 Inambari ML 2010 MD 275 -70,381455 -13,196956 432 Inambari ML 2012

MD 168 -70,4774 -13,8056 Inambari ML 2010 MD 275-2 -70,3813 -13,197 385 Inambari ML 2012

MD 169 -70,4865 -13,8273 2994 Inambari ML 2010 MD 276 -70,37949551 - 405 Inambari ML 2012 13,19786531 MD 170 -70,495 -13,8404 3213 Inambari ML 2010 MD 277 -70,379349 -13,198065 Inambari ML 2012

MD 171 -70,5111 -13,8689 Inambari ML 2010 MD 278 -70,376405 -13,199592 482 Inambari ML 2012

MD 172 -70,5062 -13,8642 Inambari ML 2010 MD 279 -70,36993 -13,202119 416 Inambari ML 2012

MD 192 -70,9811 -13,5957 3000 Inambari ML 2011 MD 280 -70,370149 -13,203766 405 Inambari ML 2012

MD 193 -70,968 -13,588 Inambari ML 2011 MD 281 -70,371202 -13,204147 409 Inambari ML 2012

MD 194 -70,9178 -13,5687 2385 Inambari ML 2011 MD 281 Bis -70,37237832 - Inambari ML 2012 13,20384299 MD 195 -70,388 -13,192 Inambari ML 2011 MD 282 -70,372566 -13,204591 430 Inambari ML 2012

MD 196 -70,3946 -13,148 Inambari ML 2011 MD 283 -70,366015 -13,206825 493 Inambari ML 2012

MD 197 -70,3888 -13,143 Inambari ML 2011 MD 284 -70,36656 -13,2094 554 Inambari ML 2012

MD 197 Fin -70,3879 -13,1442 Inambari ML 2011 MD 285 -70,365687 -13,209425 532 Inambari ML 2012

MD 198 -70,3878 -13,1392 Inambari ML 2011 MD 286 -70,364993 -13,207655 488 Inambari ML 2012

MD 198 Faille -70,386 -13,1373 Inambari ML 2011 MD 287 -70,36474 -13,210541 540 Inambari ML 2012

MD 199 -70,3898 -13,1308 Inambari ML 2011 MD 288 -70,364507 -13,211961 508 Inambari ML 2012

MD 200 -70,4012 -13,1272 Inambari ML 2011 MD 289 -70,368263 -13,212594 527 Inambari ML 2012

MD 201= 155 -70,4003 -13,1256 Inambari ML 2011 MD 290 -70,368535 -13,212841 Inambari ML 2012

MD 202 -70,4008 -13,1191 Inambari ML 2011 MD 291 -70,368866 -13,21305 544 Inambari ML 2012

MD 202 Bis -70,4008 -13,1191 Inambari ML 2011 MD 292 -70,368994 -13,213414 546 Inambari ML 2012

MD 203 -70,4013 -13,117 Inambari ML 2011 MD 293 -70,368388 -13,214211 538 Inambari ML 2012

MD 204 -70,4094 -13,1115 Inambari ML 2011 MD 294 -70,366674 -13,215978 506 Inambari ML 2012

259 MAP AND FIGURES | M. Louterbach (2014)

MD 295 -70,364771 -13,216544 501 Inambari ML 2012 MD-PB-361 -70,388845 -13,187471 506 Inambari ML 2012

MD 296 -70,363187 -13,21855 465 Inambari ML 2012 MD-PB-365_02 -70,398501 -13,191708 416 Inambari ML 2012

MD 297 -70,357451 -13,224583 474 Inambari ML 2012 MD-PB-366 -70,39607 -13,150152 373 Inambari ML 2012

MD 298 -70,35586165 - Inambari ML 2012 MD-PB-367 -70,39089 -13,159502 355 Inambari ML 2012 13,22543785 MD 299 -70,354526 -13,228411 422 Inambari ML 2012 MD-PB-368 -70,381749 -13,173175 370 Inambari ML 2012

MD 30=140 -70,3836 -13,1857 382 Inambari ML 2011 MD-PB-369 -70,382427 -13,18222 380 Inambari ML 2012

MD 300 -70,355879 -13,229344 461 Inambari ML 2012 MD-PB-369B -70,382427 -13,181161 383 Inambari ML 2012

MD 301 -70,355785 -13,23083 453 Inambari ML 2012 MD-PB-370 -70,382463 -13,182864 398 Inambari ML 2012

MD 302 -70,342125 -13,247567 410 Inambari ML 2012 MD-PB-371 -70,385304 -13,189542 374 Inambari ML 2012

MD 303 -70,343941 -13,244072 467 Inambari ML 2012 MD-PB-372 -70,385217 -13,194189 367 Inambari ML 2012

MD 304 -70,343033 -13,243411 439 Inambari ML 2012 MD-PB-373 -70,38349 -13,196911 454 Inambari ML 2012

MD 305 -70,341886 -13,242036 459 Inambari ML 2012 MD-PB-374 -70,382205 -13,196695 426 Inambari ML 2012

MD 306 -70,325308 -13,262853 Inambari ML 2012 MD-PB-375 -70,379674 -13,197772 447 Inambari ML 2012

MD 307 -70,322528 -13,269278 Inambari ML 2012 MD-PB-376 -70,379033 -13,198 445 Inambari ML 2012

MD 308 -70,319763 -13,273324 Inambari ML 2012 MD-PB-378 -70,376405 -13,199592 482 Inambari ML 2012

MD 309 -70,3179 -13,2795 Inambari ML 2012 MD-PB-381 -70,370149 -13,203766 405 Inambari ML 2012

MD 310 -70,3062 -12,9333 Inambari ML 2012 MD-PB-383 -70,372869 -13,20348 437 Inambari ML 2012

MD 311 -70,3476 -12,93 Inambari ML 2012 MD-PB-384 -70,373069 -13,204141 424 Inambari ML 2012

MD 312 -70,3103 -13,2868 Inambari ML 2012 MD-PB-386 -70,366015 -13,206825 493 Inambari ML 2012

MD 313 -70,308 -13,2886 Inambari ML 2012 MD-PB-387 -70,36609 -13,208233 509 Inambari ML 2012

MD 314 -70,3199 -13,2746 Inambari ML 2012 MD-PB-394 -70,368594 -13,212953 535 Inambari ML 2012

MD 315 -70,3191 -13,2746 Inambari ML 2012 MD-PB-402 -70,354526 -13,228411 422 Inambari ML 2012

MD 316 -70,3049 -13,2925 Inambari ML 2012 MD-PB-406 -70,342916 -13,246397 450 Inambari ML 2012

MD 317 -70,3003 -13,2996 Inambari ML 2012 MD-PB-407 -70,343053 -13,246086 461 Inambari ML 2012

MD 318 -70,2984 -13,3049 Inambari ML 2012 MD-PB-410 -70,341886 -13,242036 459 Inambari ML 2012

MD 319 -70,30900292 - Inambari ML 2012 MD-PB-411 -70,341886 -13,242036 459 Inambari ML 2012 13,31500131 MD 320 -70,3406 -12,9719 Inambari ML 2012 MD-PB-412 -70,341811 -13,241245 467 Inambari ML 2012

MD 321 -70,331 -12,9675 Inambari ML 2012 MD-PB-413 -70,34298 -13,240325 493 Inambari ML 2012

MD 322 -70,3005 -12,9419 Inambari ML 2012 MD-PB-414 -70,345266 -13,239345 487 Inambari ML 2012

MD 323 -69,205 -12,5723 Inambari ML 2012 MD-PB-415 -70,351512 -13,236453 476 Inambari ML 2012

MD 324 -69,2049 -12,5761 Inambari ML 2012 MD-PB-415B -70,35649 -13,235685 444 Inambari ML 2012

MD 325 -69,2047 -12,575 Inambari ML 2012 MD-PB-416 -70,398962 -13,192689 432 Inambari ML 2012

MD 326 -69,2076 -12,5809 Inambari ML 2012 MD-PB-417 -70,39889 -13,193217 420 Inambari ML 2012

MD 327 -69,2648 -12,5708 Inambari ML 2012 MD-PB-418 -70,412132 -13,191136 386 Inambari ML 2012

MD 328 -69,2493 -12,5699 Inambari ML 2012 MD-PB-419 -70,414857 -13,189561 399 Inambari ML 2012

MD 93 -71,095 -13,6359 Inambari ML 2010 MD-PB-420 -70,415671 -13,188533 393 Inambari ML 2012

MD 94 -70,9963 -13,5831 Inambari ML 2010 MD-PB-421 -70,416546 -13,187442 391 Inambari ML 2012

MD 95 -70,8652 -13,3465 Inambari ML 2010 MD-PB-422 -70,438073 -13,186195 401 Inambari ML 2012

MD 96 -70,91812 -13,5698 Inambari ML 2010 MD-PB-423 -70,437876 -13,186108 412 Inambari ML 2012

MD 97 -70,8989 -13,558 Inambari ML 2010 MD-PB-424 -70,468701 -13,181214 400 Inambari ML 2012

MD 98 -70,8953 -13,5536 Inambari ML 2010 MD-PB-425 -70,470237 -13,181209 398 Inambari ML 2012

MD 99 -70,8876 -13,5436 Inambari ML 2010 MD-PB-426 -70,495746 -13,175473 410 Inambari ML 2012

MD139 -70,3876 -13,1881 Inambari ML 2010 MD-PB-427 -70,524417 -13,189056 453 Inambari ML 2012

M. Louterbach (2014) | ANNEXES 260

MD-PB-428 -70,527001 -13,195345 503 Inambari ML 2012 MD 239 -71,36149 -12,89221 513 Pongo de 2012 Coñeq ML MD-PB-429 -70,53189 -13,201683 468 Inambari ML 2012 MD 240 -71,3842 -12,85524 486 Pongo de 2012 Coñeq ML MD 13 -70,3491 -12,9221 290 Inambari Tlse 2003 MD 241 -71,38158 -12,85687 488 Pongo de 2012 Coñeq ML MD 20 -70,41374 -13,10168 355 Inambari Tlse 2003 MD 242 -71,39156 -12,82132 472 Pongo de 2012 Coñeq ML MD 22 -70,40073 -13,11903 338 Inambari Tlse 2003 MD 243 -71,39398 -12,80702 473 Pongo de 2012 Coñeq ML MD 26 -70,91197 -13,14077 1101 Inambari Tlse 2003 MD 244 -71,39398 -12,80659 471 Pongo de 2012 Coñeq ML MD 28 -70,39736 -13,12999 366 Inambari 2003 MD 245 -71,38969 -12,77998 466 Pongo de 2012 Coñeq ML MD 29 -70,40074 -13,14935 371 Inambari 2003 MD 246 -71,3883 -12,77776 466 Pongo de 2012 Coñeq ML MD 30 -70,38383 -13,18562 382 Inambari 2003 MD 247 -71,38655 -12,77612 464 Pongo de 2012 Coñeq ML MD 173 -71,5607 -13,0743 603 Pongo de 2011 MD 248 -71,38525 -12,7719 465 Pongo de 2012 Coñeq ML Coñeq ML MD 174 -71,53 -13,03191 1184 Pongo de 2011 MD 249 -71,3823 -12,77087 463 Pongo de 2012 Coñeq ML Coñeq ML MD 175 Gr -71,3969 -12,909 Pongo de 2011 MD 250 -71,37956 -12,76923 462 Pongo de 2012 Coñeq ML Coñeq ML MD 175=59=81 -71,363551 -12,89295 Pongo de 2011 MD 251=65 -71,37022 -12,72968 447 Pongo de 2012 Coñeq ML Coñeq ML MD 176 -71,3621 -12,892 Pongo de 2011 MD 252=74 -71,23801 -12,6544 396 Pongo de 2012 Coñeq ML Coñeq ML MD 176 2012 -71,36105 -12,89144 520 Pongo de 2012 MD 253 -71,2363 -12,655 397 Pongo de 2012 Coñeq ML Coñeq ML MD 177 -71,360503 -12,8903 Pongo de 2011 MD 254 -71,2351 -12,6552 401 Pongo de 2012 Coñeq ML Coñeq ML MD 178 -71,39216667 -12,838 Pongo de 2011 MD 255 -71,2477 -12,6799 419 Pongo de 2012 Coñeq ML Coñeq ML MD 179 -71,39381667 -12,83805 Pongo de 2011 MD 256 -71,24426 -12,66226 391 Pongo de 2012 Coñeq ML Coñeq ML MD 180 -71,3944 -12,83915 Pongo de 2011 MD 256 Debut -71,244139 -12,66289 396 Pongo de 2012 Coñeq ML Coñeq ML MD 181 -71,39593333 -12,8393 Pongo de 2011 MD 256 Final -71,24277 -12,660141 401 Pongo de 2012 Coñeq ML Coñeq ML MD 182 -71,39563333 - Pongo de 2011 MD 257 -71,2786 -12,674 407 Pongo de 2012 12,83846667 Coñeq ML Coñeq ML MD 183 -71,3968 -12,8069 452 Pongo de 2011 MD 258 -71,294 -12,66923 411 Pongo de 2012 Coñeq ML Coñeq ML MD 184 -71,26591667 - Pongo de 2011 MD 259 -71,2969 -12,6603 416 Pongo de 2012 12,66878333 Coñeq ML Coñeq ML MD 184 2012 -71,2659 -12,6688 Pongo de 2012 MD 260 -71,370419 -12,764405 457 Pongo de 2012 Coñeq ML Coñeq ML MD 186 -71,28286667 - 406 Pongo de 2011 MD 57 2011 -71,366016 -12,895309 527 Pongo de 2011 12,67098333 Coñeq ML Coñeq ML MD 187 -71,28441667 -12,6727 Pongo de 2011 MD 61 2012 -71,3597 -12,8722 Pongo de 2012 Coñeq ML Coñeq ML MD 188= 67 -71,32526667 - Pongo de 2011 MD 64 2012 -71,37181396 - Pongo de 2012 12,64221667 Coñeq ML 12,75453335 Coñeq ML MD 189 -71,35096667 - Pongo de 2011 MD 81=59 -71,362716 -12,887865 Pongo de 2011 12,67068333 Coñeq ML Coñeq ML MD 190 -71,39146667 -12,91985 Pongo de 2011 MD 82=60 -71,361424 -12,891202 Pongo de 2011 Coñeq ML Coñeq ML MD 190 bis -71,39146667 -12,91985 Pongo de 2011 MD 83=61 bis -71,3597 -12,8722 Pongo de 2011 Coñeq ML Coñeq ML MD 191 -71,396 -12,918 528 Pongo de 2011 MD 84 bis -71,39603333 -12,78955 Pongo de 2011 Coñeq ML Coñeq ML MD 227 -71,37209 -12,89857 475 Pongo de 2012 MD 84=62 -71,39603333 -12,78955 Pongo de 2011 Coñeq ML Coñeq ML MD 228 -71,37293 -12,89953 510 Pongo de 2012 MD 85 2011 -71,2715 -12,6687 Pongo de 2011 Coñeq ML Coñeq ML MD 229 -71,3689 -12,897 507 Pongo de 2012 MD 85 2012 -71,267881 -12,671605 Pongo de 2012 Coñeq ML Coñeq ML MD 230 -71,37293 -12,89953 511 Pongo de 2012 MD K 1 -71,6178 -13,1993 3507 Pongo de 2012 Coñeq ML Coñeq ML MD 231 -71,36571 -12,89501 509 Pongo de 2012 MD K 10 -71,571604 -13,123 2146 Pongo de 2012 Coñeq ML Coñeq ML MD 232 -71,36522 -12,89446 517 Pongo de 2012 MD K 10 Bis -71,5723 -13,117673 2110 Pongo de 2012 Coñeq ML Coñeq ML MD 233 -71,36379 -12,89375 547 Pongo de 2012 MD K 11 -71,5692 -13,1026 1998 Pongo de 2012 Coñeq ML Coñeq ML MD 234 -71,36376 -12,89374 504 Pongo de 2012 MD K 12 -71,564336 -13,085496 1852 Pongo de 2012 Coñeq ML Coñeq ML MD 235 -71,36355 -12,89337 505 Pongo de 2012 MD K 13 -71,5583 -13,0675 1704 Pongo de 2012 Coñeq ML Coñeq ML MD 236 -71,36304 -12,89317 509 Pongo de 2012 MD K 14 -71,5619 -13,0649 1542 Pongo de 2012 Coñeq ML Coñeq ML MD 237 -71,36261 -12,89309 519 Pongo de 2012 MD K 15 -71,5436 -13,0549 1400 Pongo de 2012 Coñeq ML Coñeq ML MD 238 -71,36228 -12,89299 519 Pongo de 2012 MD K 16 -71,5306 -13,0422 1249 Pongo de 2012 Coñeq ML Coñeq ML

261 MAP AND FIGURES | M. Louterbach (2014)

MD K 17 -71,5021 -13,0357 1097 Pongo de 2012 Coñeq ML MD K 18 -71,483364 -13,026 944 Pongo de 2012 Coñeq ML MD K 19 -71,4345 -13,009608 784 Pongo de 2012 Coñeq ML MD K 2 -71,5977 -13,186 3353 Pongo de 2012 Coñeq ML MD K 20 -71,372589 -12,899 518 Pongo de 2012 Coñeq ML MD K 3 -71,5954 -13,1814 3201 Pongo de 2012 Coñeq ML MD K 4 -71,5886 -13,1771 3054 Pongo de 2012 Coñeq ML MD K 5 -71,5954 -13,1773 2901 Pongo de 2012 Coñeq ML MD K 6 -71,6053 -13,1735 2750 Pongo de 2012 Coñeq ML MD K 7 -71,5962 -13,1608 2605 Pongo de 2012 Coñeq ML MD K 8 -71,5933 -13,1598 2445 Pongo de 2012 Coñeq ML MD K 9 -71,5874 -13,1459 2303 Pongo de 2012 Coñeq ML Quebrada Soga -71,39136667 -12,83845 465 Pongo de 2011 Coñeq ML Discord. -71,24175 -12,65656 383 Pongo de 2012 -MIO Coñeq ML MD 53 -71,372385 -12,898016 Pongo de 2007 Coñeq Tlse MD 54 -71,372457 -12,897871 Pongo de 2007 Coñeq Tlse MD 55 -71,376044 -12,896375 Pongo de 2007 Coñeq Tlse MD 56 -71,366673 -12,895972 532 Pongo de 2007 Coñeq Tlse MD 57 -71,366013 -12,895345 527 Pongo de 2007 Coñeq Tlse MD 58 -71,363697 -12,89392 Pongo de 2007 Coñeq Tlse MD 62 -71,39389564 - Pongo de 2007 12,79439854 Coñeq Tlse MD 63 -71,386919 -12,776046 Pongo de 2007 Coñeq Tlse MD 64 -71,371813 -12,754533 Pongo de 2007 Coñeq Tlse MD 65 -71,369748 -12,729432 Pongo de 2007 Coñeq Tlse MD 66 -71,346767 -12,668499 435 Pongo de 2007 Coñeq Tlse MD 67 -71,325267 -12,642216 460 Pongo de 2007 Coñeq Tlse MD 68 -71,309185 -12,649237 423 Pongo de 2007 Coñeq Tlse MD 69 -71,297248 -12,751469 Pongo de 2007 Coñeq Tlse MD 70 -71,273152 -12,669301 Pongo de 2007 Coñeq Tlse MD 71 -71,27319 -12,667294 Pongo de 2007 Coñeq Tlse MD 72 -71,255671 -12,677167 Pongo de 2007 Coñeq Tlse MD 73 -71,152178 -12,663023 Pongo de 2007 Coñeq Tlse MD 74 -71,23795 -12,654526 Pongo de 2007 Coñeq Tlse MD 75 -71,22308 -12,615269 Pongo de 2007 Coñeq Tlse MD 76 -71,099292 -12,427857 Pongo de 2007 Coñeq Tlse MD 77 -70,730165 -12,333131 Pongo de 2007 Coñeq Tlse MD 78 -70,492212 -12,557742 Pongo de 2007 Coñeq Tlse MD 79 -71,361607 -12,891997 Pongo de 2009 Coñeq Tlse MD 80 -71,362298 -12,893048 Pongo de 2007 Coñeq Tlse

M. Louterbach (2014) | ANNEXES 262

Annex 2: Biostratigraphic results for the Inambari area (Phd)

Ref_Sa Numerica Geological_ Depositional Environment Fauna Location References

mples Ar/Ar l_Age Age Palynology Microfossil Paleontology Thermochronology

MD 13 x x no age no age Foram: Undetermined, Hemitelia horrida; Malvaceae ?; Ilex SAZ- Francisco Parra, PN1 continental? type; Pediastrum sp. Punquiri Paleosedes (, syncline 2013) Paly: Continental, freshwater swamp? MD 13 x x no age no age FORAM: Possible fluvial Benthic foram.: Trochammina sp.; SAZ- Francisco Parra, PN2 floodplain, close to base level. Miliammina sp.; Haplophragmoides sp. Punquiri Paleosedes (Colombia, Facies zone Miliammina - Paly.: Ceratopteris cf. Deltoides; syncline 2013) Trochammina, (continental Malvaceae spp.; Ilex sp.; Pediastrum swamp with sporadic saline sp.; incursions) PALY: Continental, freshwater swamp? MD 13 x x <5.33? Post FORAM: Possible fluvial Benthic foram.: Trochammina SAZ- Francisco Parra, PN3 (?) floodplain, close to base level. pacifica; Trochammina; Miliammina Punquiri Paleosedes (Colombia, Facies zone Miliammina - fusca; Haplophragmoides sp. Paly.: syncline 2013) Trochammina, (continental Polypodiaceoisporites pseudosilatus; swamp with sporadic saline Echiperiporites minimus. incursions) PALY: Continental, freshwater swamp? MD 13 x no age no age PALY: Possible fluvial floodplain, Bacumorphomonocolpites? sp.; SAZ- Francisco Parra, PN4 close to base level. Cyatheacidites cf. Annulatus; Punquiri Paleosedes (Colombia, Pediastrum sp. syncline 2013) MD x 23.03- Miocene to Continental with saline Deltaidospora spp.; Monoporites SAZ- Francisco Parra, 198 2.588? ? influence, anoxic floor. anulatus; Echiperiporties estelae; Punquiri Paleosedes (Colombia, PN1 Mangrove swamp. Coastal. Laevigatosporites spp. ; syncline 2013) Polipodiisporites spp.; Laevigatosporites tibuensis; Psilatriletes spp.; Psilatricolporites crassus; Monoporites anulatus; Psilatricolporites small, cf. Polygonum; Echiperiporties estelae; Tetraploa spp.

MD x 23.03- Miocene to Continental Psilatriletes spp.; Deltaidospora spp.; SAZ- Francisco Parra, 199 B2 2.588? Pliocene? Polipodiisporites spp.; Echitriletes sp.; Punquiri Paleosedes (Colombia, Verrucatotriletes bullatus; syncline 2013) Polypodiaceoisporites sp.; Echitriletescf.muelleri; Laevigatosporites spp.; Mauritiidites spp.; Psiltricolporites sp.; Monoporitesannulatus; cf. Polygonum; Botryococcus spp. MD 20 x 3 Pliocene Undetermined No material SAZ- Donnelick AFTA Punquiri syncline MD x 17.41- Early Undetermined ? SAZ- Jochem, Amsterdam 201 B 16.38 Miocene Punquiri University. Master Report syncline 2011 MD x 23.03- Miocene to Continental Verrucatosporites usmensis; SAZ- Francisco Parra, 202 C 2.588? Pliocene? Psilatriletes spp.; Deltaidospora spp.; Punquiri Paleosedes (Colombia, Polipodiisporites spp.; syncline 2013) Verrucatotriletes bullatus; Polypodiaceoisporites sp.; Echitriletes cf. muelleri; Laevigatosporites spp.; Camarazonosporites sp.; Foveotriletes spp.; Echitricolporites spinosus; Mauritiidites sp.; Psiltricolporites sp.; Monoporites annul atus; Syncolporites spp.; Corylustype; Avicenniatype; Retitricolporites spp.; Proteacidites sp.; Retitricolporites sp.; Retitricolpites sp.; Symplocustype; Ilexpollenites sp.; Podocarpites spp.; Ayeniatype; Annutriporites sp.; ALGAE;

MD x 17.41- Miocene- Undetermined ? SAZ- Jochem, Amsterdam 202 2.22 Early Punquiri University. Master Report C_2 Pleistocene syncline 2011

263 MAP AND FIGURES | M. Louterbach (2014)

MD x Miocene to Coastal swamp, saline influence. Verrucatosporites usmensis; SAZ- Francisco Parra, 204 C Pliocene? Mangrove Psilatriletes spp.; Deltaidospora spp.; Punquiri Paleosedes (Colombia, Polipodiisporites spp.; syncline 2012) Verrucatotriletes bullatus; Polypodiaceoisporites sp.; Echitriletes cf. muelleri; Laevigatosporites spp.; Echiperiporites stellae; Malvaceous pollen; Monoporites anulatus; ALGAE MD x 17.41- Early-Middle Undetermined ? SAZ- Jochem, Amsterdam 204 13.17 Miocene Punquiri University. Master Report C_2 syncline 2011 MD x x 23.03- Late FORAM: Supralitoral. Salinity Crab; Diatomea material; Benthic SAZ- Francisco Parra, 208 2.588? Miocene to evidences, nearshore swamp foram.: Miliammina?; Deltaidospora Punquiri Paleosedes (Colombia, Pleistocene close to mangrove, poor in spp.; Echiperiporites stellae. Paly: syncline 2013) Oxygen. ALGAE; Psilatriletes spp.; Deltaidospora spp.; Verrucatotriletes PALY: Continental swamp bullatus; Laevigatosporites spp.; Polypodiisporites spp.; Polypodium costarricense; Echiperiporites stellae; Monoporites anulatus; Echitricolporites spinosus; Corylus type

MD x <66.0 Post Continental? Bentónicos; Buliminido retrabajado cf. SAZ- Francisco Parra, 208 Maastrichtia Bolivinoides decoratus; cf. Ostrácodo Punquiri Paleosedes (Colombia, Bio n syncline 2013) MD x 17.41- Miocene- Undetermined ? SAZ- Jochem, Amsterdam 208_2 1.79 Pleistocene Punquiri University. Master Report syncline 2011 MD 22 x no age no age Swamp with marine influence? Dinoflagellates, Algae SAZ- Francisco Parra, Punquiri Paleosedes (Colombia, syncline 2013) MD 22 x 23.03- Miocene Undetermined No material SAZ- Francisco Parra, AFTA 5.333 Punquiri Paleosedes (Colombia, syncline 2013) MD x no age no age Undetermined, continental? SAZ- Francisco Parra, 221 Imbricates Paleosedes (Colombia, 2013) MD x no age no age Continental? No marine/ Cyatheacidites annulatus? SAZ- Francisco Parra, 125- brackish element. Striatriletes cf. saccolomoides Nusiniscat Paleosedes (Colombia, 2011 A i syncline 2013) MD x no age no age Continental? No marine/ Psilatriletes spp. ; Pediastrum spp SAZ- Francisco Parra, 125- brackish element. Nusiniscat Paleosedes (Colombia, 2011 B i syncline 2013) MD x Turonian to Bay or estuary. Strong Ostracodes (a lot) ; Ovocytheridea sp. SAZ- Francisco Parra, 302 Coniacian freshwater influence Imbricates Paleosedes (Colombia, Bio 2013) MD x Late Marine, high energy. Ostracodes: Cytheráceos; Cythereis sp. SAZ- Francisco Parra, 309 ; Bisulcocpris sp. Imbricates Paleosedes (Colombia, Bio A 2013) MD x Turonian- Marine Planctonic Foram.: Globotruncanidae SAZ- Francisco Parra, 275 Early and Helvetoglobotruncana Imbricates Paleosedes (Colombia, Bio Coniacian? 2013) MD x Cenomanian Coastal, tidal? Benthic foram. (reworked) SAZ- Francisco Parra, 280 ? Imbricates Paleosedes (Colombia, Bio 2013) MD x x 76.5-65.5 Cenomanian Shallow marine, anoxic floor Planctonic Foram.: Guembelitria SAZ- Francisco Parra, 281 Ma (internal platform?) cretacea (Cushman, 1933) Imbricates Paleosedes (Colombia, Bio Rugoglobigerina rugosa (Plummer, 2013) (Dino) 1926) Hedbergella holmdelensis Olsson, 1964 Archaeoglobigerina blowi Pessagno, 1967 Heterohelix globulosa (Ehrenberg), 1840 Benthic Foram.: Haplophragmoides walteri (Grzybowski), 1898 Haplophragmoides sp. Rzehakina epigona (Rzehak, 1895) Silicosigmoilina sp. Trochammina sp. Retrabajados: Diatomea ? Others: Neocythere sp. (ostracode) Spicul

MD x x Cenomanian FORAM: Estuarine. Mix of Dordoniella sp., Cytherella sp., SAZ- Francisco Parra, 282 -Turonian brackish and marine waters. Isocythereis sp., Cythereis sp., Imbricates Paleosedes (Colombia, Bio PALY: Marine?? Protocythere sp. y Timiriasevia sp. 2013) Dinoflagellates ?

MD x no age no age Undetermined, continental? SAZ- Francisco Parra, 136- Imbricates Paleosedes (Colombia,

M. Louterbach (2014) | ANNEXES 264

2011 2013)

MD x Late Marine, high energy. SAZ- Francisco Parra, 309 Cretaceous Imbricates Paleosedes (Colombia, Bio A2 2013) MD x Late Quiet shallow marine water, Cytheracae Ostracodes: Cythereis sp., SAZ- Francisco Parra, 309 Cretaceous shallower than 309 BIO A. Bisulcocpris sp. Imbricates Paleosedes (Colombia, Bio B Ostracodes badly preserved 2013) (tectonism?) MD x Late Quiet marine water, shallower Cyterelloidea, Bivalve SAZ- Francisco Parra, 309 Cretaceous than 309 BIO A Imbricates Paleosedes (Colombia, Bio B2 2013)

MD x no age no age Continental? ESPORAS SAZ- Francisco Parra, 270 Azolla type; Psilatriletes spp. Imbricates Paleosedes (Colombia, Bio A Polen: Retitricolpites spp.; 2013) MD x no age no age Coastal, Tidal Benthic foram.: Silicosigmoilina SAZ- Francisco Parra, 290 Cushman & Church, 1929 Imbricates Paleosedes (Colombia, Bios 2013) MD x Maastrichtia Reductor context. Internal Reworked benthic foram.; Clavulina cf. SAZ- Francisco Parra, 368 n? marine platform clavata Cushman, 1926 Imbricates Paleosedes (Colombia, 2013) MD x Upper Littoral. Bay or estuary. SAZ- Francisco Parra, 372 Cretaceous? Imbricates Paleosedes (Colombia, 2013) MD x Upper Littoral. Bay or estuary. Ostrácodos ; Ovocytheridea sp. SAZ- Francisco Parra, 375 Cretaceous? Imbricates Paleosedes (Colombia, 2013) MD 6K x x Cenomanian Coastal-Tidal? Foram.: Whiteinella sp. ?; Isocythereis? SAZ- Francisco Parra, ? Algae: Carophyte. Paleonto.: Imbricates Paleosedes (Colombia, Pelicipodes; Inoceramidus, Xilopale 2013)

MD x no age no age Continental ?? SAZ- Francisco Parra, 301 Imbricates Paleosedes (Colombia, Bio 2013) MD x no age no age Marine, littoral Foram.: Saccammina sphaerica Brady, SAZ- Francisco Parra, 318 1871 Imbricates Paleosedes (Colombia, 2013) MD x x no age no age Coastal swamp, saline influence. Foram.: Sacamminidae SAZ- Francisco Parra, 318 Imbricates Paleosedes (Colombia, Bio 2013) MD x Cretaceous? Proximal Marine, Coastal Reworked benthic foram.: Glomospira SAZ- Paleosedes, Parra 261 Rzehak, 1888 Imbricates Francisco, 25/01/2013 Paly MD x Pliocene a Continental. Swamp (Ferns) Hemitelia horrida; Psilatriletes spp.; Madre de Francisco Parra, 325 Pleistocene Polipodiaceoisporites pseudopsilatus; Dios plain Paleosedes (Colombia, Bio Cystopteris type; Verrutriletes spp.; 2013) Laevigastoporites spp.; Polypodiisporites spp.; Elaphoglosus type; Polypodium type; Cingulatisporites sp.; Echitriletes cf. mulleri. POLEN: Monoporites annulatus

MD 51 x x Pliocene a FORAM: Floodplain, near base Facies zone "Miliammina". Madre de Francisco Parra, PN1 Pleistocene level (brackish water, slight Dios plain Paleosedes (Colombia, marine incursion). 2013) PALY: Continental-Swamp. Freshwater. MD 51 x x Pliocene a FORAM: Undetermined, possible Madre de Francisco Parra, PN2 Pleistocene continental Dios plain Paleosedes (Colombia, ? 2013) PALY: Continental. Swamp. Freshwater.. MD 51 x x Pliocene a FORAM: Floodplain, near base Facies zone "Miliammina". Madre de Francisco Parra, PN3 Pleistocene level (brackish water, slight Dios plain Paleosedes (Colombia, marine incursion). 2013) PALY: Continental. Swamp. Freshwater.

265 MAP AND FIGURES | M. Louterbach (2014)

Annex 3: Biostratigraphic results for the Pongo de Coñeq area (Phd)

Ref_Sam Numerical_A Geological_ Depositional Environment Fauna Location References ples ge Age Palynology Microfossil Paleontology Thermochronology

MD 184 x Paleocene- Undetermined SAZ- Francisco Parra, Paleosedes Bio A Eocene Salvación (Colombia, 2013) syncline MD 184 x Paleocene- Supralitoral, marine influence. SAZ- Francisco Parra, Paleosedes Bio C Eocene Salvación (Colombia, 2013) syncline MD x Thanetian lagoonal/estuarine/steady bay SAZ- P-O. Antoine, H. Carpetta, S. 184.1; (late (confined marine environment). Salvación Adnet, L. Marivaux, F.P. MD Palaeocene) Confined and steady proximal syncline Weeselingh, C. Jaramillo. 184.2 marine environment of normal Antoine et al., submitted, J. and 3 salinity (still more diverse euhaline South Am. Earth Sci. (2012) ichtyofauna, but no shark), maximal depth: 10m.

MD 189 x 10.06-3.56 Late Undetermined Deltoidospora adriennis; Dicolpopollis SAZ- Jochem, Amsterdam Miocene- sp. ; Echitricolporites spinosus (17.41- Salvación University. Master Report Early 0.14); Fenestrites longispinosus (10.06- syncline (2011) Pliocene 1.18); Monoporopollenites annulatus; Multimargenites vanderhammeni (15.95-1.07); Polypodiaceoisporites pseudopsilatus (22.83-0.19); Polypdodiisporites sp.; Proteacidites triangulatus (24.31-3.41); Psilatricolpites minutus; Psilatriletes lobatus; Retipollenites crotonicolumellatus (13.41-3.56); Unknown trilete spores; Unknown monolete spores; Unknown pollen grains MD 230 x Late Few benthic foraminiferous SAZ- Francisco Parra, Paleosedes B Carbonifero (reworkin). Tidal plain. Salvación (Colombia, 2013) us syncline MD 235 x no age no age Continental SAZ- Francisco Parra, Paleosedes Bio Salvación (Colombia, 2013) syncline MD 238 x Maastrichtia Proximal marine SAZ- Francisco Parra, Paleosedes bio n Salvación (Colombia, 2013) syncline MD 239 x no age no age Proximal marine SAZ- Francisco Parra, Paleosedes Bio A Salvación (Colombia, 2013) syncline MD 239 x no age no age Proximal marine, unstable floor SAZ- Francisco Parra, Paleosedes Bio B Salvación (Colombia, 2013) syncline MD 241 x no age no age Proximal marine SAZ- Francisco Parra, Paleosedes Bio Salvación (Colombia, 2013) syncline MD 242 x Late Proximal marine, rapid SAZ- Francisco Parra, Paleosedes Bio A Cretaceous sedimentation Salvación (Colombia, 2013) syncline MD 244 x x 23.03-5.332 Miocene Coastal swamp? Unstable floor, Benthic foram. ?: Bathysiphon sp. SAZ- Francisco Parra, Paleosedes Bio rapid sedimentation Salvación (Colombia, 2013) syncline MD 246 x 23.03-5.332 Miocene (?) Paralic environment ? Crab material SAZ- Francisco Parra, Paleosedes A Salvación (Colombia, 2013) syncline MD 246 x x 23.03-5.332 Miocene (?) Coastal swamp? Unstable floor, Benthic foram.?; Miliammina fusca. SAZ- Francisco Parra, Paleosedes B rapid sedimentation Salvación (Colombia, 2013) syncline MD 246 x x 11.608- Late FORAM: Coastal swamp Miliammina fusca; Deltaidospora sp.; SAZ- Francisco Parra, Paleosedes Bio 0.0115 Miocene to PALY: Continental Monoporites annulatus; Salvación (Colombia, 2013) Pleistocene Laevigatosporites spp; Clavatriletes syncline sp.; Laevigatosporites tibuensis; Polipodiisporites spp.; Lycopodium foveolate; Selaginella type; Echitricolporites spinosus; Monoporites annulatus; Psilatricolporites spp.; Malvaceous pollen; Tetraploa spp. MD 251 x no age no age Undetermined. Continental?? SAZ- Francisco Parra, Paleosedes Bio B Salvación (Colombia, 2013) syncline

M. Louterbach (2014) | ANNEXES 266

MD 255 x no age no age Rapid sea level rise. Marine SAZ- Francisco Parra, Paleosedes A environment, unstable floor. Salvación (Colombia, 2013) syncline MD 255 x no age no age Marine, unstable floor. SAZ- Francisco Parra, Paleosedes B Salvación (Colombia, 2013) syncline MD 255 x Late Undetermined, marine transitional? SAZ- Francisco Parra, Paleosedes Bio A Cretaceous- Rapid exposition, paleosoils. Salvación (Colombia, 2013) Ypresian syncline

MD 255 x no age no age Undetermined, continental? SAZ- Francisco Parra, Paleosedes Bio B Paleosoils. Salvación (Colombia, 2013) syncline MD 255 x no age no age Undetermined, continental? SAZ- Francisco Parra, Paleosedes Bio C Paleosoils. Salvación (Colombia, 2013) syncline MD 256 x no age no age Marine environment, unstable SAZ- Francisco Parra, Paleosedes Bio A floor. Salvación (Colombia, 2013) syncline MD 256 x no age no age Marine environment, unstable SAZ- Francisco Parra, Paleosedes Bio B floor. Reworking. Salvación (Colombia, 2013) syncline MD 61 x x 23.03-5.332 Miocene Undetermined Benthic foram.?: Miliammina sp., SAZ- Francisco Parra, Paleosedes Bio A Marine influence? Nothia latissima Salvación (Colombia, 2013) syncline MD 61 x x 23.03-5.332 Miocene Undetermined Benthic foram.?: Bathysiphon sp. SAZ- Francisco Parra, Paleosedes Bio B Marine influence? Salvación (Colombia, 2013) syncline MD 61 x 23.03-5.332 Miocene (?) Undetermined No material SAZ- Francisco Parra, Paleosedes Bio C Salvación (Colombia, 2013) syncline MD 61 x x 23.03-5.332 Miocene Swamp, unstable floor. Marine Benthic foram.?: Miliammina sp. SAZ- Francisco Parra, Paleosedes Bio F influence? Salvación (Colombia, 2013) syncline MD 61.1 x 17,5-16.5 Late early Continental (fluvial). = Pinturan, Mammalia, Xenarthra, , SAZ- Marivaux et al., 2012 " A and 61.2 Miocene SALMA, 17.5-16.5 Ma Dasypodidae, Euphractinae indet. Salvación platyrrhine talus from the ? (mobil band osteoderm, distal syncline early Miocene of Peru fragment, MUSM 1978) (Amazonian Madre de Dios Mammalia, Xenarthra, Pilosa, Sub-Andean Zone"; Journal of Megatherioidea (distal phalanx, right Human Evolution. hand, MUSM 1976)Mammalia, Xenarthra, Pilosa indet. (first phalanx Mt4) Mammalia, Rodentia, Caviomorpha, Dinomyidae, Scleromys quadrangulatus [“Pinturan”] Mammalia, Rodentia, Caviomorpha indet., sp. 2 Mammalia, Platyrrhini, , Cebinae indet., right astragalus (MUSM 2014) Mammalia, Notoungulata indet. Aves, Gruiformes, Gruidae indet., tibiotarsus (distal) MD 81.1 x x 72-69,2 Ma Late Prodeltaic/estuarine plain fringe SAZ- P-O. Antoine, H. Carpetta, S. and MD Campanian/ (lateral equivalent to the fauna Salvación Adnet, L. Marivaux, F.P. 81.2 early from the Bolivian El Molino Fm.) syncline Weeselingh, C. Jaramillo. Maastrichtia Antoine et al., submitted, J. n Confined proximal marine South Am. Earth Sci. (2012) environment of normal salinity (diverse euhaline ichtyofauna, but no shark), maximal depth: 10m.

MD 81.1 x x Late Prodelataic/estuarine plain fringe. SAZ- P-O. Antoine, H. Carpetta, S. and MD Campanian/ Confined proximal marine Salvación Adnet, L. Marivaux, F.P. 81.2 and early environment of normal salinity syncline Weeselingh, C. Jaramillo M Maastrichtia (diverse euhaline ichtyofauna, but (2012) n no shark), maximal depth: 10m.

MD 81- x 72-69,2 Ma Late Continental SAZ- P-O. Antoine, H. Carpetta, S. PN1 Companian/ Salvación Adnet, L. Marivaux, F.P. Maastrichtia syncline Weeselingh, C. Jaramillo n (2012)

267 MAP AND FIGURES | M. Louterbach (2014)

MD 82.1 x x Late Prodeltaic/estuarine plain fringe, SAZ- P-O. Antoine, H. Carpetta, S. and MD Maastrichtia Continental environment? Confined Salvación Adnet, L. Marivaux, F.P. 82.2 n proximal marine environment of syncline Weeselingh, C. Jaramillo. normal salinity (diverse euhaline Antoine et al., submitted, J. ichtyofauna, but no shark), with South Am. Earth Sci. (2012) terrigenous inputs (including charophyte oogonia), maximum depth: 10m.

Ichthyofauna comparable to that of Toro Toro (Bolivia; Cappetta, 1975).

MD 67 x 15.6-14.7 Early Middle Continental (fluvial, tropical Mammalia, Marsupialia, SAZ- P.O. Antoine, 2013 " Early Miocene monsoon-like climate) Sparassodonta, Hathlyacynidae, Salvación Middle Miocene vertebrates Mixture of tropical rain forest Sipalocyon sp.; Mammalia, syncline from the Amazonian Madre environment and more open Marsupialia, Didelphimorpha, de Dios Sub-Andean Zone, habitats under a monsoonal-like Didelphidae, Marmosa (Micoureus) cf. Peru", JSAES. tropical climate. Fully fluvial origin laventica; Mammalia, Xenarthra, of the concerned sedimentary Cingulata, Glyptodontidae, sequence suggesting that the Glyptodontinae indet.; Mammalia, Amazonian Madre de Dios Sub- Rodentia, Caviomorpha, Dinomyidae, Andean Zone was not part of the “Scleromys” sp., cf. quadrangulatus- Pebas mega-wetland System by schurmanni-colombianus; Mammalia, middle Miocene times (Antoine et Rodentia, Caviomorpha, Acaremyidae, al., submitted, J. South Am. Earth Acaremys sp.; Mammalia, Rodentia, Sci.). Caviomorpha, Caviidae, Guiomys sp.; Mammalia, Rodentia, Caviomorpha, Erethizontidae, cf. Microsteiromys sp.; Mammalia, Notoungulata indet., Tooth fragment MD 67 x 17.1-2.4 Early Undetermined No material SAZ- Stéphanie Brichau, Toulouse Miocene Salvación syncline MD 68 x 30.3 +-3 Oligocene Undetermined No material SAZ- Stéphanie Brichau, Toulouse Salvación syncline MD 84 x 15-13 Middle Continental (fluvial) Osteichthyes, Characiformes, SAZ- P-O. Antoine, H. Carpetta, S. bis 1 Miocene Serrasalmidae indet. (pacu-like); Salvación Adnet, L. Marivaux, F.P. Eusuchia, Gavialoidea indet.; syncline Weeselingh, C. Jaramillo. Mammalia, Notoungulata, Antoine et al., submitted, J. Toxodontidae indet., ? South Am. Earth Sci. (2012) Dinotoxodontidae, left P3; Mammalia, Rodentia, Caviomorpha indet. MD 85 x Paleocene Coastal with saline influence mixed SAZ- Francisco Parra, Paleosedes Bio A with freshwater. Tidal. Salvación (Colombia, 2013) syncline MD 85 x Paleocene Coastal with saline influence mixed SAZ- Francisco Parra, Paleosedes Bio C with freshwater. Tidal. Salvación (Colombia, 2013) syncline MD 85.1 x Thanetian Distal fluvial/proximal estuarine- SAZ- P-O. Antoine, H. Carpetta, S. and MD (late deltaic. Strong freshwater influence Salvación Adnet, L. Marivaux, F.P. 85.2 Palaeocene) (fish fauna): the environment is syncline Weeselingh, C. Jaramillo. much more proximal than other Antoine et al., submitted, J. ones, i.e. distal fluvial. Shallow South Am. Earth Sci. (2012) water (maximal depth: 10m). Potentially reworked elements.

MD 79 x Early Marginal marine environment SAZ- P-O. Antoine, H. Carpetta, S. PN1-PN2 Maastrichtia Salvación Adnet, L. Marivaux, F.P. n syncline Weeselingh, C. Jaramillo. Antoine et al., submitted, J. South Am. Earth Sci. (2012)

MD 80- x Early Marginal marine environment SAZ- P-O. Antoine, H. Carpetta, S. PN1 Maastrichtia Salvación Adnet, L. Marivaux, F.P. n syncline Weeselingh, C. Jaramillo. Antoine et al., submitted, J. South Am. Earth Sci. (2012)

M. Louterbach (2014) | ANNEXES 268

Annex 4: Donnelick’s Report (2004) 1. Data Summary

1.1. General

No attempt is made in this report to fully integrate the apatite fission-track data for the samples studied here with other independent geological information.

1.2. Sample Listing

Table 1.1 contains a listing of the samples submitted for analysis, the number assigned to each sample in the Apatite to Zircon, Inc. (i.e., A2Z) laboratory, the amount of apatite and zircon isolated from each sample, the number of grain mounts prepared for each sample, and the quality of the data obtained.

Table 1.1. Listing of the samples submitted for analysis.

Client A2Z Grains Grain Mounts Data Quality Sample Sample Observed Prepared 1=poor Name Number 10=excellent Peru Samples MD-13B 545-1 apatite: 10s apatite: 1 apatite: 5 zircon: 10s zircon: 1 zircon: 2 MD-20 545-2 apatite: 1000s apatite: 1 apatite: 8 zircon: <10 zircon: 1 zircon: 1 MD-22 545-3 1000s 1 7 MD-26 545-4 10s 1 2 MD-28 545-5 apatite: 10s apatite: 1 apatite: 2 zircon: 10s zircon: 1 zircon: 2 MD-29 545-6 10s 1 3 MD-30 545-7 10s 1 4 MD-51 545-8 apatite: 10 apatite: 1 apatite: 3 zircon: <5 zircon: 1 zircon: 2 Carmenis 08 545-9 apatite: 10s apatite: 1 apatite: 8 zircon: <10 zircon: 1 zircon: 2 Corrientes 115 545-10 10s 1 9 WFPYR 545-11 10 1 1

269 MAP AND FIGURES | M. Louterbach (2014)

1.3. Apatite and Zircon Fission-Track Data Interpretation

The geological history implications of the apatite fission-track data are summarized in Table 1.2. The apatite fission-track age and length data are summarized in Table 1.3 and Table 1.4, respectively. The zircon fission-track age data are summarized in Table 1.5.

The following pages show how the model results appear when they are loaded into the quantitative modeling program AFTSolve. As described in Appendix A, it is possible to test alternative thermal histories for each sample while maintaining these results as a background for guidance. AFTSolve (1996- 2003 Apatite to Zircon, Inc. and Richard A. Ketcham) implements various laboratory calibrations of the behavior of fission tracks in apatite in response to heating and cooling histories. Full details concerning these calibrations and the various uses of AFTSolve are publicly available (Carlson et al., 1999; Donelick et al., 1999; Ketcham et al., 1999; Ketcham et al., 2000). For the sample modeled, fission-track ages and track length distributions were calculated for a series of 20,000 randomly generated temperature histories. These randomly generated temperature histories were constrained to be geologically reasonable, where possible, by independently known information such as the stratigraphic age and present-day geological temperature for the sample. A temperature history was deemed acceptable (i.e., Acceptable Fit; solutions within the green band) when both the model fission-track age and the model fission track length distribution matched their measured counterparts with a level of confidence of 0.01 or greater. A temperature history was deemed good (i.e., Good Fit; solutions within the red band) when both the model fission-track age and model fission-track length distribution matched their measured counterparts with a level of confidence of 0.50 or greater. Vitrinite reflectance equivalent values were calculated using the EasyRo method of Sweeney and Burnham (1990) for each temperature history generated. Only the burial and exhumation segments of the overall temperature history were used to estimate expected vitrinite reflectance values; the provenance segment of each temperature history is ignored for this calculation.

M. Louterbach (2014) | ANNEXES 270

Table 1.2. Thermal history implications of the apatite and zircon fission-track data.

Client A2Z Stratigraphic Age Age of Oldest Apatite Timing of Initiation of Minimum Peak Burial EasyRo Sample Sample Modeled Fission Track (Ma) Uplift/Cooling Temperature Name Number (Ma) (Ma) (°C) (%) Peru Samples MD-13B 545-1 Miocene/Pliocene? Dpar (µm) = 1.67: 21.8 Dpar (µm) = 1.67: ≥48°C ≥0.53 ± 0.11% ± 2.5 Ma ≥21.8 ± 2.5 Ma ZFT = 119.27.1 Ma – reworked old grains MD-20 545-2 Pliocene Dpar (µm) = 1.43: 5.0 ± Dpar (µm) = 1.43: ≥5.0 Not applicable Not applicable 2.1 Ma ± 2.1 Ma ZFT = 158.519.1 Ma – Dpar (µm) = 2.07: 7.0 ± Dpar (µm) = 2.07: ≥7.0 reworked old grains 2.3 Ma ± 2.3 Ma Dpar (µm) = 2.76: 8.7 ± Dpar (µm) = 2.76: ≥8.7 2.9 Ma ± 2.9 Ma MD-22 545-3 Miocene Dpar (µm) = 1.83: 7.9 ± Dpar (µm) = 1.83: ≥7.9 ≥30°C (if strat age) or ≥0.50 ± 0.01% (strat) or 1.6 Ma ± 1.6 Ma ≥160°C (if reset age) ≥1.22 ± 0.01% (reset) Dpar (µm) = 2.66: 8.1 ± Dpar (µm) = 2.66: ≥8.1 1.8 Ma ± 1.8 Ma MD-26 545-4 Paleocene? Dpar (µm) = 1.79: 10.0 Dpar (µm) = 1.79: ≥128°C ≥0.97 ± 0.04% ± 1.4 Ma ≥10.0 ± 1.4 Ma Dpar (µm) = 2.40: 69.8 Dpar (µm) = 2.40: ± 21.5 Ma ≥69.8 ± 21.5 Ma MD-28 545-5 Neogene Dpar (µm) = 1.63: 27.1 Dpar (µm) = 1.79: ≥43°C ≥0.54 ± 0.10% ± 2.8 Ma ≥27.1 ± 2.8 Ma ZFT = 291.714.4 Ma – Dpar (µm) = 2.31: 29.6 Dpar (µm) = 2.40: reworked old grains ± 6.0 Ma ≥29.6 ± 6.0 Ma MD-29 545-6 Late Cretaceous Dpar (µm) = 1.68: 12.2 Dpar (µm) = 1.68: ≥120°C – totally reset ≥0.70 ± 0.01% ± 1.2 Ma ≥12.2 ± 1.2 Ma age MD-30 545-7 Late ? Dpar (µm) = 1.57: 7.5 ± Dpar (µm) = 1.57: ≥7.5 ≥140°C – totally reset ≥0.82 ± 0.01% 2.0 Ma ± 2.0 Ma age Dpar (µm) = 2.17: 10.0 Dpar (µm) = 2.17: ± 1.8 Ma ≥10.0 ± 1.8 Ma MD-51 545-8 Miocene/Pliocene? Dpar (µm) = 1.78: 8.8 ± Dpar (µm) = 1.78: ≥8.8 ≥30°C (if strat age) or ≥0.40 ± 0.01% (strat) or 3.2 Ma ± 3.2 Ma ≥102°C (if reset age) ≥0.67 ± 0.01% (reset) ZFT = 291.039.9 Ma – reworked old grains Carmenis 08 545-9 Middle-Upper Eocene Dpar (µm) = 1.35: 8.8 ± Dpar (µm) = 1.67: ≥8.8 ≥102°C ≥0.69 ± 0.01% 2.7 Ma ± 2.7 Ma ZFT = 247.919.9 Ma – Dpar (µm) = 1.86: 56.1 Dpar (µm) = 1.86: reworked old grains ± 10.3 Ma ≥56.1 ± 10.3 Ma Corrientes 115 545-10 Middle-Upper Eocene Dpar (µm) = 1.82: 58.6 Dpar (µm) = 1.82: ≥83°C ≥0.54 ± 0.01% ± 3.7 Ma ≥58.6 ± 3.7 Ma WFPYR 545-11 Upper ? Dpar (µm) = 1.77: 26.58 Dpar (µm) = 1.77: ≥105°C ≥0.64 ± 0.01% ± 19.3 Ma ≥26.5 ± 19.3 Ma

271 MAP AND FIGURES | M. Louterbach (2014)

Table 1.3. Summary of the apatite fission-track age data for all apatite grains combined.

Client A2Z s Ns i Ni d Nd Grains Q Dpar Dper Pooled Fission- Mean Fission- Median Fission-Track Sample Sample (106 (tracks) (106 (tracks) (106 (tracks) (dmnls) (dmnls) (m) (m) Track Age Track Age Age Name Number tracks tracks tracks (Ma) (Ma) (Ma) cm-2) cm-2) cm-2) Standards Fish Canyon Tuff- FC-01 0.202 201 1.156 1151 2.985 4411 30 0.741 2.40 0.58 27.22.2 28.92.2 29.9 2.6- 1.5+ A(1) 27.8 Ma Fish Canyon Tuff- FC-01 0.190 168 1.085 962 2.985 4411 30 0.412 2.46 0.58 27.22.4 29.43.0 25.9 2.0- 3.4+ A(2) 27.8 Ma Fish Canyon Tuff- FC-01 0.212 180 1.200 1018 2.962 4411 32 0.364 2.43 0.71 27.32.3 29.52.9 26.3 1.8- 3.0+ C(1) 27.8 Ma Fish Canyon Tuff- FC-01 0.214 117 1.268 693 2.962 4411 29 0.194 2.43 0.70 26.12.7 27.53.7 22.9 2.8- 4.8+ C(2) 27.8 Ma Fish Canyon Tuff- FC-01 0.248 131 1.319 697 2.939 4411 29 0.430 2.46 0.50 28.82.9 29.23.3 27.0 3.3- 3.5+ D(1) 27.8 Ma Fish Canyon Tuff- FC-01 0.222 91 1.118 458 2.939 4411 24 0.820 2.37 0.46 30.43.6 29.63.6 30.3 4.6- 4.0+ D(2) 27.8 Ma Durango-A(1) DR-01 0.178 241 0.826 1119 2.917 4411 30 0.595 1.76 0.27 32.72.5 33.22.6 34.7 3.1- 1.3+ 31.4 Ma Durango-A(2) DR-01 0.170 226 0.810 1077 2.917 4411 30 0.831 1.77 0.23 31.92.5 32.52.2 32.3 1.7- 2.9+ 31.4 Ma Durnago-B(1) DR-01 0.176 203 0.836 962 2.894 4411 25 0.751 1.83 0.36 31.82.6 33.32.9 28.5 1.4- 3.5+ 31.4 Ma Durango-B(2) DR-01 0.176 237 0.835 1122 2.894 4411 30 0.086 1.87 0.24 31.92.5 34.23.4 30.6 2.1- 2.2+ 31.4 Ma Durango-D(1) DR-01 0.157 191 0.852 1034 2.871 4411 25 0.650 1.95 0.24 27.72.3 27.82.4 24.3 1.0- 3.0+ 31.4 Ma Peru Samples MD-13B 545-01 0.221 114 2.382 1230 3.135 5154 25 0.083 1.99 0.44 15.21.5 14.31.9 14.2 2.3- 1.2+ MD-20 545-02 0.036 24 1.05 704 3.133 5154 25 0.983 2.2 0.53 5.581.17 5.420.98 6.54 1.98- 0.49+ MD-22 545-03 0.082 50 1.227 745 3.131 5154 27 0.097 2.36 0.71 11.01.6 14.43.5 8.84 1.87- 2.57+ MD-26 545-04 0.139 63 2.003 908 3.128 5154 19 0.504 1.89 0.52 11.31.5 10.51.7 12.3 2.6- 0.7+ MD-28 545-05 0.266 126 2.413 1142 3.126 5154 25 0 1.65 0.39 18.01.8 13.43.0 5.94 0.96- 6.23+ MD-29 545-06 0.265 131 3.787 1875 3.124 5154 26 0 1.7 0.39 11.41.1 9.511.63 6.91 0.98- 2.35+ MD-30 545-07 0.15 51 3.085 1051 3.122 5154 17 0.014 1.8 0.42 7.911.16 13.93.8 12.1 3.7- 1.8+ MD-51 545-08 0.038 8 0.671 140 3.12 5154 6 0.948 1.82 0.43 9.313.39 7.202.77 8.82 5.85- 2.46+ Carmenis 08 545-09 0.153 45 2.663 782 3.118 5154 15 0 1.66 0.38 9.371.46 16.64.4 8.35 1.67- 7.02+ Corrientes 115 545-10 0.715 419 2.369 1389 3.116 5154 25 0 1.69 0.34 48.93.1 46.18.1 35.6 6.4- 8.1+ WFPYR 545-11 0.133 6 0.82 37 3.114 5154 5 0.004 2.19 0.93 26.311.6 80.840.5 80.8 59.9- 59.2+

M. Louterbach (2014) | ANNEXES 272

Table 1.4. Summary of the apatite fission-track length data for all apatite grains combined.

Client A2Z Tracks Mean  Standa Dpar Dper 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10- 11- 12- 13- 14- 15- 16- 17- 18- 19- Sample Sample Standard rd 11 12 13 14 15 16 17 18 19 20 Name Number (tracks Error Deviati (m) (m) (m) (m) (m) (m)( m) (m) (m) (m) (m) (m) ) (m) on (m) (m) (m) (m) (m) (m)( m) (m) (m) (m (m) ) Standards Fish Canyon FC-01 130 15.010.09 1.02 2.36 0.46 ------1 3 16 46 39 23 2 - - Tuff-B 27.8 Ma Durango-D DR-01 138 14.590.08 0.98 1.87 0.22 ------1 5 28 60 32 10 2 - - 31.4 Ma Peru Samples MD-13B 545-01 30 13.710.29 1.57 1.52 0.27 ------1 - 4 3 7 11 1 2 1 - - MD-20 545-02 113 14.420.12 1.29 2.1 0.48 ------1 - - - 6 6 17 45 32 6 - - - MD-22 545-03 53 14.700.18 1.26 2.28 0.7 ------1 - 1 3 7 13 24 3 1 - - MD-26 545-04 15 14.750.17 0.63 2.04 0.4 ------2 7 6 - - - - MD-28 545-05 18 13.670.34 1.38 1.8 0.33 ------1 - 3 6 6 1 1 - - - MD-29 545-06 53 13.960.21 1.51 1.69 0.29 ------1 1 - 2 7 14 14 12 2 - - - MD-30 545-07 21 13.960.22 0.99 1.84 0.44 ------1 2 6 8 4 - - - - MD-51 545-08 11 14.160.22 0.71 1.85 0.43 ------2 2 7 - - - - - Carmenis 08 545-09 13 10.891.12 3.88 1.82 0.32 - - - - 1 - 2 1 1 - 1 1 2 - 2 1 1 - - - Corrientes 115 545-10 65 10.230.33 2.62 1.8 0.33 - - - 2 2 1 3 3 4 11 15 7 8 6 2 1 - - - - WFPYR 545-11 7 9.811.16 2.83 2.14 0.3 - - - - 1 - - - 1 1 2 1 - 1 ------

Table 1.5a. Summary of the zircon fission-track age data for all zircon grains combined.

Client A2Z s Ns i Ni d Nd Grains Q Pooled FT Age Mean Fission-Track Median Fission- Sample Sample (106 (tracks) (106 (tracks) (106 (tracks) (dmnls) (dmnls) (Ma) Age Track Age Name Number tracks tracks tracks (Ma) (Ma) cm-2) cm-2) cm-2) Peru Samples MD13B 545-01 7.186 1137 3.179 503 0.702 2144 11 0.003 119±7 118±11 103 7 - 17 + MD20 545-02 3.653 289 1.213 96 0.703 2144 5 0.801 158±19 155±18 158 18 - 5 + MD28 545-05 9.515 3690 1.702 660 0.704 2144 25 0 292±14 301±19 315 18 - 14 + MD51 545-08 7.172 362 1.288 65 0.705 2144 3 0.003 291±40 267±95 340 119 - 3 + Carmen 1508 545-09 13.205 987 2.796 209 0.706 2144 5 0 248±20 417±98 390 7 - 140 +

273 MAP AND FIGURES | M. Louterbach (2014)

Table 1.5b. Summary of the zircon fission-track age data for the youngest zircon grain-age population.

Client A2Z s Ns i Ni d Nd Grains Q Pooled FT Age Mean Fission-Track Median Fission- Sample Sample (106 (tracks) (106 (tracks) (106 (tracks) (dmnls) (dmnls) (Ma) Age Track Age Name Number tracks tracks tracks (Ma) (Ma) cm-2) cm-2) cm-2) Peru Samples MD13B 545-01 6.444 957 3.043 452 0.702 2144 10 0.052 112±7 111±10 99.4 5.7- 15.3+ MD20 545-02 3.653 289 1.213 96 0.703 2144 5 0.801 158±19 155±18 158 18 - 5 + MD28 545-05 7.476 820 2.097 230 0.704 2144 8 0.054 188±15 198±22 196 21 - 24 + MD51 545-08 7.172 362 1.288 65 0.705 2144 1 0.003 291±40 267±95 340 119 - 3 + Carmen 1508 545-09 13.205 987 2.796 209 0.706 2144 1 0 248±20 417±98 390 7 - 140 +

M. Louterbach (2014) | ANNEXES 274

Annex 5: Editor’s and reviewers’ comments about the submitted article: “Evidences for a late Palaeocene marine incursion in Southern Amazonia (Madre de Dios Sub-Andean Zone, Peru)”

COMMENTS FROM EDITOR (Prof. Finn Surlyk, Editor) AND/OR REVIEWERS Re: PALAEO7489.

Date: 08/08/2014

Title: Evidences for a late Paleocene marine incursion in Southern Amazonia (Madre de Dios Sub-Andean Zone, Peru). Authors: Mélanie Louterbach; Martin Roddaz, PhD; Patrice Baby; Julien Bailleul; Pierre-Olivier Antoine; Sylvain Adnet; J.H. Kim; E. van Soelen; Francisco Parra; Jean Gérard; Ysabel Calderon; Cyril Gagnaison; J.S. Sinninghe Damsté.

Editor comments This paper requires moderate to major revision in order to be acceptable for publication. The comments of the authors should all be carefully considered, especially those relating to age determination as highlighted by rev.#1. In your revision please follow journal style. I suggest you use a recent issue as a model: title not in bold; addresses in italices; ABSTRACT, and not in bold; Indent at new paragraphs (e.g. 53); en-dash (meaning 'to'), not hyphen between period names, orientations and numbers (54, 69, 389 and elsewhere); dot after number in heading (e.g. 86, 87) and subheadings not in bold (e.g. 87); 184: only first word in headings with upper case initials; 186 and elsewhere: all headings should line up along left margin.

Reviewer #1:

Dear Editors With interest I have read the manuscript by Louterbac et al, Evidences for a late Paleocene marine incursion in Southern Amazonia (Madre de Dios Sub-Andean Zone, Peru). Amazonia is a vast territory, twice the size of Europe, harbors the largest plant diversity in the planet, and has a poorly studied geological history. Why the biota is so diverse? Is this diversity an old characteristic of Amazonia or something recent? Those are only a few of the multiple questions regarding Amazonian ecosystems. However, the number of well-studied sites with paleontological information is very scarce. Any new site and formation is welcomed. Louterbac and his team analyzed five ~40 meter exposures in cut-banks along the Alto Madre de Dios River. They present a biostratigraphic, sedimentological, and geochemical analysis of the sites reaching the conclusion that the strata are Thanetian (Late Paleocene) in age, and sediment were accumulated in a shallow marine/tidal setting. The sedimentological analysis is excellent, fully supporting the interpretation of the depositional environment. Then, based on these two findings, they present broader implications, first linking the marine flooding to a higher tectonic load of the Andes and second, providing possible pathways for the marine incursion at a continental scale. This topic is appropriate for Palaeo-3 and could be of interest to a broader audience.

However, the paper needs a substantial revision before it can be published. There are several items that need to be improved as follow:

1. The arguments presented for the age determination are very weak (see my specific comments in the text regarding each of the taxa used to assess the age). There are not enough arguments presented in the manuscript to date these sites as "thanetian". And this is a major point of the manuscript, as most of the interpretation of the significance of the flooding relies on the age. The authors need to substantially improve the support for the age. Also, photos of the key taxa need to be provided.

2. A much review of the literature needs to be done. For instance, the documentation of Paleocene deposits from

275 MAP AND FIGURES | M. Louterbach (2014)

Colombia was poorly done, and lead to the readers to believe that the Cuervos formation, and in general the late Paleocene deposits in Colombia had marine influence, when there are published extensive literature showing that most of the late Paleocene deposits in Colombia are fully continental. There are several examples along the paper of poor literature review (see PDF notes).

3. The link of the flooding to a tectonic load needs a much better theoretical support. Given that this flooding seems very rapid (expressed only in tens of meters in the section), linking it to a tectonic load (that operated at long geological scales) seems very risky. A much better literature review of similar cases needs to be presented to support the interpretation.

5. There are also several additional comments to specific points in the PDF file (e.g. High Pediastrum content could produce the same DC13 positive signal as marine organic matter).

The paper, I think is going to be a good contribution to Palaeo-3, but it still needs a substantial revision.

Reviewer #2:

This is an excellent study on the biostratigraphy, sedimentology, and geochemistry including some Nd -Sr isotopic data for provenance determination in 5 selected exposures along the Madre de Dios River in the Peruvian Andes foreland basin. In these 5 outcrops the 13 co-authors of this paper of diverse specialties have pulled together their intellectual strength in the detailed studies of a multidisciplinary nature and arrived at some very useful conclusions that are logical and consistent with the observations and the analytical results. For example they established 15 sedimentary facies on the basis of lithology, physical and biogenic structures, and on palynology and paleontology and general geometry. For the limestone layers the authors determined microfiches analysis. The 15 facies are interpreted in terms of depositional processes and environment and finally 3 facies associations are proposed as evidences for a late Paleocene marine incursion in southern Amazonia. The paper is written, I found, almost flawlessly and was a joy to read. I suggest publications almost as is with a few very minor suggestions as listed below:

Line 26 ;....Amazonia not Amazonian Line 45....similar...not similarly Lines 54-55... the depositional area are shown as several hundred square km, and the Amazon rain forest's estimated area as 594 sq km. There is something wrong about these estimates? Line 60 ... You mean to say Andean orogeny or Andean Mountain building... and not simply Andean Building? Line 67 .. again it should be Andean Mountain building Line 233. spelling of planctonic ..should it be planktonic or planktic? Line333-4 what is neap-spring? I don't know the term. Line 458..... "Error! Reference source not found" ... It seems like an unedited version of this page that crept in the final manuscript..at least in the version of the manuscript I received to review.

M. Louterbach (2014) | ANNEXES 276

Annex 6: Marivaux et al., 2012

Annex 7: Antoine et al., 2013

277 MAP AND FIGURES | M. Louterbach (2014)

Journal of Human Evolution xxx (2012) 1e8

Contents lists available at SciVerse ScienceDirect

Journal of Human Evolution

journal homepage: www.elsevier.com/locate/jhevol

A platyrrhine talus from the early Miocene of Peru (Amazonian Madre de Dios Sub-Andean Zone)

Laurent Marivaux a,*, Rodolfo Salas-Gismondi b, Julia Tejada b,c, Guillaume Billet d, Mélanie Louterbach e,f, Jochem Vink g, Julien Bailleul f, Martin Roddaz e, Pierre-Olivier Antoine a,* a Laboratoire de Paléontologie, Institut des Sciences de l’Évolution (ISE-M, UMR e CNRS 5554), c.c. 64, Université Montpellier 2, Place Eugène Bataillon, F-34095 Montpellier Cedex 05, France b Museo de Historia Natural-Universidad Nacional Mayor San Marcos, Departamento de Paleontología de Vertebrados, Avenida Arenales 1256, Lima 11, Peru c Institut Français d’Études Andines, Avenida Arequipa 4500, Lima 18, Peru d Steinmann Institut für Geologie, Mineralogie und Paläontologie, Universität Bonn, D-53115 Bonn, Germany e Géosciences-Environnement Toulouse, Université de Toulouse, UPS (SVT-OMP), LMTG, CNRS, IRD, 14 Avenue Édouard Belin, F-31400 Toulouse, France f Institut Polytechnique Lasalle Beauvais, Département Géosciences, 19 rue Pierre Waguet, F-60026 Beauvais Cedex, France g Palaeo-ecology and Landscape Ecology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O. Box 94248, 1090GE Amsterdam, The Netherlands article info abstract

Article history: The earliest platyrrhines have been documented from the late Oligocene of Bolivia (Salla) and from the Received 15 May 2012 early and early middle Miocene of middle and high latitudes (central Chile and Argentinean Patagonia). Accepted 24 July 2012 Recent paleontological field expeditions in Peruvian Amazonia (Atalaya, Cusco; Upper Madre de Dios Available online xxx Basin) have led to the discovery of a new early Miocene locality termed MD-61 (‘Pinturan’ bio- chronological unit, w18.75e16.5 Ma [millions of years ago]). Associated with the typical Pinturan Keywords: dinomyid Scleromys quadrangulatus, we found a well-preserved right talus of a small-bodied Ankle anthropoid (MUSM-2024). This new platyrrhine postcranial element displays a combination Neotropics of talar features primarily found among the Cebidae, and more especially in the Cebinae. Its size Pinturan approximates that of the talus of some living large marmosets or small tamarins (Cebidae, Callitrichinae). Functional anatomy MUSM-2024 would thus document a tiny Saimiri-like cebine, with the body size of a large marmoset. Locomotion Functionally, the features and proportions of MUSM-2024 indicate that this small primate was arboreal and primarily quadrupedal, agile, with frequent horizontal leaping and vertical clinging in its locomotor repertoire. This small talus is the first platyrrhine fossil to be found from Peru and the earliest primate fossil from northern South America. This new early Miocene taxon could be a stem cebid, thereby providing new evidence on the existence of some long-lived clades of modern platyrrhines. Ó 2012 Elsevier Ltd. All rights reserved.

Introduction Miocene of western (Kay and Frailey, 1993; Kay and Cozzuol, 2006; Negri et al., 2010). The primate-bearing localities from La Neotropical areas are today among the major hotspots of Venta in central Colombia are particularly famous for having yiel- diversity (Grenyer et al., 2006). In South America, the ded a wide array of crown platyrrhines (‘ Beds’, Stirton, forests of the great Amazonian Basin shelter the most diversified 1951; Luchterhand et al., 1986; Setoguchi and Rosenberger, 1987; platyrrhine primate communities (Perez, 1997; Garber et al., 2009; Rosenberger et al., 1991b; Kay, 1994; Takai, 1994; Meldrum and Kay, Ramdarshan et al., 2011). However, from a historical perspective, 1997; Nakatsukasa et al., 1997; Takai et al., 2001). Earlier platyr- the early evolutionary stages of primates in northern South rhines have been thus far restricted to the late Oligocene locality of America (including Amazonia) have proven to be elusive, except for Salla, Bolivia (Hoffstetter, 1969; Rosenberger et al., 1991a; Takai and the late middle Miocene of Colombia () and the late Anaya, 1996; Takai et al., 2000), and to early and early middle Miocene localities at middle and high latitudes (central Chile and Argentinean Patagonia; Bordas, 1942; Fleagle and Bown, 1983; Fleagle et al., 1987; Fleagle and Kay, 1989; Fleagle, 1990; Meldrum, * Corresponding authors. E-mail addresses: [email protected] (L. Marivaux), Pierre- 1990; Flynn et al., 1995; Tejedor, 2002, 2003, 2005a, b). Although [email protected] (P.-O. Antoine). the fossil record of New World monkeys has significantly increased

0047-2484/$ e see front matter Ó 2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.jhevol.2012.07.005

Please cite this article in press as: Marivaux, L., et al., A platyrrhine talus from the early Miocene of Peru (Amazonian Madre de Dios Sub-Andean Zone), Journal of Human Evolution (2012), http://dx.doi.org/10.1016/j.jhevol.2012.07.005

278 2 L. Marivaux et al. / Journal of Human Evolution xxx (2012) 1e8 over the last decades (Tejedor, 2008), it has remained difficult to trace back the origin of major modern clades, inasmuch as the earliest fossil taxa (from Patagonia, Bolivia and Chile) seem to be outside the crown radiation (‘stem platyrrhine hypothesis’; Kay et al., 2008; Hodgson et al., 2009; Kay and Fleagle, 2010; Youlatos and Meldrum, 2011; but see Schrago, 2007; Rosenberger, 2010 and references therein, advocating the ‘long lineage hypothesis’). Recent geological and paleontological field expeditions in the Amazonian Madre de Dios Sub-Andean Zone of eastern Peru (Fig. 1) have led to the discovery of a new vertebrate locality, designated MD-61 (S1252.150;W7122.030; w484 m ASL). In August 2011, our thorough survey of this locality led to the recovery of a complete right talus of a small anthropoid primate. This tarsal bone provides the first documentation of fossil primates from Peru. The aims of this paper are: 1) to comment on the age of this new primate- bearing locality from the Upper Madre de Dios Basin, 2) describe morphologically and compare this new fossil talus with both extinct and extant platyrrhines, 3) determine its possible rela- tionships to crown platyrrhines and eventually to modern higher taxa, and 4) identify osteological talar features that reflect func- tional attributes related to locomotor behavior of this fossil primate. Most of the metric features for describing and comparing the talar anatomy among primates follow the works of Gebo (1988), Meldrum (1990), Gebo et al. (1991, 2001), and Marivaux et al. (2010, 2011). The specimen described here is permanently housed in the Departamento de Paleontología de Vertebrados of the Museo de Historia Natural de la Universidad Nacional Mayor San Marcos (MUSM), Lima, Perú.

Geological and paleontological settings

The MD-61 locality is situated within the Sub-Andean Zone of the Madre de Dios foreland basin, as a part of the South Amazonian foreland basin system (Fig. 1A; Roddaz et al., 2005, 2010). The southernmost part of the concerned Sub-Andean Zone is structured by the Salvación Syncline, with a thick Phanerozoic sedimentary sequence (Vargas and Hipólito, 1998; Antoine et al., in press). The fossiliferous deposit, located on the right bank of the Río Madre de Dios (Fig. 1A), crops out in the southern flank of the Salvación Syncline nearby Atalaya. Based on sedimentary facies and in the absence of any biostratigraphic constraint, it was originally mapped as part of the Paleocene-Eocene Yahuarango Formation (Vargas and Hipólito, 1998). However, laterally equivalent deposits from the northern flank of the Salvación Syncline, w25 km more to the north, were shown to document a much longer interval, ranging up to the early middle Miocene period (Antoine et al., in press). The MD-61 section is 30 m thick (Fig. 1B). It consists of indi- vidual or stacked brownish sandstone bodies (deposited in fluvial channels, point bars, stream floods, and/or waning flows; Fig. 1Ce D) separated by reddish mudstones with carbonate nodules, further testifying to the presence of a floodplain with frequent sub- aerial exposure under oxidizing conditions (Fig. 1E). Fossil verte- brate remains are scattered within the lower 5-m thick sand body (Fig. 1B). This early Miocene sequence is unconformably overlain by unconsolidated Pleistocene terrace conglomerates (Fig. 1B). All identifiable vertebrate remains from MD-61 were recovered Figure 1. Location map (A) and stratigraphic section of the MD-61 vertebrate locality by hand-picking, during the 2011 fieldwork. They were isolated and (B), in the Madre de Dios Sub-Andean Zone of Amazonian Peru. Fossil vertebrates referred to in the text (primate talus and associated mammalian/bird remains) are scattered all over the iron-pisolite-rich sand-and-gravel channel scattered within the lower 5-m thick stacked medium- to coarse-grained sandstone (Fig. 1BeC). The corresponding sediments were not screen-washed, body (C). The upper sandstone body is characterized by trough cross-stratification as no fossil concentration was recognized within the fossiliferous outlined by millimetric to centimetric iron-oxide nodules interpreted as point bar level. Together with the primate talus, MD-61 yielded several deposits (D) and reddish mudstones with carbonate nodules interpreted as fluvial fl mammalian remains consisting of a fragmentary osteoderm of oodplain deposits (E) and have not yielded any vertebrate fossils. This late early Miocene section is unconformably overlain by Pleistocene terrace conglomerates. C, a small euphractine dasypodid armadillo, an incomplete claw coarse; Conglo., conglomerate; Sdst., sandstone; VC, very coarse. referable to a megatherioid sloth, a dental fragment documenting a medium-sized toxodontid notoungulate, a complete cuboid of

Please cite this article in press as: Marivaux, L., et al., A platyrrhine talus from the early Miocene of Peru (Amazonian Madre de Dios Sub-Andean Zone), Journal of Human Evolution (2012), http://dx.doi.org/10.1016/j.jhevol.2012.07.005

279 L. Marivaux et al. / Journal of Human Evolution xxx (2012) 1e8 3 a rabbit-sized typothere notoungulate, and several rodent teeth. In years ago]), as discussed in Kramarz and Bellosi (2005), Kramarz addition, a distal fragment of a right tibiotarsus unearthed in MD- (2006), and Kramarz et al. (2010). Moreover, the relevant speci- 61 documents unambiguously a crane-sized gruiform bird and mens from MD-61 are much more brachydont than their middle testifies to the proximity of water and the occurrence of swamps or Miocene counterparts from Colombia or Peru (i.e., ‘Scleromys extensive wetlands in the area by the time of deposition of the schurmanni’ and ‘Scleromys colombianus’; Fields, 1957; Kramarz, fossiliferous level. Most of the vertebrate remains are of no signif- 2006; Antoine et al., in press), which further supports a late early icance from a biochronological perspective, with the notable Miocene age for the concerned assemblage. exception of the rodent teeth. The latter specimens (right M1, p4, and dp4) document a single taxon, referable to the small dinomyid Description and comparisons caviomorph Scleromys quadrangulatus (Kramarz 2006), or a close ally. Overall features, such as oblique and curved loph(id)s, partial MUSM-2024 is a right ankle bone characterized by a well hypsodonty, M1 with a quadrangulate occlusal contour, p4 with individualized neck, a rounded head showing a plantar navicular a labially salient posterolophid, and dimensions of the available facet continuous with the sustentacular facet of the neck, and specimens are only compatible with the small dinomyid from the a hemi-cylindrical trochlea with a small radius of curvature. All of pre-Santacrucian ‘Pinturan’ association (18.75e16.5 Ma [millions of these characters are primarily found in the tali of primates.

Figure 2. Photographs of MUSM-2024, right talus from MD-61, early Miocene of the Madre de Dios Sub-Andean Zone, Amazonian Peru. Views are dorsal (A), medial (B), lateral (C), proximal (D), distal (E), and plantar (F). These views are the result of the fusion of multi-focus images obtained with an optical stereomicroscope Leica M205C. Arrows and associated numbers denote anatomical features discussed in the text. Scale bar ¼ 1 mm.

Please cite this article in press as: Marivaux, L., et al., A platyrrhine talus from the early Miocene of Peru (Amazonian Madre de Dios Sub-Andean Zone), Journal of Human Evolution (2012), http://dx.doi.org/10.1016/j.jhevol.2012.07.005

280 4 L. Marivaux et al. / Journal of Human Evolution xxx (2012) 1e8

Furthermore, this new talus exhibits a suite of anatomical features Table 1 including a steep-sided talofibular facet, a short and shallow Metric features (in millimeters) of MUSM-2024 from MD-61 and body mass esti- mates (in grams). talotibial facet, and a mid-trochlear position of the flexor muscle groove (see description of these characters below), which are talar Measurements MUSM-2024 Body mass features otherwise found only in extinct and extant anthropoid (mm) estimates (g) primates (Gebo, 1986; Beard et al., 1988). Despite the presence of Talar length TL 8.14 289.5 e cracks, this new anthropoid talus (MUSM-2024) is complete and Talar neck length NL 4.69 Trochlear length TRL 3.97 e undistorted. Only the dorsal aspect of the talar body is slightly Mid-trochlear width MTRW 3.69 501 damaged in the distal part of the medial trochlear rim, where Talar widtha TW 4.79 254.5 a single and irregular pit may correspond to a tooth print resulting Medial talar heightb MTH 4.13 e from peri-mortem predation (Fig. 2B, arrow 1). Interestingly, Medial talar body MTBH 2.72 e height similar damage is preserved on tali referred to Carlocebus (MACN- Lateral talar body HT 3.58 288.5 SC 368 and 271), a fossil platyrrhine from the early Miocene heightc Pinturas Formation in Patagonia (Meldrum, 1990). MUSM-2024 Talar head widthd HW 3.36 e documents a that was about half the size of its coeval Talar head heighte HHT 2.95 e e Patagonian primate counterparts (i.e., platyrrhines) for which the Maximum ectal EFL 3.32 facet length talus is known (i.e., Dolichocebus (e.g., Reeser, 1984; Gebo and Maximum ectal EFW 2.01 e Simons, 1987), Carlocebus, and Soriacebus (Meldrum, 1990)). One facet width of the most diagnostic characters of MUSM-2024 is the length of Minimum ectal MEFW 1.6 e the talar neck and head. Indeed, the talar neck represents more facet width Talar neck anglef T-Neck-angle (a)35 e than the half of the total length of the talus, and is clearly longer Talar head torsiong T-Head-angle ( )10e15 e than the trochlea (Table 1). In this latter feature, MUSM-2024 Ectal facet orientationh Ectal-F-angle ()50e55 e differs substantially from tali of Dolichocebus (MACN-CH 362), T-Neck-angle and talar measurements follow the works of Gebo et al. (2001). The Carlocebus (MACN-SC 271, 368, 304 and 396), Soriacebus (MACN- talus was measured with a microscope fitted with a calibrated reticle (Measuro- SC 397), and from the Chilean ‘Rio Cisnes talus’ (SGO-PV 974; scope Nikon 10). The body mass estimates are from the ‘All Strepsirhine’ bivariate Tejedor, 2003), which exhibit relatively shorter talar necks regression equations (with correction factor of þ 6.5%) provided by Dagosto and (Table 2). In having a long neck, MUSM-2024 differs also radically Terranova (1992). a Distance from the most lateral point on the fibular facet (laterally projecting from the tali of the more recent and extant Pitheciidae and Ate- talar process) to the most medial point on the tibial facet. lidae, which show moderate to very short (and wide) talar neck, b Perpendicular distance from the most dorsal aspect of the medial trochlear respectively (Fig. 3AeC; Table 2). Ankle bones characterized by margin to a chord connecting the most plantar point on the medial talar body to the long necks are rather found in Cebidae (i.e., Callithrichinae and plantar aspect of the talar head. c Cebinae; Fig. 3DeJ) and Aotus (Fig. 3K). In MUSM-2024, the talar Perpendicular distance from the most dorsal point on the lateral trochlea margin to the chord defining the most plantar extent of the anterior and posterior neck narrows proximally and the head is relatively narrow aspects of the ectal facet. (Fig. 2A). Such conditions of the talar neck and head are primarily d Maximum mediolateral width. observed in tali of stem and crown Cebinae (e.g., Saimiri and Cebus, e Maximum dorsoplantar height. f Neosaimiri from La Venta [IGM-KU 8803, 89030, 89031 and 89199; Medial deviation of the talar neck relative to the anteroposterior axis of the trochlea. Gebo et al., 1990; Nakatsukasa et al., 1997]). In anterior view, the g Dorsolateral rotation of the talar head relative to the mediolateral axis of the head of MUSM-2024 is somewhat ovoid in shape (fairly round but dorsal trochlea. nearly flat dorsally) and slightly rotated dorsolaterally (10e15 ; h Position of the posterior calcaneal facet relative to the talar neck. Fig. 2E). In dorsal view, the distal edge of the head, which artic- ulates with the navicular, is strongly curved (Fig. 2A). As in most platyrrhine tali, the navicular facet expands onto the distal lateral Saguinus, Callithrix, and Leontopithecus) and also some Carlocebus and medial aspects of the neck, but not far onto its distal dorsal tali (MACN-SC 304 and 396), in which the lateral rim of the trochlea aspect. In this dorsal region of the neck, the cervical pit is is noticeably more elevated than the medial rim. Dorsally, the particularly well-marked in MUSM-2024, being deep and very surface of the trochlea extends distally onto the dorsal aspect of the extensive (Fig. 2AeB, arrow 2). Plantarly, the navicular facet is neck, thereby forming a shallow dorsal tibial stop (Fig. 2A, arrow 5). confluent with the sustentacular facet of the talar neck (Fig. 2F). This dorsal facet on the proximal part of the neck is observed in tali The sustentacular facet is not strictly plantad but it faces slightly of Carlocebus and Soriacebus, and it is common among modern medially (obliquely), although without extending far dorsally on callitrichines (e.g., Leontopithecus and Saguinus; Fig. 3D, G) and the medial margin of the neck. On the lateral aspect of the neck, pitheciines (e.g., Pithecia; Fig. 3C). In MUSM-2024, the most prox- the site for the attachment of the anterior talocalcaneal ligament imal part of the trochlea is rather flat, and the groove for the flexor appears as a wide and deep excavation (Fig. 2C, arrow 3). muscle (flexor hallucis longus) is only barely marked (very The talar body of MUSM-2024 is moderately high in lateral view shallow), being plantad and in a midline position relative to the (Fig. 2C) and is square-shaped in dorsal view (Fig. 2A; Table 2). The posterior trochlear facet (Fig. 2D, arrow 6), as it does in the tali of all medial and lateral rims of the trochlea are rounded, nearly parallel anthropoid primates. In callitrichines and pitheciines, this groove (i.e., the trochlea is not wedge-shaped; Fig. 2A), and display for the tendon of the flexor muscle is posteroplantarly buttressed a regular arc of curvature proximally (Fig. 2BeC). There is no strong by prominent medial and lateral tubercles (Gebo et al., 1990), the depression in the distal part of the trochlea (Fig. 2A, arrow 4) and medial one being relatively larger and longer (Fig. 3). In MUSM- the lateral trochlear rim does not extend far distally as observed in 2024, the lateral tubercle is virtually indistinct (Fig. 2D, arrow 7) some tali attributed to Carlocebus (MACN-SC 304 and 396), and in and the medial tubercle is moderately developed and projects tali of some callitrichines (e.g., Callithrix, Callimico, Saguinus, and moderately medially (Fig. 2D, arrow 8). A weakly pronounced and Cebuella; Fig. 3EeH) and cebines (Saimiri and Cebus; Fig. 3IeJ). In shallow groove for the flexor muscle, associated with a strong posterior view, the trochlea is symmetrical and only slightly asymmetry regarding the development of the buttressing tuber- grooved (Fig. 2D). In having a symmetrical trochlea, MUSM-2024 cles, are conditions found in aotines (Aotus; Fig. 3K) and in cebines clearly differs from the tali of some callitrichines (especially (Fig. 3IeJ), although in the latter (especially in Cebus) the lateral

Please cite this article in press as: Marivaux, L., et al., A platyrrhine talus from the early Miocene of Peru (Amazonian Madre de Dios Sub-Andean Zone), Journal of Human Evolution (2012), http://dx.doi.org/10.1016/j.jhevol.2012.07.005

281 L. Marivaux et al. / Journal of Human Evolution xxx (2012) 1e8 5

Table 2 Talar ratios among primates (modified after Gebo et al., 2001).

Taxa N NL/TL NL/TRL NL/MTRW HT/MTRW HT/TRL MTRW/TRL HW/HHT HW/MTRW TW/TL a Fossil taxa MD-61 Talus 1 58 118 127 97 90 93 114 91 59 35 MUSM-2024 Dolichocebus 1 54 94 125 109 82 75 ee65 32 gaimanensis (MACN-CH 362) Soriacebus 1 58 97 115 88 74 85 107 84 59 39 ameghinorum (MACN-SC 397) Carlocebus cf. 1 60 101 118 89 76 86 112 84 60 37 carmenensis (MACN-SC 271) Carlocebus cf. 1 58 95 115 85 71 83 120 91 66 34 carmenensis (MACN-SC 368) Carlocebus cf. 1 56 96 113 85 72 85 121 92 64 37 carmenensis (MACN-SC 304) Carlocebus cf. 1 60 94 114 90 75 82 104 82 73 36 carmenensis (MACN-SC 396) Neosaimiri fieldsi 1 58 97 116 88 74 84 107 85 59 30 (IGM-KU 89030) Neosaimiri fieldsi 1 55 91 113 95 76 80 105 87 55 37 (IGM-KU 89031) Neosaimiri fieldsi 1 54 88 113 104 81 78 127 95 58 35 (IGM-KU 89199) Neosaimiri fieldsi 1 60 104 141 108 79 73 84 91 64 35 (IGM-KU 8803) La Venta IGM-KU 1 59 90 132 103 76 74 106 109 68 32 8802 Living taxa 1 54 105 136 105 81 77 110 115 59 35 sarmientoi Cebuella pygmaeus 7 63 (55e69) 114 (94e124) 125 (109e135) 87 (81e91) 79 (70e86) 91 (82e95) 121 (112e136) 86 (82e91) 61 (59e64) 42 Callithrix jacchus 10 66 (60e72) 125 (112e143) 129 (112e145) 89 (82e95) 86 (82e93) 97 (91e104) 124 (111e136) 88 (83e95) 65 (58e74) 40 Callithrix argentata 6 64 (59e67) 124 (114e132) 134 (129e141) 88 (83e92) 81 (78e85) 92 (87e102) 131 (119e140) 94 (87e101) 61 (59e63) 38 Saguinus leucopus 3 59 (59e60) 116 (103e120) 154 (149e157) 108 (103e111) 72 (71e72) 82 (81e85) 120 (118e124) 110 (108e111) 62 (58e65) 37 Saguinus midas 4 60 (57e63) 111 (105e126) 138 (131e150) 100 (95e108) 74 (67e77) 84 (82e84) 117 (114e120) 101 (98e105) 66 (63e69) 34 Saguinus oedipus 20 59 (51e64) 106 (100e122) 121 (102e132) 91 (78e101) 76 (67e84) 88 (80e93) 118 (111e127) 88 (80e95) 65 (60e71) 37 Callimico goeldi 10 60 (54e66) 111 (101e130) 125 (110e141) 85 (81e89) 76 (70e82) 89 (82e94) 125 (119e142) 92 (87e96) 69 (60e75) 38 Saimiri sciureus 10 54 (48e61) 99 (87e103) 133 (112e150) 108 (100e117) 76 (69e86) 85 (80e90) 130 (124e137) 98 (91e120) 58 (53e64) 30 Cebus apella 6 57 (54e61) 97 (94e105) 118 (114e122) 104 (100e106) 86 (77e91) 82 (77e86) 122 (116e133) 94 (92e98) 66 (61e71) 32 Cebus capucinus 5 56 (53e62) 101 (95e103) 146 (139e159) 134 (127e143) 90 (86e97) 67 (60e71) 127 (118e138) 123 (119e132) 70 (68e73) 33 Callicebus 2 52 (52e53) 91 (89e94) 144 118 (117e119) 82 (80e84) 77 (76e77) 131 (125e136) 118 (115e121) 56 (55e58) 34 torquatus Callicebus 3 51 (49e53) 85 (83e87) 125 (110e138) 112 (103e121) 83 (73e94) 77 (68e84) 142 (140e146) 102 (100e104) 59 (58e61) 30 donaphilus Aotus azarae 6 53 (53e55) 96 (92e100) 144 (131e153) 119 (112e126) 77 (73e81) 83 (77e86) 131 (125e139) 110 (99e121) 54 (51e56) 31 Pithecia pithecia 6 52 (50e56) 86 (81e91) 132 (123e141) 105 (95e119) 68 (66e71) 65 (60e70) 135 (129e143) 118 (110e125) 69 (63e72) 35 Alouatta seniculus 5e6 50 (47e51) 85 (81e92) 116 (98e133) 93 (85e107) 68 (63e74) 74 (63e86) 134 (117e147) 100 (91e117) 70 (65e76) 33 Ateles belzebuth 1 45 77 87 95 84 88 104 81 68 35

Talar measurements and corresponding ratios for the talus specimens of Soriacebus, Carlocebus and Neosaimiri were provided courtesy of D. Gebo. tubercle may appear more distinct. Fossil tali of Dolichocebus and in contrast less steep-sided and possesses a small but well-marked Carlocebus exhibit a similar morphological pattern of this prox- plantar protuberance for the attachment of the posterior fibers of imoplantar talar region as that observed in MUSM-2024. In general, the deltoid ligament (Fig. 2A, arrow 10). This bony protuberance, the lateral tubercle forms a part of the posterolateral edge of the which extends outward plantarly on the medial aspect of the talar ectal facet (Fig. 2F, arrow 7). Due to the weak development of the body, is common in the tali of platyrrhines. In aotines (Aotus) and in lateral tubercle, the plantar posterior articulation with the calca- some pitheciines (e.g., Callicebus), it can be prominent and faceted. neus is less extensive and less curved in MUSM-2024 than in cal- In cebids and atelids, it is small and not faceted (Gebo et al., 1990). litrichines (Fig. 3DeH). In MUSM-2024, the ectal facet is In MUSM-2024, the medial protuberance is moderately developed moderately long and narrow, and is oriented at roughly 55 to the as it is in cebids. This protuberance contrasts with the site for the talar neck. It exhibits a small radius of curvature (well concave), and attachment of the anterior fibers of the deltoid ligament, which its lateral margin is only slightly indented near its midpoint, as it appears as a narrow and deep excavation (Fig. 2B). The medial talar does in Saimiri (Fig. 3J). facet for the tibial malleolus is well-elevated from the plantar In dorsal view, the lateral side of the talar body of MUSM-2024 is surface, and is oriented obliquely. It is small, shallow and cup-like, steep (steep-sided talofibular facet), but it flares abruptly laterally somewhat flaring medially, which slightly projects onto the prox- in its plantar region, thereby forming a small and triangular lateral imal aspect of the neck, thereby forming a medial tibial stop talar process (Fig. 2A, arrow 9). The medial side of the talar body is (Fig. 2A, arrow 11).

Please cite this article in press as: Marivaux, L., et al., A platyrrhine talus from the early Miocene of Peru (Amazonian Madre de Dios Sub-Andean Zone), Journal of Human Evolution (2012), http://dx.doi.org/10.1016/j.jhevol.2012.07.005

282 6 L. Marivaux et al. / Journal of Human Evolution xxx (2012) 1e8

Figure 3. Photographs of left tali of living platyrrhines and of MUSM-2024 (MD-61, early Miocene, Amazonian Peru) obtained with microCT surface reconstructions. All tali are scaled to have equal proximodistal length. A, Ateles belzebuth (AS 1028); B, Alouatta seniculus (CG 1937-879); C, Pithecia pithecia (CG 1998-233); D, Leontopithecus rosalia (AS 1847); E, Callithrix jacchus (AS 6415); F, Callimico goeldii (AS 10332); G, Saguinus midas (CG 1998-232); H, Cebuella pygmaeus (AS 7162); I, Cebus albifrons (UMC-V13); J, Saimiri sciureus (AS 7495); K, Aotus azarae (AS 1036); L, MUSM-2024. Photographs of MUSM-2024 are reversed. For each talus, the views are as follow (from left to right and top to bottom): dorsal, plantar, medial, lateral, proximal, and distal. (AS, collections from the Anthropological Institute and Museum, Zurich; CG, collections from the Museum National d’Histoire Naturelle, Paris; UMC, collections of the Université Montpellier 2, Montpellier).

Discussion phylogenetic affinities rests solely on its morphology. Although some of the talar features characterizing MUSM-2024 may be Early Miocene platyrrhines have thus far been exclusively found in several groups of platyrrhines, the presence of a relatively documented by taxa unearthed from middle and high latitudes of long talar neck that narrows proximally, a moderately high, short South America (central Chile and Argentinean Patagonia; Bordas, and square talar body, a narrow and fairly rounded talar head, 1942; Fleagle and Bown, 1983; Fleagle et al., 1987; Fleagle and a barely marked proximoplantar groove for the tendon of the flexor Kay, 1989; Fleagle, 1990; Meldrum, 1990; Flynn et al., 1995; muscle, a lateral proximal tubercle weakly developed, and the Tejedor, 2002, 2003, 2005a, b). The new platyrrhine tarsal bone presence of a small but well-distinct protuberance on the medial described here from the late early Miocene of Peruvian Amazonia aspect of the talar body, are characters primarily found in the represents the first fossil primate to be found in Peru, and also the Cebinae. Following regressions of talar dimensions against body first early Miocene record of primates in tropical-equatorial areas of mass in living primates, MUSM-2024 belonged to a small primate South America. The South American fossil record is admittedly still with a body mass ranging from about 250 g to 500 g (estimated limited but it testifies to the expected widespread distribution of from the ‘All Strepsirhine’ bivariate regression equations based on primates in South America at that time. The MUSM-2024 talus from several linear talar dimensions [TW, MTRW, TL, and HT] provided Atalaya (MD-61) was not found in association with other primate by Dagosto and Terranova, (1992); Table 1). Therefore, the body size postcranial or dental remains. Therefore, any assessment of its of this early Miocene primate from Peru approximated that of some

Please cite this article in press as: Marivaux, L., et al., A platyrrhine talus from the early Miocene of Peru (Amazonian Madre de Dios Sub-Andean Zone), Journal of Human Evolution (2012), http://dx.doi.org/10.1016/j.jhevol.2012.07.005

283 L. Marivaux et al. / Journal of Human Evolution xxx (2012) 1e8 7 living large bodied marmosets (i.e., Callithrix) or small bodied representative of this crown clade. Finally, if we consider that most tamarins (i.e., Saguinus), also known as dwarf platyrrhine monkeys of the early Miocene Patagonian platyrrhines are not closely related (Cebidae, Callitrichinae), from the Neotropics. MUSM-2024 would to modern clades (i.e., outside the crown radiation: ‘stem platyr- thus document a tiny Saimiri-like cebine, with the body size of rhine hypothesis’ (SPH); e.g., Kay et al., 2008; Kay and Fleagle, 2010; a marmoset. Youlatos and Meldrum, 2011), the possibility exists that this small Functionally, MUSM-2024 bears a few talar features indicative primate from Peruvian Amazonia documents the earliest known of some leaping activity. For instance, a long talar neck, a moder- crown platyrrhine. Admittedly, this hypothesis would extend the ately tall talar body, a slight trochlear grooving, and the presence of origin of the cebid lineage back to the early Miocene (and possibly parallel- and steep-sided medial and lateral trochlear rims and earlier) and imply a greater antiquity of the crown radiation as facets, which display a regular arc of curvature proximally, are all a result. Such an earlier radiation is in fact advocated by features found in some generalized arboreal quadrupedal primates Rosenberger (2010, and references therein), who in contrast that are frequent leapers (Gebo, 1988). However, in MUSM-2024, considers that most of the earliest known fossil taxa (early Miocene the trochlea is not deeply grooved and the rims are not as sharp Patagonian platyrrhines) are nested within the crown radiation as those of specialized leapers, where only one primary plane of (‘long lineage hypothesis’ (LLH); e.g., Rosenberger, 2010). Regard- movement is needed at the talocrural joint to maximize stability less of the phylogenetic position of the early Miocene Patagonian during a leap (Gebo, 1988). Indeed, in MUSM-2024 the trochlea is platyrrhines, our discovery provides new evidence for the existence rather flat and its rims are rounded, which probably allowed ankle of some long-lived clades of modern platyrrhines. However, such motions with some degree of mobility at the talocrural joint. In a hypothesis requires further morphological support than current addition, the cup-like malleolar tibial facet on the medial aspect of data allow. Our discovery from Peru demonstrates that the low the talar body probably provided some stability in an inverted foot latitudes of South America, notably the forests of the great position. The same is true regarding both the shape and curvature Amazonian Basin, have played a critical role in the earliest radiation of the ectal facet, which probably allowed a normal degree of of crown platyrrhines. Given this fact and the great diversity of subtalar motions, as those characterizing generalized arboreal crown platyrrhines recorded during the middle Miocene in quadrupedal primates. These talar characteristics indicate that this Northern South America (Colombia), further investigation of the fossil species was an agile quadrupedal walking primate, probably late Paleogene e early Miocene tropical-equatorial areas of South capable of climbing, although not particularly specialized for this America is urgently needed to better understand how New World latter activity. MUSM-2024 does not exhibit the talar features monkeys evolved through space and time. observed in highly specialized climbers (e.g., talar body dorsoven- trally flat, short and medially deflected talar neck, strongly wedged Acknowledgments trochlear surface, reduction or lack of posterior trochlear shelf, small ectal facet with a high radius of curvature; Dagosto, 1983; We thank the IRD-PeruPetro Convention Programme. We are Gebo, 1986, 1988). Another interesting talar character on MUSM- much indebted to Dan Gebo (Northern Illinois University, DeKalb) 2024 is the surface of the trochlea, which extends distally onto for his courtesy in providing us with measurements of several fossil the dorsal aspect of the neck to form a tibial stop. Such a talar tali. We are grateful to C. Zollikofer and M. Ponce de León structure indicates the possibility of extreme talocrural dorsiflexion (Anthropological Institute and Museum, Zurich), C. Denys and J. and probably served to limit and stabilize the tibia by restricting its Cuisin (Muséum National d’Histoire Naturelle, Paris), V. Pacheco forward progress in vertical clinging posture (Fleagle and Meldrum, (Departamento de Mastozoología, MUSM, Lima, Peru), and S. Jiquel 1988; Gebo, 1988; Meldrum, 1990; Youlatos and Meldrum, 2011). In (ISE-M, Collections Université Montpellier 2) for having provided sum, the features and proportions of MUSM-2024 indicate that this access to their collections and permission to scan and/or mold small primate was engaged in a form of arboreal quadrupedalism extant specimens. We thank R. Lebrun (ISE-M) for access to the with frequent horizontal leaping. In addition, the possibility of Micro-CT scanner facility of the Montpellier RIO-Imaging and A. G. enhanced but stable dorsiflexed foot positions suggests that this Kramarz (MACN, Buenos Aires) for having provided us with useful small monkey also exhibited some proficiency in the use of vertical references concerning Pinturan dinomyid . Many thanks to supports, a locomotor behavior that is frequently practiced by A.-L. Charruault (ISE-M) for Micro-CT surface reconstructions of the callitrichines and pitheciines. However, further postcranial tali of living platyrrhine species. We are indebted to R.F. Kay, M.T. elements are needed to better understand the activities and posi- Silcox and two anonymous reviewers for their constructive tional behaviors that characterized the locomotor repertoire of this remarks on an earlier version of the manuscript. L. Marivaux was new, small platyrrhine primate from the early Miocene of Peru. supported by ANR-08-JCJC-0017 (PALASIAFRICA); P.-O. Antoine was supported by CNRS ‘Eclipse 2’, CNRS/INSU/IRD ‘Paleo2’ and Tou- Conclusion louse University ‘SPAM’; G. Billet was supported by -Foundation. Contribution ISE-M 2012-090. The small talus described here is the first platyrrhine fossil described from Peru and the earliest primate fossil from northern References South America. Based on comparative anatomy, the overall morphology of this talus appears most similar to living Cebinae. Antoine, P.-O., Roddaz, M., Brichau, S., Tejada-Lara, J., Salas-Gismondi, R., Altamir- Interestingly, this Saimiri-like cebine had a body size and mode of ano, A., Louterbach, M., Lambs, L., Otto, T., Brusset, S., . Middle Miocene verte- locomotion that approximated those of a callitrichine or small brates from the Amazonian Madre de Dios Subandean Zone, Perú. J. South Am. Earth Sci., in press. cebine cebid. However, in the absence of a more comprehensive Beard, K.C., Dagosto, M., Gebo, D.L., Godinot, M., 1988. Interrelationships among fossil record for this new platyrrhine taxon, the phylogenetic primate higher taxa. Nature 331, 712e714. fi Bordas, A., 1942. Anotaciones sobre un ‘Cebidae’ fósil de Patagonia. Physis 19, af nities and locomotion of this small primate are far from being e fi 265 269. de nitive. Nevertheless, despite a limited record for this new taxon, Dagosto, M., 1983. Postcranium of Adapis parisiensis and Leptadapis magnus (Ada- we have shown that its talus differs substantially from the tali of piformes, Primates): adaptations and phylogenetic significance. Folia Primatol contemporaneous platyrrhine taxa from Patagonia and Chile. This 41, 49e101. fi Dagosto, M., Terranova, C.J., 1992. Estimating the body size of Eocene primates: new fossil taxon exhibits undoubted talar af nities with modern a comparison of results from dental and postcranial variables. Int. J. Primatol. Cebidae (Cebinae þ Callitrichinae) and, as such, it could be a stem 13, 307e344.

Please cite this article in press as: Marivaux, L., et al., A platyrrhine talus from the early Miocene of Peru (Amazonian Madre de Dios Sub-Andean Zone), Journal of Human Evolution (2012), http://dx.doi.org/10.1016/j.jhevol.2012.07.005

284 8 L. Marivaux et al. / Journal of Human Evolution xxx (2012) 1e8

Fields, R.W., 1957. Hystricomorph rodents from the late Miocene of Colombia, South Marivaux, L., Tabuce, R., Lebrun, R., Ravel, A., Adaci, M., Mahboubi, M., Bensalah, M., America. Univ. Calif. Publ. Geol. Sci. 32, 273e404. 2011. Talar morphology of azibiids, strepsirhine-related primates from the Fleagle, J.G., 1990. New fossil platyrrhines from the Pinturas Formation, southern Eocene of Algeria: phylogenetic affinities and locomotor adaptation. J. Hum. . J. Hum. Evol. 19, 61e85. Evol. 61, 447e457. Fleagle, J.G., Bown, T.M., 1983. New primate fossils from late Oligocene (Colhue- Meldrum, D.J., 1990. New fossil platyrrhine tali from the early Miocene of Argentina. huapian) localities of Chubut Province, Argentina. Folia Primatol. 41, 240e266. Am. J. Phys. Anthropol. 83, 403e418. Fleagle, J.G., Kay, R.F., 1989. The dental morphology of Dolichocebus gaimanensis, Meldrum, D.J., Kay, R.F., 1997. Primate postcranial fossils from the Miocene of a fossil monkey from Argentina. Am. J. Phys. Anthropol. 78, 221. Colombia. In: Kay, R.F., Madden, R.H., Ciffeli, R.L., Flynn, J.J. (Eds.), A History of Fleagle, J.G., Meldrum, D.J., 1988. Locomotor behavior and skeletal morphology of Neotropical Fauna: Vertebrate Paleontology of the Miocene of Tropical South two sympatric pitheciine monkeys, Pithecia pithecia and Chiropotes satanas.Am. America. Smithsonian Institution Press, Washington, pp. 459e472. J. Phys. Anthropol. 16, 227e249. Nakatsukasa, M., Takai, M., Setoguchi, T., 1997. Functional morphology of the Fleagle, J.G., Powers, D.W., Conroy, G.C., Watters, J.P., 1987. New fossil platyrrhines postcranium and locomotor behaviour of Neosaimiri fieldsi,aSaimiri-like from Santa Cruz province, Argentina. Folia Primatol. 48, 65e77. middle Miocene platyrrhine. Am. J. Phys. Anthropol. 102, 515e544. Flynn, J.J., Wyss, A.R., Charrier, R., Swisher III, C.C., 1995. An early Miocene Negri, F.R., Bocquentin-Villanueva, J., Ferigolo, J., Antoine, P.-O., 2010. A review of anthropoid skull from the Chilean Andes. Nature 373, 603e607. Tertiary mammal faunas and birds from western Amazonia. In: Hoorn, C., Garber, P.A., Estrada, A., Bicca-Marques, J.C., Heymann, E.W., Strier, K.B., 2009. South Wesselingh, F.P. (Eds.), Amazonia, Landscape and Species Evolution: A Look into American Primates. Comparative Perspectives in the Study of Behavior, Ecology, the Past. Blackwell-Wiley, Hoboken, pp. 245e258. and Conservation. Springer, Chicago. Perez, C.A., 1997. Primate community structure at twenty western Amazonian Gebo, D.L., 1986. Anthropoid origins - the foot evidence. J. Hum. Evol. 15, 421e430. flooded and unflooded forests. J. Trop. Ecol. 13, 381e405. Gebo, D.L., 1988. Foot morphology and locomotor adaptation in Eocene primates. Ramdarshan, A., Alloing-Séguier, T., Merceron, G., Marivaux, L., 2011. The primate Folia Primatol. 50, 3e41. community of Cachoeira (Brazilian Amazonia): a model to decipher ecological Gebo, D.L., Dagosto, M., Beard, K.C., Qi, T., 2001. Middle Eocene primate tarsals partitioning among extinct species. Plos One 6, e27392. from China: implications for haplorhine evolution. Am. J. Phys. Anthropol. 116, Reeser, L.A., 1984. Morphological affinities of new fossil talus of Dolichocebus gai- 83e107. manensis. Am. J. Phys. Anthropol. 63, 206e207. Gebo, D.L., Dagosto, M., Rose, K.D., 1991. Foot morphology and evolution in early Roddaz, M., Hermoza, W., Mora, A., Baby, P., Parra, M., Christophoul, F., Brusset, S., Eocene Cantius. Am. J. Phys. Anthropol. 86, 51e73. Espurt, N., 2010. Cenozoic sedimentary evolution of the Amazonian foreland Gebo, D.L., Dagosto, M., Rosenberger, A.L., Setogushi, T., 1990. New platyrrhine tali basin system. In: Hoorn, C., Wesselingh, F.P. (Eds.), Amazonia, Landscape and from La Venta, Colombia. J. Hum. Evol. 19, 737e746. Species Evolution: A Look into the Past. Blackwell-Wiley, Hoboken, pp. 61e88. Gebo, D.L., Simons, E., 1987. Morphology and locomotor adaptations of the foot in Roddaz, M., Viers, J., Brusset, S., Baby, P., Hérail, G., 2005. Sediment provenances and early Oligocene anthropoids. Am. J. Phys. Anthropol. 74, 83e101. drainage evolution of the Neogene Amazonian foreland basin. Earth Planet. Sci. Grenyer, R., Orme, C.D.L., Jackson, S.F., Thomas, G.H., Davies, R.G., Davies, T.J., Lett. 239, 57e78. Jones, K.E., Olson, V.A., Ridgely, R.S., Rasmussen, P.C., Ding, T.-S., Bennett, P.M., Rosenberger, A.L., 2010. Platyrrhines, PAUP, parallelism, and the long lineage Blackburn, T.M., Gaston, K.J., Gittleman, J.L., Owens, I.P.F., 2006. Global distri- hypothesis: a reply to Kay et al. (2008). J. Hum. Evol. 59, 214e217. bution and conservation of rare and threatened vertebrates. Nature 444, 93e96. Rosenberger, A.L., Hartwig, W.C., Wolff, R.G., 1991a. Szalatavus attricuspi, an early Hodgson, J.A., Sterner, K.N., Matthews, L.J., Burrell, A.S., Jani, R.A., Raaum, R.L., platyrrhine primate. Folia Primatol. 56, 225e233. Stewart, C.-B., Disotell, T.R., 2009. Successive radiations, not stasis, in the South Rosenberger, A.L., Setoguchi, T., Hartwig, W.C., 1991b. Laventiana annectens, new American primate fauna. Proc. Natl. Acad. Sci. 106, 5534e5539. genus and species: fossil evidence for the origin of callitrichine monkeys. Proc. Hoffstetter, R., 1969. Un primate de l’Oligocène inférieur Sud-Américain: Branisella Natl. Acad. Sci. 88, 2137e2140. boliviana gen. et sp. nov. C.R. Acad. Sci. Paris 269, 434e437. Schrago, C.G., 2007. On the time of New World primate diversification. Am. J. Phys. Kay, R.F., 1994. ‘Giant’ tamarin from the Miocene of Colombia. Am. J. Phys. Anthropol. 132, 344e354. Anthropol. 95, 333e353. Setoguchi, T., Rosenberger, A.L., 1987. A fossil owl monkey from La Venta, Colombia. Kay, R.F., Cozzuol, M.A., 2006. New platyrrhine monkeys from the Solimões Nature 326, 692e694. Formation (late Miocene, Acre state, Brazil). J. Hum. Evol. 50, 673e686. Stirton, R.A., 1951. Ceboid monkeys from the Miocene of Columbia. Univ. Calif. Publ. Kay, R.F., Fleagle, J.G., 2010. Stem taxa, homoplasy, long lineages, and the phylo- Geol. Sci. 28, 315e356. genetic position of Dolichocebus. J. Hum. Evol. 59, 218e222. Takai, M., 1994. New specimens of Neosaimiri fieldsi from La Venta, Colombia: Kay, R.F., Fleagle, J.G., Mitchell, T.R.T., Colbert, M., Bown, T., Powers, D.W., 2008. The a middle Miocene ancestor of the living squirrel monkeys. J. Hum. Evol. 27, anatomy of Dolichocebus gaimanensis, a stem platyrrhine monkey from 329e360. Argentina. J. Hum. Evol. 54, 323e382. Takai, M., Anaya, F., 1996. New specimens of the oldest fossil platyrrhine, Branisella Kay, R.F., Frailey, C.D., 1993. Fossil platyrrhines from the Rio Acre fauna, late boliviana, from Salla, Bolivia. Am. J. Phys. Anthropol. 99, 301e317. Miocene, western Amazonia. J. Hum. Evol. 25, 319e327. Takai, M., Anaya, F., Shigehara, N., Setoguchi, T., 2000. New fossil materials of the Kramarz, A.G., 2006. Neoreomys and Scleromys (Rodentia, Hystricognathi) from the earliest , Branisella boliviana, and the problem of platyr- Pinturas Formation, late early Miocene of Patagonia, Argentina. Revista del rhine origins. Am. J. Phys. Anthropol. 111, 263e281. Museo Argentino de Ciencias Naturales, Nueva Series 8, 53e62. Takai, M., Anaya, F., Suzuki, H., Shigehara, N., Setoguchi, T., 2001. A new platyrrhine Kramarz, A.G., Bellosi, E.S., 2005. Hystricognath rodents from the Pinturas Forma- from the middle Miocene of La Venta, Colombia, and the phyletic position of tion, early-middle Miocene of Patagonia, biostratigraphic and paleoenvir- Callicebinae. Anthropol. Sci. 109, 289e308. onmental implications. J. South. Am. Earth Sci. 18, 199e212. Tejedor, M.F., 2002. Primate canines from the early Miocene Pinturas Formation, Kramarz, A.G., Vucetich, M.G., Carlini, A.A., Ciancio, M.R., Abello, M.A., southern Argentina. J. Hum. Evol. 43, 127e141. Deschamps, C.M., Gelfo, J.N., 2010. A new mammal fauna at the top of the Gran Tejedor, M.F., 2003. New fossil primate from Chile. J. Hum. Evol. 44, 515e520. Barranca sequence and its biochronological significance. In: Madden, R.H., Tejedor, M.F., 2005a. New fossil platyrrhine from Argentina. Folia Primatol. 76, Carlini, A.A., Vucetich, M.G., Kay, R.F. (Eds.), The Paleontology of Gran Barranca. 146e150. Cambridge University Press, Cambridge, pp. 264e277. Tejedor, M.F., 2005b. New specimens of Soriacebus adrianae, with comments on Luchterhand, K., Kay, R.F., Madden, R.H., 1986. hershkovitzi, gen. et sp. pitheciin primates from the Miocene of Patagonia. Ameghiniana 42, 249e251. nov., un primate du Miocène moyen d’Amérique du Sud. C.R. Acad. Sci. Paris Tejedor, M.F., 2008. The origin and evolution of Neotropical primates. Arquivos do 303, 1753e1758. Museu Nacional, Rio de Janeiro 66, 251e269. Marivaux, L., Beard, K.C., Chaimanee, Y., Dagosto, M., Gebo, D.L., Guy, F., Vargas, L., Hipólito, A., 1998. Quadrángulos de Río Pinquén (25-t), Pillcopata (26-t) y Marandat, B., Khaing, K., Kyaw, A.A., Oo, M., Sein, C., Soe, A.N., Jaeger, J.-J., 2010. Chontachaca (27-t). Publ. INGEMMET, Ser. A, Lima. Talar morphology, phylogenetic affinities and locomotor adaptation of a large- Youlatos, D., Meldrum, J., 2011. Locomotor diversification in New World monkeys: bodied amphipithecid primate from the late middle Eocene of Myanmar. Am. J. running, climbing, or clawing along evolutionary branches. Anat. Rec. 294, Phys. Anthropol. 143, 208e222. 1991e2012.

Please cite this article in press as: Marivaux, L., et al., A platyrrhine talus from the early Miocene of Peru (Amazonian Madre de Dios Sub-Andean Zone), Journal of Human Evolution (2012), http://dx.doi.org/10.1016/j.jhevol.2012.07.005

285 Journal of South American Earth Sciences 42 (2013) 91e102

Contents lists available at SciVerse ScienceDirect

Journal of South American Earth Sciences

journal homepage: www.elsevier.com/locate/jsames

Middle Miocene vertebrates from the Amazonian Madre de Dios Subandean Zone, Perú

Pierre-Olivier Antoine a,*, Martin Roddaz b, Stéphanie Brichau b, Julia Tejada-Lara c,d, Rodolfo Salas-Gismondi c, Ali Altamirano c, Mélanie Louterbach b,e, Luc Lambs f, Thierry Otto f, Stéphane Brusset b a Institut des Sciences de l’Évolution, UMR-CNRS 5554, CC064, Université Montpellier 2, Place Eugène Bataillon, F-34095 Montpellier, France b Géosciences-Environnement Toulouse, Université de Toulouse, UPS (SVT-OMP), LMTG, CNRS, IRD, 14 Avenue Édouard Belin, F-31400 Toulouse, France c Museo de Historia Natural-Universidad Nacional Mayor San Marcos, Departamento de Paleontología de Vertebrados, Avenida Arenales 1256, Lima 11, Perú d Institut Français d’Etudes Andines, Avenida Arequipa 4500, Lima 18, Perú e Institut Polytechnique Lasalle Beauvais, Département Géosciences, 19 rue Pierre Waguet, F-60026 Beauvais Cedex, France f EcoLab, UMR 5245 CNRS-UPS-INPT, Université de Toulouse, 118 Route de Narbonne, F-31062 Toulouse Cedex 9, France article info abstract

Article history: A new middle Miocene vertebrate fauna from Peruvian Amazonia is described. It yields the marsupials Received 25 January 2012 Sipalocyon sp. (Hathliacynidae) and Marmosa (Micoureus) cf. laventica (Didelphidae), as well as an Accepted 29 July 2012 unidentified glyptodontine xenarthran and the rodents Guiomys sp. (Caviidae), “Scleromys” sp., cf. quadrangulatus-schurmanni-colombianus (Dinomyidae), an unidentified acaremyid, and cf. Micro- Keywords: steiromys sp. (Erethizontidae). Apatite Fission Track provides a detrital age (17.1 2.4 Ma) for the locality, -early slightly older than its inferred biochronological age (Colloncuran-early Laventan South American Land Marsupialia Mammal Ages: w15.6e13.0 Ma). Put together, both the mammalian assemblage and lithology of the Rodentia Biochronology fossil-bearing level point to a mixture of tropical rainforest environment and more open habitats under fl Fission track age a monsoonal-like tropical climate. The fully uvial origin of the concerned sedimentary sequence Biogeography suggests that the Amazonian Madre de Dios Subandean Zone was not part of the Pebas mega-wetland System by middle Miocene times. This new assemblage seems to reveal a previously undocumented “spatiotemporal transition” between the late early Miocene assemblages from high latitudes (Patagonia and Southern Chile) and the late middle Miocene faunas of low latitudes (Colombia, Perú, , and ?Brazil). Ó 2012 Elsevier Ltd. All rights reserved.

1. Introduction exceptions of La Venta (late middle Miocene, Colombia; Kay et al., 1997) and Fitzcarrald local fauna (eastern Perú; Antoine et al., The middle Miocene period is characterised by the last climatic 2007; Goillot et al., 2011; Pujos et al., in press), middle Miocene optimum (MMCO, for Middle Miocene Climatic Optimum) before are virtually unknown in tropical-equatorial South a sustainable deterioration culminating with PlioceneePleistocene America (e.g., Negri et al., 2010). ice ages (Zachos et al., 2001, 2008). In Northern South America, this The present work aims to report a new vertebrate locality from MMCO coincides with the emergence of the “Pebas system”, a large the Subandean Zone of Southwestern Peru, designated MD-67 wetland with marine influence partly engulfing what is lowland (S1238.6830;W7119.2840; w428 m Above Sea Level) and doc- Amazonia today (for review, see Hoorn et al., 2010a,b). umenting the concerned interval. MD-67 was discovered by one of This environment was particularly favourable to biodiversity us (MR) nearby Pilcopata (Cusco) in 2007 (Fig. 1). The corre- and it allowed a wide array of organisms, such as molluscs, sponding results are exposed hereunder in systematic, bio- arthropods, and plants to be fossilised (e.g., Hoorn, 1993; Antoine stratigraphical, and biogeographical perspectives. et al., 2006; Pons and De Franceschi, 2007; Jaramillo et al., 2010; Wesselingh and Ramos, 2010). By contrast, and with the notable 1.1. Geological context

The western Amazon drainage basin extends today from * Corresponding author. Tel.: þ33 467 143 251; fax: þ33 467 143 640. southern Colombia to northern Bolivia (Hoorn et al., 2010a). Since E-mail address: [email protected] (P.-O. Antoine). Pliocene times (Espurt et al., 2007, 2010), the Amazonian foreland

0895-9811/$ e see front matter Ó 2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.jsames.2012.07.008

286 92 P.-O. Antoine et al. / Journal of South American Earth Sciences 42 (2013) 91e102

2. Material and methods

2.1. Paleontology

All the vertebrate fossil remains described here were recovered either by hand-picking on the ferruginous crust topping the MD-67 locality during the exploratory 2007 field trip, or by excavating and by screen-washing of the corresponding sediment during the 2009 field season. In 2009, ca. 200 kg of rough sediment were screen- washed, using a 1 mm mesh. A new survey in 2011 unfortunately showed the fossil-yielding outcrop had been washed away by the Madre de Dios River in the meantime (Fig. 2C). Fragments of turtle plates and crocodile teeth were also recov- ered in MD-67. As they do not display diagnostic features, they will not be described here. By contrast, neither fish nor plant remains were unearthed in MD-67. Among mammalian remains, a mesio-labial fragment of a hyp- selodont upper tooth referable to a toxodontid notoungulate was recognised in MD-67. This specimen, of poor biochronological and environmental use, is the only remain unambiguously assignable to native ungulates in the concerned locality. The nomenclature used for marsupial dentition is adapted from that of Goin and Candela (2004). Morphological features of the cavioid rodent are described and diagnosed following the termi- nology and phylogenetic characters proposed by Pérez (2010).For dental features of the dinomyid, octodontoid, and erethizontid rodents, we follow the nomenclature of Wood and Wilson (1936), as modified by Antoine et al. (2012). Except when mentioned, dimensions are given in mm.

2.2. Apatite fission track analysis (AFTA)

Apatite grains were mounted and polished for etching to several the natural spontaneous fission tracks. Apatites were etched using 5 N HNO3 at 20 C for 20 s. Etched grain mounts were packed with mica external detectors and corning glass (CN5) dosimeters and irradiated in the FRM 11 thermal neutron facility at the University of Munich in Germany. Following irradiation the external detectors Fig. 1. Location and geological map of the studied area, in the Amazonian Madre de were etched using 48% HF at 20 C for 25 min. Analyses were Dios Subandean Zone, Perú; modified after Vargas and Hipólito (1998). carried out on a Zeiss Axioplan microscope at a magnification of 1250, using a dry (100) objective. Confined track length basin has been divided into two foreland basin systems (sensu measurements were made using a drawing tube and digitising DeCelles and Giles, 1996): the North Amazonian foreland basin tablet, calibrated against a stage micrometre. Single-grain AFT ages system and the South Amazonian foreland basin, separated by the were calculated using the external detector method and the zeta Fitzcarrald Arch (Roddaz et al., 2005). The South Amazonian fore- calibration approach, as recommended by the I.U.G.S. Subcom- land basin system comprises the Southern Peruvian and Northern mission on Geochronology (Hurford, 1990). Track length Bolivian foreland basins. The Subandean Zone is part of the Madre measurements were restricted to confined tracks parallel to the c- de Dios foreland basin (Fig. 1). The southernmost part of the Sub- crystallographic axis. andean Zone is structured by a syncline (Salvación Syncline) fol- lowed by a thrust-related anticline (Pantiacolla Anticline) and the Madre de Dios blind thrust front (Fig. 1). 2.3. Institutional abbreviations The fossiliferous outcrop dips 35 SW with a N130 strike (Fig. 2). It crops out in the southern flank of the Pantiacolla anticline and AMNH, American Museum of Natural History, New York, USA; was originally mapped as part of the PaleoceneeEocene Yahuar- IGM, Ingeominas (Instituto Nacional de Investigaciones en Geo- ango Formation, based on sedimentary facies, but without any ciencias, Minería y Química, Museo Geológico, Bogotá, Colombia; biostratigraphic constraint (Vargas and Hipólito, 1998). The ISE-M, Institut des Sciences de l’Évolution, Montpellier, France; Yahuarango Formation (northern Perú) is poorly dated and it MACN, Museo Argentino de Ciencias Naturales Bernardino Riva- consists mainly of red siltstones and mudstones forming distal davia, Buenos Aires, Argentina; MLP, Museo de Ciencias Naturales fluvial deposits (see Roddaz et al., 2010 for a review). de La Plata, La Plata, Argentina; MNHN, Muséum National d’Histoire The fossiliferous level corresponds to a 1 m-thick sand-and- Naturelle, Paris; MUSM, Museo de Historia Natural de la Uni- gravel channel of fluvial origin, with iron-rich pisolites and top- versidad Nacional Mayor San Marcos, Lima, Perú; UCMP, University ped by a ferruginous duricrust (Fig. 2A). These features coincide of California Museum of Paleontology, Berkeley, USA; UFAC, Labo- with a lateritic profile (e.g., Tardy, 1992). The fossiliferous channel ratório de Pesquisas Paleontológicas, Universidade Federal do Acre, developed over paleosol mudstones (Fig. 2A and B). Rio Branco, Brazil.

287 P.-O. Antoine et al. / Journal of South American Earth Sciences 42 (2013) 91e102 93

Fig. 2. Middle Miocene vertebrate locality MD-67, in the Amazonian Madre de Dios Subandean Zone, Perú. A. Detail of the fossil-yielding red sand-and-gravel channel, developing over red clays (paleosol), as discovered in October 2007. Note the dipping of the topping surface (ferruginous duricrust). Picture by Patrice Baby. B. Detail of the transition between the underlying red clays (top) and the gravel channel, with iron-rich pisolites (black balls, at the bottom). Picture by Patrice Baby (same day as in Fig. 2A). C. The same area in August 2011. The fossil-yielding channel (denoted by the white dotted line) had been washed away by the Madre de Dios River in the meantime. Picture by Laurent Marivaux. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

2.4. Other abbreviations B). The protocone is bulbous, much lower than the latter cusps, and widely remote from them, which further determines a wide dist., distal; est., estimated; FAD, First Appearance Datum; H, triangular basin which is bordered by a faint preprotocrista and height; HI, Hypsodonty Index (¼H/MDL); L, length; max, maximal; a low postprotocrista. The postmetacrista is strongly developed and LLO, Last Local Occurrence; MDL, mesio-distal length; mes, mesial; distally convex, with a flat and high vertical wear facet but without SALMA, South American Land Mammal Age; W, width. carnassial notch (Fig. 3B). The stylar shelf is smooth and reduced, with faint or absent cusps. Yet, a rounded crest surrounds the 3. Systematic Paleontology mesiolabial corner of the tooth, which was either interpreted as an ectocingulum or a “Cusp B” (Marshall, 1978; Forasiepi et al., 2006). Class MAMMALIA Linnaeus, 1758 The main morphological features of this tooth (tribospheny, Cohort MARSUPIALIA Illiger, 1811 reduced protocone, paracone and metacone closely appressed, and Order DIDELPHIMORPHIA Gill, 1872 reduced stylar shelf and cusps) point to a carnivorous marsupial, as Suborder SPARASSODONTA Ameghino, 1894 defined by Muizon (1999: 502). The presence of a thick and low Superfamily BORHYAENOIDEA Ameghino, 1894 protocone, and of equally developed paraconule and metaconule Subfamily HATHLIACYNIDAE Ameghino, 1894 allow referring it as to a medium-sized hathliacynid borhyaenoid Sipalocyon Ameghino, 1887 (Forasiepi et al., 2006). Accordingly, comparison was made with Sipalocyon sp. Cladosictis Ameghino, 1887 (early Miocene of Argentina and Chile; Flynn et al., 2002) Sipalocyon Ameghino, 1887 (Colhuehuapian-San- MUSM 1967 is a much worn and eroded tooth, with a tribos- tacrucian of Patagonia; Marshall, 1981), Acyon Ameghino, 1887 phenic bunodont pattern and three broken roots (one lingual and (middle Miocene of Southern Bolivia; Forasiepietal.,2006), and two labial ones). Following the work of Forasiepi et al. (2006), this Notogale Loomis, 1914 (Deseadan of Bolivia and Argentina; Muizon, tooth is interpreted as a right M3 of a carnivorous marsupial. It is 1999). A similar large-sized lingual basin is only observed in Noto- roughly triangular in occlusal view, with a straight mesial side (mes gale mitis (Ameghino,1897), as illustrated by Marshall (1981: Figs. 54 W ¼ 5.10), a long and bilobed distolingual border (max L ¼ 6.69), and 55). Based on compatible proportions/size and on the presence of and a concave labial side (MDL ¼ 4.67). Crown height equals an ectocingulum, MUSM 1967 shows the closest affinities with the 3.24 mm. The paracone and the metacone have their bases twin- M3 of Sipalocyon gracilis Ameghino, 1887 (AMNH 107401-001; FM ned, thus determining a very short premetacrista. Even if its tip is 9254-001; Santacrucian) and Sipalocyon externa (Ameghino, 1902) broken away and eroded, the paracone was low, with a faint pre- (Colhuehuapian; Marshall, 1981). It differs from S. externa in having paracrista; the most prominent cusp is the metacone, which a lower and smoother protocone, a very wide lingual basin, labially- occupies a central position in occlusal view (Fig. 3A and B). The displaced paracone and metacone, and in showing a more developed paraconule and the metaconule are equally developed, and closely paraconule and metaconule (Marshall, 1981), but closely resembles appressed to the paracone and metacone, respectively (Fig. 3A and the M3 of S. gracilis from “Río Coyle” (maxilla MNHN SCZ 122,

288 94 P.-O. Antoine et al. / Journal of South American Earth Sciences 42 (2013) 91e102

Fig. 3. Fossil mammal remains from the MD-67 locality, middle Miocene of the Amazonian Madre de Dios Subandean Zone, Perú. AeB. Sipalocyon sp., right M3 (MUSM 1967) in labial (A) and occlusal views (B). C. Marmosa (Micoureus) cf. laventica, left M3 lacking the protocone (MUSM 1968). Reconstructed areas appear in grey (reconstruction based on Marshall, 1976: text-Fig. 2). DeE. Glyptodontinae indet., isolated osteoderms in external view. D, MUSM 1720; E, MUSM 1585. FeH, Guiomys sp., left M1/2 (MUSM 1970) in occlusal (F), labial (G), and mesial views (H). IeK, “Scleromys” sp., gr. quadrangulatus-schurmanni-colombianus. Left d4 (MUSM 1971) in occlusal view (I). Left m1 (MUSM 1972) in occlusal (J) and labial views (K). L, Acaremyidae indet., left m1/2 (MUSM 1973) in occlusal view. MeN, cf. Microsteiromys sp. Left P4 (MUSM 1974) in occlusal view (M). Right ?M3 (MUSM 1975) in occlusal view (N). Scale bar ¼ 2mm(AeB, FeK), 5 mm (DeE), or 1 mm (C, LeN).

Tournouër Collection; Santa Cruz Formation, Patagonia) in all these Superfamily DIDELPHOIDEA Gray, 1821 aspects. Sipalocyon has a ColhuehuapianeFriasian range, so far Family DIDELPHIDAE Gray, 1821 restricted to middle and high latitudes (37.5e48S; Marshall, 1981; Subfamily DIDELPHINAE Gray, 1821 Flynn et al., 2008). Recognition of a hathliacynid closely allied to Tribe MARMOSINI Reig, Kirsch and Marshall in Reig, 1981 Sipalocyon, here referred as to Sipalocyon sp., widely extends north- Genus Marmosa Gray, 1821 ward the geographical range of the genus.

289 P.-O. Antoine et al. / Journal of South American Earth Sciences 42 (2013) 91e102 95

Subgenus Micoureus Lesson, 1842 sensu Voss, and Jansa, 2009: lateral, and posterior figures are reduced in size. The principal figure 101 is slightly convex on MUSM 1720, while it is flat on MUSM 1585. Marmosa (Micoureus) cf. laventica Marshall, 1976 Osteoderms are thin (MUSM 1720: 3.5 mm; MUSM 1585: 4.8 mm), with a punctuated surface, and serrated edges. The principal and MUSM 1968 is a left upper molariform tooth, the protocone of radial sulci are wide and shallow. Piliferous pits are large and located which was broken away. This tooth has a dilambdodont tribos- in some intersections of the principal sulcus and the radial sulci phenic pattern, a large stylar shelf, and four stylar cusps (termed Ae (Fig. 3DeE). D). It bears one lingual and two labial roots. The tooth is almost The concerned osteoderms cannot be confidently identified at unworn and its dimensions are very small (MDL ¼ 1.75; est genus or species level because their characteristics are widely W ¼ 1.8). The metacone is much larger and higher than the para- distributed in several clades. However, they are likely to document cone. There was neither paraconule nor metaconule. All these a single small and unknown taxon within the Glyptodontinae features point to a marmosine didelphid rather than to a micro- (smaller than the oldest glyptodontine genus known so far, Bor- biothere (Marshall, 1976). MUSM 1968 was compared to the M1e eostemma from Laventan SALMA), because of the combination of M3 series UCMP 108563 of “M. laventica Marshall, 1976” from the the following characters: (i) osteoderms flat or smoothly convex, middle Miocene of La Venta, Colombia, described and illustrated by (ii) surface punctuated, (iii) principal figure completely surrounded Marshall (1976: text-Fig. 2), as well as to the isolated M1 IGM by peripheral figures, and (iv) quadrangular “U”-shaped cross 251011 and M3 IGM 250278 of the same species and area, as section of the sulci. The latter feature has been suggested as described and figured under the name “M. laventicus” by Goin a noncranial character that differentiates Glyptodontinae from (1997: Fig. 11.2). Its isometric proportions, moderate dissymmetry Propalaehoplophorinae within Glyptodontidae (Carlini et al., 2008). (with a lingual part slightly mesially displaced), and concave labial As a consequence, a reduced size e almost twice smaller than the border in occlusal view allow identifying it as an M3. The missing corresponding osteoderms in Boreostemma e and the presence of part of the tooth was virtually reconstructed, based on available thin osteoderms might represent a plesiomorphic condition for the illustrations of M. (Mi.) laventica (Fig. 3C). There was neither junc- Glyptodontinae. On the other hand, the posteriorly displaced tion between the preprotocrista and the paracone nor between the position of the principal figure, as well as the reduction in size of postprotocrista and the metacone. The stylar cusp A is disconnected posterior, medial, and lateral peripheral figures, appear as tied to from the paracone and from the preparacrista. The stylar cusp B the location of the osteoderms in the carapace (i.e., submarginal), appears as the strongest cusp, as it does in fresh teeth of most instead of representing a plesiomorphic trait (i.e., principal figure marmosines (Rossi et al., 2010: 22). There is a deep mesiolabial close to the posterior margin), as seen on glyptatelines and Para- notch for the metastyle of M2, but neither labial, nor distal propalaehoplophorus (see Croft et al., 2007). cingulum, as in M. (Mi.) laventica (Marshall, 1976) and the living species M. (Mi.) demerarae Thomas, 1905 (ISE-M V-1590). A thick Order RODENTIA Bowdich, 1821 cingulum, running along the labial half of the mesial side, was Infraorder HYSTRICOGNATHI Tullberg, 1899 connecting the stylar cusp A and the protocone through the pre- Parvorder CAVIOMORPHA Wood, 1955 protocrista, as in the isolated M3 IGM 250278 of M. (Mi.) laventica Superfamily CAVIOIDEA Fischer de Waldheim, 1817 (Goin, 1997). This cingulum is much stronger and the tooth ca. 30% Family CAVIIDAE Fischer de Waldheim, 1817 smaller than in M. (Mi.) demerarae. Even if their overall size is Guiomys sp. comparable, the stylar cusps are much stronger and the notch for the metastyle of M2 is much deeper in MUSM 1968 than in the M3s MUSM 1970 is a very small tooth (L ¼ 2.93; W ¼ 2.61), hyp- of the living Marmosa (Marmosa) murina Linnaeus, 1758 (Linnaeus’s selodont (i.e., “euhypsodont” following Pérez, 2010), preserving the Mouse Opossum; ISE-M V-1109). occlusal surface, but the basal most part of which crown is broken Basically, the size, proportions, and morphological features of away (Fig. 3GeH). This tooth is interpreted as a left M1 or M2. It is MUSM 1968 closely match those of the M3 of M. (Mi.) laventica from bilobed, with lozenge-shaped lobes connected by a thick labial La Venta area, Colombia, i.e., the only fossil species described and bridge; the mesial lobe is slightly smaller than the distal one named for this genus so far (Goin, 1997). The stratigraphical range (Fig. 3F). The occlusal surface of both lobes lacks any fossette and of M. (Mi.) laventica spans the La Victoria Fm. and the base of the the apex of each lobe is not constricted at the current wear stage. Baraya Mb. of the overlying Villavieja Fm. in La Venta region, The hypoflexus is transversely developed (reaching c. 80% of the Colombia (w13.5e13.0 Ma; Goin, 1997; Madden et al., 1997:511; transverse width of the crown) and funnel-shaped; cement is filling Gradstein et al., 2005). If the close affinities of MUSM 1968 with the bottom of the hypoflexus, which is pointing distally and labially. Marmosa (Micoureus) are confirmed, this would be the second fossil A shallow furrow faces the tip of the hypoflexus. There is no occurrence of this living (sub-) genus (Goin, 1997). transverse dentine crest crossing each lobe (Fig. 3F). Enamel is present all around the crown but interrupted on the labial most Infraclass EUTHERIA Gill, 1872 part of each lobe. Order XENARTHRA Cope, 1889 The bilobed pattern of this molar is characteristic of cavioid Suborder CINGULATA Illiger, 1911 caviomorph rodents (Pérez, 2010; Croft et al., 2011). Among Cav- Superfamily GLYPTODONTOIDEA Gray, 1869 ioidea, the hypselodont pattern of this tooth impedes its referral to Family GLYPTODONTIDAE Gray, 1869 Asteromys, Luantus, Chubutomys, and Phanomys (Pérez, 2010). The Subfamily GLYPTODONTINAE Gray, 1869 funnel-shaped hypoflexus points to the clade including Eocardia Genus and species indet. robusta, Guiomys unica, and crown cavioids (Pérez, 2010). The absence of transverse dentine crest on each lobe discards referring Two isolated carapace osteoderms were found. They are small this tooth as to Prodolichotis pridiana or Orthomyctera chapadma- (MUSM 1720: W ¼ 16, preserved L ¼ 22; MUSM 1585: W ¼ 13, L ¼ 17), lense, while the funnel-shaped hypoflexus further distinguishes quadrangular to pentagonal in shape, with large round principal MUSM 1970 from P. pridiana (Walton, 1997; Pérez, 2010). The figures near the posterior edge. In both osteoderms, the principal presence of a single labial furrow makes it distinct from upper figure is completely surrounded by peripheral ones e eight in MUSM molars of E. robusta. To sum up, the morphology of this specimen 1720 (Fig. 3D) and six in MUSM 1585 (Fig. 3E) e , although medial, points to a stem cavioid and, together with its small size, it is only

290 96 P.-O. Antoine et al. / Journal of South American Earth Sciences 42 (2013) 91e102 consistent with Guiomys Pérez, 2010, the smallest and earliest lophids, and a posterolophid isolated before wear). By their caviid known so far, from the middle Miocene of Patagonia (?Col- dimensions and pattern, they are provisionally thought to document loncuran and Laventan SALMAs; Pérez, 2010; Pérez and Vucetich, a single taxon. Scleromys Ameghino, 1887 is the earliest represen- 2011) and the Laventan of Quebrada Honda, Bolivia (Croft et al., tative of Dinomyidae (Horovitz et al., 2006). The high crown, 2011). This left molar is provisionally referred to as Guiomys sp., mesiodistal elongation, quadrangular contour, large and persistent as it is 15e20% smaller than the teeth of the type and only species of fossettids, and straight aspect of the mesial border of MUSM 1972 the latter genus (Pérez, 2010; Croft et al., 2011). discard any referral to the typical Santacrucian species of Scleromys, i.e., the type species Scleromys angustus Ameghino, 1887 and Scle- Superfamily CHINCHILLOIDEA Kraglievich, 1940 romys osbornianus Ameghino 1894 (Argentinian Patagonia). The Family DINOMYIDAE Peters, 1873 present specimen seems to be somewhat closer to S. quadrangulatus Subfamily POTAMARCHINAE Kraglievich, 1926 (pre-Santacrucian “Pinturan” age, Patagonia, Argentina; Kramarz, “Scleromys” sp., gr. quadrangulatus-schurmanni-colombianus 2006) and to Scleromys sp. (Mariño Formation, ?early Santa- crucian, Mendoza, Argentina; Cerdeño and Vucetich, 2007)in MUSM 1971 is a left d4. It is low-crowned and elongate mesio- sharing both a small size and a quadrangular contour. MUSM 1972 distally, with a trapezoid occlusal outline, widening distally further resembles S. quadrangulatus in having a straight mesial (MDL ¼ 5.04; W ¼ 2.81; H ¼ 3.10; HI ¼ 0.62). It has an “F-G-I-I” lophid border, and a mesiodistal elongation. However, the lower molars pattern, with distinctive features such as taeniodonty (see Antoine referred to S. quadrangulatus are lower-crowned than MUSM 1972 et al., 2012), elongate cristids connected distolingually to the ante- and they lack persistent fossettids. The latter feature is so far only rolophid and the metalophid, a circular supernumerary cuspid observed in S. sp. from the Mariño Formation (Cerdeño and Vucetich, mediodistal to the anterolophid, and a short transverse supernu- 2007), “S.” schurmanni Stehlin, 1940 and “S.” colombianus Fields, merary lingual lophid distal to the metalophid (Fig. 3I). The hypo- 1957, from the Laventan of Colombia and Peru (Fields, 1957; lophid and the posterolophid are straight, oblique, distinct, and Walton, 1997; Antoine et al., 2007). Similarly, in the Patagonian parallel one to another. The hypolophid displays a small mesiolabial species of Scleromys, the metalophulid II is typically reduced, being spur. The enamel band is crenulated on the mesial side of the shorter than the metalophulid I. In that aspect, MUSM 1972 seems to posterolophid. Such crenulations occur frequently in potamarchine be closer to the Laventan species from Colombia in having a larger teeth (especially in Potamarchus murinus; Sant’Anna Filho, 1994). metalophulid II. Nevertheless, in the latter taxa (the generic This tooth is twice smaller than d4s of “Olenopsis”/Drytomomys from assignment of which is challenged by most authors; e.g., Patterson the Middle Miocene of La Venta (Colombia; Fields,1957: 330, Fig.18; and Wood, 1982; Walton, 1997), teeth are noticeably larger, Candela and Nasif, 2006) and of Fitzcarrald (Perú; Antoine et al., higher-crowned and wider labiolingually than in MD-67. Regardless 2007). In addition, MUSM 1971 is quite distinct from the d4 of P. of the lingual hypolophideposterolophid junction (not yet occurring murinus from the middle to late Miocene of the Upper Juruá, Brazil in MUSM 1972), the MD-67 specimen matches an m3 referred to (AMNH 58535; Sant’Anna Filho,1994), in having a trapezoid occlusal “Scleromys cf. S. schurmanni” from the Laventan Fitzcarrald local outline and in being tetralophodont, instead of being quadrangular fauna of Peruvian Amazonia (MUSM 1566; Antoine et al., 2007; and pentalophodont, respectively. MUSM 1971 is tetralophodont, Negri et al., 2010), being only narrower labiolingually and lower- half the size of, and much less hypsodont (HI ¼ 0.62) than the crowned. In addition, this lower molar has similar proportions and pentalophodont p4s referred to Simplimus indivisus (MLP 15-244a: lophid pattern as an m2 from the middle to late Miocene of the HI w 2.92; Laguna Blanca/Río Fénix, SALMA, Patagonia; Upper Juruá, Brazil (UFAC DGM 582M; Sant’Anna Filho, 1994) Vucetich, 1984) and to Simplimus sp. (UFAC DGM 533M: HI w 2.88; referred to “S.” colombianus, by reference to specimens from La Upper Juruá, middle-late Miocene, Brazil; Sant’Anna Filho,1994). On Venta, Colombia. However, the tooth from MD-67 is distinctly the other hand, its size and proportions recall those of d4s of “S.” smaller, lower-crowned, and less prismatic. schurmanni from La Venta, Colombia, as illustrated by Fields (1957: To sum up, the dental pattern and the occlusal contour of MUSM 285, Fig. 5). The pattern is quite similar, especially for the distal 1972 match those of several species referred to Scleromys sensu lato, lophids. Yet, the occlusal pattern of mesial lophids and cuspids either of pre-Santacrucian (S. quadrangulatus) or of Laventan ages observed in MUSM 1971 prevents from referring it to “S.” schur- (“S.” colombianus and “S.” schurmanni; Fields, 1957). These taxa are manni. Teeth of “S.” colombianus (La Venta; Fields, 1957; Walton, likely to form a “lineage” distinctive from the typical Santacrucian 1997) are ca. 20% larger than both “S.” schurmanni and MUSM 1971. Scleromys cluster, as hypothesised by Kramarz (2006: 59). Following MUSM 1972 is a left lower molariform and hypsodont tooth, that scheme, the crown height, proportions, and fossettid develop- with a quadrangulate occlusal contour and a straight anterior ment of MUSM 1972 shall coincide with a “transitional evolutionary border (Fig. 3J). It is high, elongate mesiodistally and at an early stage” between S. quadrangulatus from the early Miocene of stage of wear (MDL ¼ 4.14; W ¼ 3.72; H ¼ 8.4; HI ¼ 2.03). The Argentina and the representatives of “Scleromys” from the late mesiodistal and labiolingual lengths of the tooth diminish and middle Miocene of Northern South America (Fields,1957; Sant’Anna increase strongly with wear, respectively, which allows interpret- Filho, 1994; Walton, 1997; Kramarz, 2006; Antoine et al., 2007; ing it as an m1 at “stage of wear n2”, by comparison with serial Cerdeño and Vucetich, 2007). As such, these specimens, provision- sections of molariform teeth of “S.” colombianus as proposed by ally referred to as “Scleromys” sp., may document a “Friasian” to Fields (1957: 318e319, Fig. 14). Roots are still developed and the Colloncuran morphological grade for potamarchine dinomyids. neck is well-marked (Fig. 3K). This tooth is tetralophodont and taeniodont, with oblique and large lophids. The short metalophulid Superfamily OCTODONTOIDEA Waterhouse, 1839 I and the longer metalophulid II are connected at both lingual and Family ACAREMYIDAE Ameghino, 1902 labial ends. The hypolophid and the posterolophid (damaged in its Genus and species indet. distolingual part) are not connected lingually at the current stage of wear, but they would join in later stages. Contrary to other lophids, MUSM 1973 is a diminutive lower molar (MDL ¼ 1.72; W ¼ 2.10), the posterolophid is curved and concave mesiolingually in occlusal roughly square in occlusal view, and with a rather high crown view, joining a thick and mesially-displaced hypoconid. (“mesodont” sensu Vucetich and Kramarz, 2003). It is interpreted as These two lower teeth have a typical dinomyid occlusal pattern a left m1 or m2. This tooth has a tetralophodont pattern, with bulky (i.e., high-crowned, tetralophodont, taeniodont, with oblique lophids and no cuspid well individualised (Fig. 3L). Enamel is thick,

291 P.-O. Antoine et al. / Journal of South American Earth Sciences 42 (2013) 91e102 97 especially on the labial half of the molar. In occlusal view, the mesial MUSM 1974 is a left P4 with a circular occlusal outline margin is straight and the distal one convex. The lophids are thick, (L ¼ 2.14; W ¼ 2.20). It is preserved at a very early stage of wear transversely oriented, and separate by deep and wide flexids. The (just erupted). Accordingly, there is no wear facet due to the hypoflexid is deep (it almost reaches the lingual half of the tooth), contact with a mesial or a distal tooth (Fig. 3M). The crown is nearly transverse, and “U-shaped” in occlusal view. The talonid is much higher lingually than labially. The tooth was biradiculate, narrower than the “trigonid”, due to the weak lingual development with lingual and labial roots mesiodistally elongate. The occlusal of the posterolophid, thus providing a trapezoid shape to the pattern is restricted to the apical-most part of the crown, with occlusal contour of the tooth. The metalophulid I is complete and distinct cusps. The tooth is tetralophodont, with a thin but straight, with a thick mesiolabial projection, pointing linguodistally complete anteroloph, curved distolingually, with a prominent and joining the metalophulid II. The metalophulid II is long, and it protocone. The paraflexus is triangular in occlusal view, and open also joins the metalophulid I at the lingual margin of the tooth, both lingually and labially at the current stage of wear. The pro- determining a mesial fossettid, oval and elongate transversely toloph is oblique, short lingually, and independent from adjacent (closed anteroflexid). The junction between both metalophulids is lophs at both ends; the lingual protoloph is a low and constricted somewhat constricted lingually, mesial to the mesostylid. The crest. The paracone is distinct and bulky. The hypoflexus is deep ectolophid is distinct and oblique. The hypolophid is transverse, and wide (i.e., there is no endoloph). The lingual cusps, still and it connects lingually a smoothly constricted entoconid. The distinct at the current stage of wear, would be coalescent after mesoflexid is open lingually until a late stage of wear. The meta- a smooth wear. The mesoflexus is open lingually and medially; flexid is also open lingually, and it would not get closed even with the mure is low and constricted, interrupted at the current stage heavy wear. The posterolophid is curved, with a strong hypoconid of wear. The third loph is very short, restricted to the centro- and a short lingual arm (getting longer with wear). distal part of the crown, and interpreted as a mesolophule; it is Both the tetralophodont pattern and small size of MUSM 1973 connected lingually to the anterior arm of the hypocone and allow attributing it to an early diverging octodontoid. The absence of labially, to the mesoloph. The posteroloph is thin, with a hypo- an eight-shaped-pattern due to the lingual opening of the metaflexid cone and a metacone distinct and bulky. It extends mesiolabially discards referring this tooth to the Octodontidae (Vucetich and to the metacone until a faint cusp, interpreted as a mesostyle and Kramarz, 2003). Among Echimyidae, the transverse orientation of facing the paracone. The posteroflexus, still open mesiolabially, the lophids impedes any referral to Adelphomyinae, while tetralo- would be quadrate at later stages of wear. phodonty distinguishes it from Echimyinae (Vucetich et al., 1993; A right pentalophodont molar (MUSM 1975; L ¼ 2.44 mm; Kramarz, 2001). MUSM 1973 resembles Protacaremys (Colhuehua- W ¼ 2.11 mm) has three broken roots, with two labial roots pian-Colloncuran SALMAs of Patagonia and Chile; Flynn et al., 2008) (circular cross section) and a mesiodistally elongate lingual one, in having deep, transversely elongate and persistent fossettids/flex- which point to an upper molar (Fig. 3N). A contact facet is visible ids (notably the antero-fossettid/-flexid), but differs from it in the on the mesial side of the crown, but not on the distal side. Given absence of pinched and cuspidate lophids, in the U-shaped, trans- the stage of occlusal wear, it allows identifying this tooth as versely oriented and smooth hypoflexid, in the complete and early a probable M3, even if the tooth is only slightly tapering distally (as lingual junction between the metalophulids I and II (anterolophid in M2s) and if the hypocone is also located as in an M2, i.e., and mesolophid sensu Vucetich and Kramarz, 2003), and in lacking lingually displaced with respect to what is generally observed in a figure-eight occlusal pattern (Kramarz, 2001). M3s. The occlusal pattern is longer than wide, with a “EUJ”-shaped On the other hand, the dental pattern of MUSM 1973 is strongly occlusal design. All the lophs are moderately worn, with slight reminiscent of Acaremyidae (Acaremys, Sciamys, and Galileomys; constrictions, and a low obliquity. The anteroloph is the most Vucetich and Kramarz, 2003). It differs from the m1s and m2s of developed loph, and it connects a labiolingually compressed and Galileomys in a marked mesodonty, the presence of transverse oblique paracone. The paraflexus is oval, elongate transversely, lophids, flexids, and fossettids, a stronger transverse development open labially but closed lingually by a low and constricted lingual of the U-shaped hypoflexid, and in the lingual connection between protoloph. The protoloph is straight, slightly oblique, and it the two mesial lophids (Vucetich and Kramarz, 2003; Kramarz, connects a strong paracone, labially. It joins the mesolophule 2004). It resembles more Sciamys and Acaremys. Nevertheless, it lingually, through a strong but very short mure, oriented sagittally. can be distinguished from Sciamys, as illustrated by Arnal and The mesostyle and the paracone are remote and the mesoflexus is Vucetich (2011), by the quadrangular occlusal contour (more elon- wide and U-shaped in occlusal view (open labially). The meso- gate mesiodistally in Sciamys), by a shorter labial arm of the post- lophule is transversely oriented and S-shaped, with a labiodistally- erolophid, and by smaller dimensions. It differs from known species oriented mesostyle. The metaflexus is wide, comma-shaped, still of Acaremys in having a mesolophid reaching the lingual wall and labially open at this stage of wear, and closed lingually by a labio- determining a transversely elongate anterofossettid persistent until lingually compressed hypocone and its strong anterior arm. The late stages of wear, two features which are only observed in Sciamys posteroloph is short, but it extends mesiolabially until the meta- among acaremyids (Vucetich and Kramarz, 2003). It further differs cone, thus forming a distolabial wall. The posteroloph is somewhat from Acaremys in having a much smaller metaconid, a narrower and constricted labially to the hypocone and lingually to the metaloph. transversally longer mesoflexid, a less penetrating hypoflexid, and The latter is short, oriented mesiolabially, connected to the mid- a posterolophid narrower mesiodistally. As a result, MUSM 1973 is posteroloph and disconnected to both the distolabial wall and likely to document a late representative of Acaremyidae with closer the metacone, thus forming a small posterofossette joined labially affinities to Sciamys and Acaremys than to Galileomys, provisionally to the metaflexus. identified as “Acaremyidae indet”. The pentalophodont pattern of the upper molar, the low loph- obliquity, and the circular occlusal outline of the P4, as well as the Superfamily ERETHIZONTOIDEA Thomas, 1897 low crown and thick enamel of both teeth, point to erethizontids. Family ERETHIZONTIDAE Thomas, 1897 Given their compatible size and pattern, both teeth are assumed to cf. Microsteiromys sp. document a single diminutive taxon. The fossil record of Erethi- zontidae ranges from the Late Oligocene up to Recent times Two upper molariform teeth are assigned to a small (Vucetich et al., 1999; Candela and Morrone, 2003). Accordingly erethizontid. and whenever possible, these teeth were compared to those of

292 98 P.-O. Antoine et al. / Journal of South American Earth Sciences 42 (2013) 91e102

Protosteiromys (Deseadan, Patagonia; Wood and Patterson, 1959), 4. Discussion of Eosteiromys Ameghino, 1902, Hypsosteiromys Patterson, 1958, Parasteiromys Ameghino, 1903, and Branisamyopsis Candela, 2003 4.1. Biochronological age (Colhuehuapian, Argentina; Patterson, 1958; Candela, 1999, 2003; Dozo et al., 2004; Kramarz, 2004; Kramarz and Bellosi, Glyptodontid xenarthrans are of poor biochronological interest, 2005; Vucetich et al., 2010), of Steiromys Ameghino, 1887 (Santa- especially when identified above genus level. Caviomorph rodents crucian-?Laventan; Patagonia, ?Colombia; Fields, 1957; Walton, are the most diverse group in MD-67, with four taxa encompassing 1997; Candela, 1999), of Neosteiromys Rovereto, 1914 (?Collon- four superfamilies (Octodontoidea, Erethizontoidea, Cavioidea, and curan-Huayquerian; Northwestern Argentina; Candela, 1999, Chinchilloidea; Vucetich et al., 1999). Caviidae have their FAD in the 2004), of Microsteiromys Walton, 1997 (Laventan; Colombia; latest (or post-) Colloncuran of Patagonia, with Guiomys (Pérez, Walton, 1997), and of Erethizon Cuvier, 1823 (Recent; Candela, 2010; Pérez and Vucetich, 2011), a genus which is recognised at 1999). MD-67 (Fig. 3FeH; Table 1). Acaremyidae had a Colhuehuapian- The teeth from MD-67 are half the size of than those of all Colloncuran stratigraphical range (Vucetich and Kramarz, 2003) known Recent and fossil Erethizontidae but Microsteiromys jacobsi while the hathliacynid marsupial Sipalocyon had only an early Walton, 1997, of compatible size (Walton, 1997). No P4 is described Miocene record so far (Colhuehuapian-Santacrucian; Marshall, from any Deseadan erethizontid. The P4 from MD-67 differs from 1981). As such, MD-67 might extend upward the known range of all known Recent and fossil Erethizontidae but Eosteiromys both taxa, and thus represent their Last Local Occurrence (Table 1). homogenidens Ameghino, 1902, in having a labially-displaced On the other hand, the recognition of Marmosa (Micoureus) and of hypocone. A circular occlusal outline is only observed in a Microsteiromys-like dwarf porcupine in MD-67 predates the E. homogenidens (holotype MACN A-52-165) and ?Steiromys from La previous FAD of both taxa, formerly restricted to the Laventan Venta (Walton, 1997). Tetralophodonty and low loph obliquity also characterises the P4 of Eosteiromys,?Steiromys, and Steiromys detentus Ameghino, 1887 (MLP 15e17). MUSM 1974 further differs Table 1 from the dP4 of Parasteiromys uniformis (Ameghino, 1903) in having Stratigraphic range of the middle Miocene vertebrate locality MD-67 as inferred by a marked mure, and in bearing flexi labiolingually compressed mammalian biochronology and fission track datings (see Supplementary Data). Data (Candela, 1999). Its paraflexus, which is closed labially, makes it from Walton (1997), Vucetich et al. (1993, 2010), Vucetich and Kramarz (2003), distinct from the P4 of Branisamyopsis praesigmoides Kramarz, 2004 Kramarz (2004, 2006), Gradstein et al. (2005), Kramarz and Bellosi (2005), Cerdeño and Vucetich (2007), Croft et al. (2011), and Pérez and Vucetich (2011). and S. detentus (Kramarz, 2004: 14, Fig. 7). It also differs from the P4 of Neosteiromys bombifrons Rovereto, 1914 in having no lingual wall (Candela, 2004: 61, Fig. 3). The upper molar from MD-67 differs from all known erethi- zontids in its labially-interrupted metaloph and in its mesiodistal elongation (e.g., Candela, 1999, 2004; Vucetich et al., 2010). Its size is also very distinctive, as it is twice smaller than in all known taxa, except M. jacobsi, of similar dimensions (Walton, 1997). The pentalophodont pattern makes it distinct from Protosteiromys medianus, Hypsosteiromys axiculus, and Steiromys (Patterson, 1958; Wood and Patterson, 1959; Candela, 1999; Dozo et al., 2004). The presence of a mure and the late labial closure of the paraflexus discard any referral to Parasteiromys or Neosteiromys (Candela, 1999). The presence of a distal constriction labially to the hypocone and lingually to the metaloph is only observed in Parasteiromys friantae Candela, 1999 (but not in P. uniformis; Candela, 1999: Fig. 2), E. homogenidens (type, MACN A-52e165) and E. cf. homogenidens (Kramarz, 2004). However, all these taxa are characterised by lower-crowned teeth, a much larger size, and a complete metaloph, i.e., reaching the labial side of the tooth. To sum up, the pattern and morphological features of the P4 and of the upper molar from MD-67 show certain affinities with E. homogenidens (Colhuehuapian), and Steiromys (Santacrucian-? Laventan) to a lesser extent, while size is only compatible with Microsteiromys (Walton, 1997). Microsteiromys Walton, 1997 is the smallest known representative of New World porcupines, with a geographic and stratigraphic range thus far restricted to the Baraya Member of the Villavieja Fm. of Colombia (c. 13e12.5 Ma, middle Laventan; Madden et al., 1997; Candela and Morrone, 2003). This diminutive monotypic genus is only known by two mandibles, which makes it impossible to compare with the avail- able teeth from MD-67 (Walton, 1997). However, we assume that these teeth are likely to document a close ally of Microsteiromys Walton, 1997, here referred to as cf. Microsteiromys sp. Given their morphological affinities with taxa spanning the early and middle Miocene interval, these specimens cannot be used with much confidence in a biochronological perspective.

293 P.-O. Antoine et al. / Journal of South American Earth Sciences 42 (2013) 91e102 99

SALMA in the La Venta area of Colombia (Table 1; Marshall, 1976; Lithology of the fossil-bearing beds (i.e., channel-iron deposits, Goin, 1997; Madden et al., 1997; Walton, 1997). with Fe-rich pisolite gravels) provides valuable information on the At first sight, the biochronological age for MD-67 is middle depositional environment and associated diagenetic processes: Miocene, i.e., Colloncuran-Laventan (w15.6e11.6 Ma; Kay et al., pisolites might have formed in the ground by alteration and 1997; Madden et al., 1997), but the occurrence of a typical early concretion of highly ferruginous groundwater solutions under warm, Miocene genus such as Sipalocyon and the potentially “plesiomor- humid, and seasonally-contrasted conditions (Tardy, 1992). Accord- phic evolutionary stage” of “Scleromys” with respect to its Laventan ingly, isotopic analyses performed on coeval mollusc shells from the counterparts (Walton, 1997) would tend to favour a Colloncuran- Iquitos area (w1000 km more to the North) show the region was early Laventan age for this new locality (w15.6e13.0 Ma; Table 1). experiencing a seasonal water influx under a monsoonal-like tropical climate by that time (Kaandorp et al., 2006; Wesselingh et al., 2006). 4.2. Apatite fission track age of MD-67: 17.1 2.4 Ma Both proxies are therefore in good agreement. One of the striking features of the Miocene of Amazonia is the A fission track age was calculated on 11 apatite grains. The presence of a large and long-lasting “mega-wetland”. The Amazo- corresponding results are detailed in the Supplementary Data. The nian mega-wetland reached its maximum extent during the Middle c2 test (Galbraith, 1981; Green, 1981) is currently used to discrim- Miocene (also called “Pebas phase” sensu Hoorn et al., 2010a,b) and inate between concordant (P(c2) > 5%) and discordant (P(c2) < 5%) it consisted of a complex mosaic of lakes, embayments, swamps, grain-age distributions. The MD 67 sample passes the c2 test rivers, and fluvio-tidal environments (see review in Hoorn et al., (P(c2) > 5%) indicating that the apatite grains display a concordant 2010a,b). Our data suggest the absence of this megawetland in population and that they are derived from homogeneous sources the Amazonian Madre de Dios Subandean Zone of Perú (Fig. 4), (Galbraith, 1981; Green, 1981). while other coeval localities such as IQ-26 and NA069 (nearby The central age (17.1 2.4 Ma), pointing to a Burdigaliane Iquitos; Antoine et al., 2006; Pujos et al., 2009) or the Fitzcarrald Langhian age for the concerned grains (Table 1), is only partly in Local Fauna (Antoine et al., 2007; Goillot et al., 2011) were under its agreement with the faunal content of MD-67, interpreted as doc- influence during the same period (Fig. 4). This environmental umenting a Colloncuran-early Laventan age (w15.6e13.0 Ma; contrast might in turn have played some role in the faunal Table 1). discrepancies as observed in middle Miocene times between In other words, Apatite Fission Track provides a detrital age Northern and Southern South America (Madden et al., 1997). (17.1 2.4 Ma) for the vertebrate-yielding locality, slightly older than its inferred biochronological age (Colloncuran-early Laventan 4.4. Biogeography South American Land Mammal Ages: w15.6e13.0 Ma). Be as it may, the middle Miocene age of the concerned outcrop is fully contra- The earliest undisputable representatives of Glyptodontinae, dictory to its original assignment to the Paleocene-Eocene referred to Boreostemma, originate from middle Miocene Laventan Yahuarango Formation (Vargas and Hipólito, 1998). localities of La Venta and Fitzcarrald (Colombia and Perú, respec- tively; e.g., Antoine et al., 2007). In southern South America, the 4.3. Paleoenvironment earliest record occurs much later, with Glyptodontidium tuberifer from the late Miocene-Pliocene of NW Argentina (e.g., Oliva et al., At regional scale, the concerned area mostly yielded terrestrial 2010), which is most probably tied to environmental reasons habitats of low elevation, with a moist forest assumed as resem- (Carlini et al., 2008). If confirmed, the referral of the osteoderms of bling the modern Amazonian rainforest, in terms of composition MD-67 to Glyptodontinae would still extend the gap between the and biodiversity (Hoorn, 1993; Antoine et al., 2006; Pons and De first local occurrences of the group in low and high latitudes. Franceschi, 2007; Hoorn et al., 2010a,b). The cavioid rodent Guiomys Pérez, 2010 was so far restricted to Unfortunately, MD-67 yields no pollen, spores, or plant fossils. the middle Miocene of Patagonia and Southern Bolivia, with a ? Available proxies (dental morphology and habitat preferences of Colloncuran (w14 Ma; Patagonia)-Laventan (Patagonia þ Southern living and fossil mammal analogues; depositional environment) Bolivia) stratigraphic range (Fig. 4; Pérez, 2010; Croft et al., 2011; thus provide only indirect information on the environment of the Pérez and Vucetich, 2011). Accordingly, Sipalocyon was so far concerned area by the time fossil mammals accumulated. restricted to high Southern latitudes, from Patagonia to Southern Most rodents from the current assemblage, including a meso- Chile (51.5e37.5S; Marshall, 1981; Forasiepi et al., 2006; Flynn dont acaremyid, a hypsodont dinomyid (“Scleromys” sp.), and et al., 2008). The co-occurrence of this stem caviid and of Sipalo- a hypselodont caviid (Guiomys sp.), can be interpreted as an indi- cyon (37.5e48S) in Peruvian Amazonia extends the geographical cator of open and dusty environments under a quite dry and windy range of w10 and w25 more to the North, respectively (Flynn climate (Candela and Vucetich, 2002). Yet, the dwarf Micro- et al., 2008; Croft et al., 2011). On the other hand, the small mar- steiromys-like erethizontid of MD-67 was most probably fully mosine M.(Mi.) laventica and the diminutive erethizontid Micro- arboreal, like all living New World porcupines and their fossil kin, steiromys were only known in the Huila Department of Colombia as proposed by Candela and Picasso (2008). Accordingly, all living during a very short Laventan interval (Fig. 4; Goin, 1997; Walton, marmosine marsupials, such as the representatives of the subgenus 1997), i.e., later and w15 more to the North than in MD-67. Marmosa (Micoureus) are forest dwellers, being either arboreal or In other words, the MD-67 assemblage both (i) postdates the ground foragers, in moist habitats related to tropical evergreen or formerly known range of taxa of mid- and high latitude affinities mossy forests (Emmons and Feer, 1997). (Sipalocyon; Acaremyidae) and (ii) predates that of taxa of low latitude The appendicular skeleton of Sipalocyon is poorly known, but affinities (Marmosa (Micoureus); Microsteiromys;Glyptodontinae). functional anatomy suggests arboreal and potential grasping This phenomenon is summarised by the spatiotemporal range of the capabilities for this carnivorous marsupial (Argot, 2003, 2004). The smalldinomyidrecognisedinMD-67anditskin,ifclosephylogenetic Santa Cruz Beds of Patagonia, which yield most remains of Sipalo- affinities are confirmed between the representatives of Scleromys cyon, are interpreted as originating from a temperate coastal plain sensu stricto (early Miocene of Patagonia and Southern Chile; Flynn (Bown and Fleagle, 1993), with moderate rainfall and a mixture of et al., 2008)andthoseof“Scleromys” sensu Walton, 1997 (late forested habitats/open areas/bushland as suggested by mammals, middle Miocene of Colombia and Peru; Walton, 1997; Antoine et al., pollen, and terrestrial arthropods (Vizcaíno et al., 2010). 2007). Such assertion may be an artefact tied to the scarce fossil

294 100 P.-O. Antoine et al. / Journal of South American Earth Sciences 42 (2013) 91e102

Fig. 4. Palaeogeographic map of Northern South America during middle Miocene times, showing the maximal extension of the Pebas mega-wetland System (deep blue). Modified after Lundberg et al. (1998), Hovikoski et al. (2005, 2010), Roddaz et al. (2006, 2010), Hoorn et al. (2010a,b), Roddaz et al. (2010), and our data. The squares point to vertebrate- and/ or arthropod-yielding localities the middle Miocene age of which was discussed in Madden et al. (1997: La Venta), Linares (2004: Socorro), Sánchez-Villagra et al. (2004: Socorro), Antoine et al. (2006, 2007: IQ-26; Fitzcarrald Local Fauna), Croft (2007: Quebrada Honda), Pujos et al. (2009: Napo NA069), Negri et al. (2010: Fitzcarrald), Croft et al. (2011: Quebrada Honda), and Goillot et al. (2011: Fitzcarrald Local Fauna and Alto Juruá). MD-67 (present work) is likely to be the only Colloncuran-early Laventan locality attested in the concerned domain. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) record for the concerned period in South America. Nevertheless, it is Toulouse, France, and by the Paleo2 Programme of the Centre likely to reveal a previously undocumented “spatiotemporal transi- National de la Recherche Scientifique. S. Brusset benefited from tion” between the late early Miocene assemblages as observed in high a financial support of the convenio IRD-PeruPetro. We would like to latitude localities (mostly from Argentina and Chile; Flynn et al., 2008; thank the volunteer Nicolas Childovski for his help in the field and Vizcaíno et al., 2010)andthelatemiddleMiocene/lowlatitudefaunas our colleague Patrice Baby for the pictures used in the Fig. 2A and B (from Colombia, Peru, and Brazil; Kay et al., 1997; Negri et al., 2010). and his pivotal role in launching the Amazonian field project. We This apparent northward shift of forest-dependent mammals to low are much indebted to Alejandro G. Kramarz and to Adriana Candela latitude areas (where favourable conditions would be maintained, for discussing on rodent affinities and providing us with pivotal while grassland ecosystems were spreading in higher latitudes) by the references and pictures. J.J. Flynn (AMNH) and C. Argot (MNHN) end of the Santacrucian (e.g., Vizcaíno et al., 2010), is perfectly exem- kindly granted access to the collections under their care. F. Catzeflis plified by the platyrrhine primate fossil record, with i) a single post- provided priceless comparison material of living marmosine Santacrucian occurrence and a Colloncuran LLO in Southern South marsupials. L. Marivaux granted access to the multifocus stereo- America, and ii) a single Santacrucian occurrence (Madre de Dios, microscopic camera funded by the ANR-ERC Palasiafrica Program Peru; Marivaux et al., in press) and a much wider Laventan-Recent (ANR-08-JCJC-017), took the picture illustrated in Fig. 2C, and highly record in tropical-equatorial South America (for review, see Tejedor, improved an earlier version of the manuscript. Two anonymous 2008; Marivaux et al., in press). reviewers provided constructive comments and valuable remarks. Yet, faunal affinities with coeval assemblages are difficult to assess, Publication ISE-M 2012-086. due to the lack of available data for the early middle Miocene interval (Friasian/Colloncuran) all over South America. The fossil record is even scarcer for the early Miocene in low latitudes (e.g., Sánchez- Appendix A. Supplementary data Villagra and Clack, 2004; Goillot et al., 2011; Marivaux et al., in press). In that purpose, a strong effort shall be made in the forth- Supplementary data related to this article can be found online at coming years in order to document the early and middle Miocene http://dx.doi.org/10.1016/j.jsames.2012.07.008. period in lowland tropical-equatorial South America. References Acknowledgements Antoine, P.-O., Baby, P., Benammi, M., Brusset, S., De Franceschi, D., Espurt, N., fi Goillot, C., Pujos, F., Salas-Gismondi, R., Tejada, J., Urbina, M., 2007. The Laventan The eld trips to MD-67 were funded by the écoSystèmes Fitzcarrald local fauna, Amazonian Peru. Cuadernos del Museo Geominero 8, Paléogènes d’AMazonie program (SPAM) of the University of 19e24.

295 P.-O. Antoine et al. / Journal of South American Earth Sciences 42 (2013) 91e102 101

Antoine, P.-O., De Franceschi, D., Flynn, J.J., Nel, A., Baby, P., Benammi, M., Galbraith, R.F., 1981. On statistical models for fission track counts. Mathematical Calderón, Y., Espurt, N., Goswami, A., Salas-Gismondi, R., 2006. Amber from Geology 13, 471e488. western Amazonia reveals neotropical diversity during the middle Miocene. Goillot, C., Antoine, P.-O., Tejada Lara, J., Pujos, F., Salas-Gismondi, R., 2011. Middle Proceedings of the National Academy of Science of the United States of America Miocene Uruguaytheriinae (Mammalia, Astrapotheria) from Peruvian Ama- 103, 13595e13600. zonia and a review of the astrapotheriid fossil record in northern South Antoine, P.-O., Marivaux, L., Croft, D.A., Billet, G., Ganerød, M., Jaramillo, C., America. Geodiversitas 33, 331e345. Martin, T., Orliac, M.J., Tejada, J., Duranthon, F., Fanjat, G., Rousse, S., Salas- Goin, F.J., 1997. New clues for understanding Neogene marsupial radiations. In: Gismondi, R., 2012. Middle Eocene rodents from Peruvian Amazonia reveal the Kay, R.F., Madden, R.H., Cifelli, R.L., Flynn, J.J. (Eds.), A History of the Neotropical pattern and timing of caviomorph origins and biogeography. Proceedings of the Fauna. Vertebrate Paleobiology of the Miocene in Colombia. Smithsonian Royal Society B: Biology 279, 1319e1326. Institution Press, Washington, DC, pp. 185e204. Argot, C., 2003. Postcranial functional adaptations in the south American Miocene Goin, F.J., Candela, A.M., 2004. New Paleogene marsupials from the Amazon basin of borhyaenoids (Mammalia, Metatheria) Cladosictis, Pseudonotictis, and Sipalo- eastern Peru. In: Campbell, K.E. (Ed.), The Paleogene Mammalian Fauna of Santa cyon. Alcheringa 27, 303e356. Rosa, Amazonian Peru. Natural History Museum of Los Angeles County, Los Argot, C., 2004. Evolution of South American mammalian predators (Borhyaenoi- Angeles, pp. 15e60. dea): anatomical and paleobiological implications. Zoological Journal of the Gradstein, F.M., Ogg, J.G., Smith, A.G., 2005. A Geological Time Scale 2004. Cam- Linnean Society 140, 487e521. bridge University Press, Cambridge, 589 pp. Arnal, M., Vucetich, M.G., 2011. First record of supernumerary teeth in South Green, P.F., 1981. A new look at statistics in fission track dating. Nuclear Tracks 5, American fossil rodents. Journal of Vertebrate Paleontology 31, 25e927. 77e86. Bown, T.M., Fleagle, J.G., 1993. Systematics, biostratigraphy, and dental evolution of the Hoorn, C., 1993. Marine incursions and the influence of Andean tectonics on the Palaeothentidae, later Oligocene to early-middle Miocene (Deseadan-Santacrucian) Miocene depositional history of northwestern Amazonia: results of a palynos- caenolestoid marsupials of South America. Journal of Paleontology 29, 1e76. tratigraphic study. Palaeogeography, Palaeoclimatology, Palaeoecology 105, Candela, A.M., 1999. The evolution of the molar pattern of the Erethizontidae 267e305. (Rodentia, Hystricognathi) and the validity of Parasteiromys Ameghino, 1904. Hoorn, C., Wesselingh, F.P., Steege, H., ter, Bermudez, M.A., Mora, A., Sevink, J., Palaeovertebrata 28, 53e73. Sanmartín, I., Sanchez-Meseguer, A., Anderson, C.L., Figueiredo, J.P., Jaramillo, C., Candela, A.M., 2003. A new porcupine (Rodentia. Erethizontidae) from the early- Riff, D., Negri, F.R., Hooghiemstra, H., Lundberg, J., Stadler, T., Särkinen, T., middle Miocene of Patagonia. Ameghiniana 40, 483e494. Antonelli, A., 2010a. Amazonia through time: andean uplift, climate change, Candela, A.M., 2004. A new giant porcupine (Rodentia. Erethizontidae) from the late landscape evolution, and biodiversity. Science 330, 927e931. Miocene of northwestern Argentina. Journal of Vertebrate Paleontology 24, Hoorn, C., Wesselingh, F.P., Hovikoski, J., Guerrero, J., 2010b. The development of the 732e741. Amazonian mega-wetland (Miocene; Brazil, Colombia, Peru, Bolivia). In: Candela, A.M., Morrone, J.J., 2003. Biogeografía de puercoespines neotropicales Hoorn, C., Wesselingh, F.P. (Eds.), Amazonia, Landscape and Species Evolution: A (Rodentia, Hystricognathi): Integrando datos fósiles y actuales a través de un Look into the Past. Blackwell-Wiley, Hoboken, pp. 123e142. enfoque panbiogeográfico. Ameghiniana 40, 361e368. Horovitz, I., Sánchez-Villagra, M.R., Martin, T., Aguilera, O.A., 2006. The fossil record Candela, A.M., Nasif, N.L., 2006. Systematics and biogeographic significance of of Phoberomys pattersoni Mones 1980 (Mammalia, Rodentia) from Urumaco Drytomomys typicus (Scalabrini in Ameghino, 1889) nov. Comb., a Miocene (Late Miocene, Venezuela), with an analysis of its phylogenetic relationships. Dinomyidae (Rodentia, Hystricognathi) from Northeast of Argentina. Neues Journal of Systematic Palaeontology 4, 293e306. Jahrbuch für Geologie und Paläontologie, Mittheilungen, 165e181. Hovikoski, J., Räsänen, M., Gingras, M., Roddaz, M., Brusset, S., Hermoza, W., Romero Candela, A.M., Picasso, M.B.J., 2008. Functional anatomy of the limbs of Erethi- Pittman, L., Lertola, K., 2005. Miocene semi-diurnal tidal rhythmites in Madre zontidae (Rodentia, Caviomorpha): indicators of locomotor behavior in de Dios, Peru. Geology 33, 177e180. Miocene porcupines. Journal of Morphology 269, 552e593. Hovikoski, J., Wesselingh, F.P., Räsänen, M., Gingras, M., Vonhof, H.B., 2010. Marine Candela, A.M., Vucetich, M.G., 2002. Hypsosteiromys (Rodentia, Hystricognathi) influence in Amazonia: evidence from the geological record. In: Hoorn, C., from the early Miocene of Patagonia (Argentina), the only Erethizontidae with Wesselingh, F.P. (Eds.), Amazonia, Landscape and Species Evolution: A Look into a tendency to hypsodonty. Geobios 35, 153e161. the Past. Blackwell-Wiley, Hoboken, pp. 143e160. Carlini, A.A., Zurita, A.E., Scillato-Yané, G.J., Sánchez, R., Aguilera, O., 2008. New Hurford, A.J., 1990. Standardization of fission track dating calibration: recommen- from the Codore Formation (Pliocene), Falcón State, Venezuela, its dation by the fission track Working Group of the I.U.G.S. Subcommission on relationship with the Asterostemma problem, and the paleobiogeography of the geochronology. Chemical Geology: Isotope Geoscience Section 80, 171e178. Glyptodontinae. Paläontologische Zeitschrift 82, 139e152. Jaramillo, C., Hoorn, C., Silva, S.A.F., Leite, F., Herrera, F., Quiroz, L., Dino, R., Cerdeño, E., Vucetich, M.G., 2007. The first rodent from the Mariño Formation Antonioli, L., 2010. The origin of the modern Amazon rainforest: implications of (Miocene) at Divisadero Largo (Mendoza, Argentina) and its biochronological the palynological and palaeobotanical record. In: Hoorn, C., Wesselingh, F.P. implications. Revista Geológica de Chile 34, 199e207. (Eds.), Amazonia, Landscape and Species Evolution: A Look into the Past. Croft, D.A., 2007. The middle Miocene (Laventan) Quebrada Honda fauna, southern Blackwell-Wiley, Hoboken, pp. 317e334. Bolivia and a description of its notoungulates. Palaeontology 50, 277e303. Kaandorp, R.J.G., Wesselingh, F.P., Vonhof, H.B., 2006. Ecological implications from Croft, D.A., Chick, J.M.H., Anaya, F., 2011. New middle Miocene caviomorph rodents stable isotope records of Miocene western Amazonian bivalves. Journal of South from Quebrada Honda, Bolivia. Journal of Mammalian Evolution 18, 245e268. American Earth Sciences 21, 54e74. Croft, D.A., Flynn, J.J., Wyss, A.R., 2007. A new basal Glyptodontid and other Kay, R.F., Madden, R.H., Cifelli, R.L., Flynn, J.J., 1997. Vertebrate Paleontology in the Xenarthra of the early Miocene Chucal fauna, Northern Chile. Journal of Neotropics. The Miocene Fauna of La Venta, Colombia. Smithsonian Institution Vertebrate Paleontology 27, 781e797. Press, Washington, London, 592 pp. DeCelles, P.G., Giles, K.A., 1996. Foreland basin systems. Basin Research 8, 105e123. Kramarz, A.G., 2001. Un Nuevo roedor Adelphomyinae (Hystricognathi, Echimyidae) Dozo, M.T., Vucetich, M.G., Candela, A.M., 2004. Skull anatomy and neuro- del Mioceno Medio-Inferior de Patagonia, Argentina. Ameghiniana 38, 163e168. morphology of Hypsosteiromys, a Colhuehuapian erethizontid rodent from Kramarz, A.G., 2004. Octodontoids and erethizontoids (Rodentia, Hystricognathi) Argentina. Journal of Vertebrate Paleontology 24, 228e234. from the Pinturas Formation, early-middle Miocene of Patagonia, Argentina. Emmons, L.H., Feer, F., 1997. Neotropical Rainforest Mammals: A Field Guide, second Ameghiniana 41, 199e212. ed. University of Chicago Press, Chicago, IL, USA. Kramarz, A.G., 2006. Neoreomys and Scleromys (Rodentia, Hystricognathi) from the Espurt, N., Baby, P., Brusset, S., Roddaz, M., Hermoza, W., Regard, V., Antoine, P.-O., Pinturas Formation, late early Miocene of Patagonia, Argentina. Revista del Salas-Gismondi, R., Bolaños, R., 2007. How does the Nazca Ridge subduction Museo Argentino de Ciencias Naturales, Nueva Series 8, 53e62. influence the modern Amazonian foreland basin? Geology 35, 515e518. Kramarz, A.G., Bellosi, E.S., 2005. Hystricognath rodents from the Pinturas forma- Espurt, N., Baby, P., Brusset, S., Roddaz, M., Hermoza, W., Barbarand, J., 2010. The tion, early-middle Miocene of Patagonia, biostratigraphic and paleoenvir- Nazca Ridge and uplift of the Fitzcarrald Arch: implications for regional geology onmental implications. Journal of South American Earth Sciences 18, 199e212. in northern South America. In: Hoorn, C., Wesselingh, F.P. (Eds.), Amazonia, Linares, O.J., 2004. Bioestratigrafía de la fauna de mamíferos de las formaciones Landscape and Species Evolution: A Look into the Past. Blackwell-Wiley, Socorro, Urumaco y Codoré (Mioceno medio-Plioceno temprano) de la región pp. 89e100. de Urumaco, Falcón, Venezuela. Paleobiología Tropical 1, 1e26. Fields, R.W., 1957. Hystricomorph Rodents from the Late Miocene of Colombia, Lundberg, J.G., Marshall, G.G., Guerrero, J., Horton, B., Malabarba, M.C.S., South America, vol. 32. University of California Publications in Geological Wesselingh, F.P., 1998. The stage for Neotropical fish diversification: a history of Sciences, pp. 273e404. tropical South American rivers. In: Malabarba, L.R., et al. (Eds.), Phylogeny and Flynn, J.J., Charrier, R., Croft, D.A., Gans, P.B., Herriott, T.M., Wertheim, J.A., Classification of Neotropical Fishes, pp. 13e48. Wyss, A.R., 2008. Chronologic implications of new Miocene mammals from the Madden, R.H., Guerrero, J., Kay, R.F., Flynn, J.J., Swisher III, C.C., Walton, A.H., 1997. Cura-Mallín and Trapa Trapa formations, Laguna del Laja area, south central The Laventan stage and age. In: Kay, R.F., Madden, R.H., Cifelli, R.L., Flynn, J.J. Chile. Journal of South American Earth Sciences 26, 412e423. (Eds.), A History of the Neotropical Fauna. Vertebrate Paleobiology of the Flynn, J.J., Novacek, M.J., Dodson, H.E., Frassinetti, D., McKenna, M.C., Norell, M.A., Miocene in Colombia. Smithsonian Institution Press, Washington, DC, pp. 499e Sears, K.E., Swisher III, C.C., Wyss, A.R., 2002. A new fossil mammal assemblage 519. from the southern Chilean Andes: implications for geology, geochronology, and Marivaux, L., Salas-Gismondi, R., Tejada, J., Billet, G., Louterbach, M., Vink, J., Bailleul, tectonics. Journal of South American Earth Sciences 15, 285e302. J., Roddaz, M., Antoine, P.-O. A platyrrhine talus from the early Miocene of Peru Forasiepi, A.M., Sánchez-Villagra, M.R., Goin, F.J., Takai, M., Shigehara, N., Kay, R.F., (Amazonian Madre de Dios Subandean Zone). Journal of Human Evolution, 2006. A new species of Hathliacynidae (Metatheria, Sparassodonta) from the in press. middle Miocene of Quebrada Honda, Bolivia. Journal of Vertebrate Paleontology Marshall, L.G., 1976. New Didelphine marsupials from the La Venta fauna (Miocene) 26, 670e684. of Colombia, South America. Journal of Paleontology 50, 402e418.

296 102 P.-O. Antoine et al. / Journal of South American Earth Sciences 42 (2013) 91e102

Marshall, L.G., 1978. Evolution of the Borhyaenidae, Extinct South American western Venezuela. In: Sánchez-Villagra, M.R., Clack, J.A. (Eds.), Fossils of the Predaceous Marsupials, vol. 117. University of California Publications in Miocene Castillo Formation, Venezuela: Contributions on Neotropical Palae- Geological Sciences, pp. 1e89. ontology. Special Papers in Palaeontology, vol. 71, pp. 105e112. Marshall, L.G., 1981. Review of the Hathlyacyninae, an extinct subfamily of South Sant’Anna Filho, M.J., 1994. Roedores do Neógeno do Alto Juruá, Estado do Acre. American ‘dog-like’ marsupials. Fieldiana Geology, New Series 7, 1e120. Unpublished Master’s Thesis. Universidad Federal do Acre, Brasil. Muizon, C. de, 1999. Marsupial skulls from the Deseadan (Late Oligocene) of Bolivia Tardy, Y., 1992. Diversity and terminology of lateritic profiles. In: Martini, I.P., and phylogenetic analysis of the Borhyaenoidea (Marsupialia, Mammalia). Chesworth, W. (Eds.), Weathering, Soils, Paleosols. Elsevier, Amsterdam-Lon- Geobios 32, 483e509. don-New York-Tokyo, pp. 379e405. Negri, F.R., Bocquentin Villanueva, J., Ferigolo, J., Antoine, P.-O., 2010. A review of Tejedor, M.F., 2008. The Origin and Evolution of Neotropical Primates, vol. 66. Tertiary mammal faunas and birds from western Amazonia. In: Hoorn, C., Arquivos do Museu Nacional, Rio de Janeiro. 251e269. Wesselingh, F.P. (Eds.), Amazonia, Landscape and Species Evolution: A Look into Vargas, L., Hipólito, A., 1998. Quadrángulos de Río Pinquén (25-t), Pillcopata (26-t) y the Past. Blackwell-Wiley, Hoboken, pp. 245e258. Chontachaca (27-t). INGEMMET, Ser. A, Lima, Peru, 155 pp., 3 maps. Oliva, C., Zurita, A.E., Dondas, A., Scillato-Yané, G.J., 2010. Los Glyptodontinae Vizcaíno, S.F., Bargo, M.S., Kay, R.F., Fariña, R.A., Di Giacomo, M., Perry, J.M.G., (Xenarthra, Glyptodontidae) del Piso/Edad Chapadmalalense (Plioceno tardío): Prevosti, F.J., Toledo, N., Cassini, G.H., Fernicola, J.C., 2010. A baseline paleo- revisión y aportes a su conocimiento. Revista Mexicana de Ciencias Geológicas ecological study for the Santa Cruz formation (late-early Miocene) at the 27, 112e120. Atlantic coast of Patagonia, Argentina. Palaeogeography, Palaeoclimatology, Patterson, B., 1958. A new genus of erethizontid rodents from the Colhuehuapian of Palaeoecology 292, 507e519. Patagonia. Breviora 92, 1e4. Voss, R.S., Jansa, S., 2009. Phylogenetic relationships and classification of Didelphid Patterson, B., Wood, A.E., 1982. Rodents from the Deseadan Oligocene of Bolivia and marsupials, an extant radiation of New World metatherian mammals. Bulletin the relationship of Caviomorpha. Bulletin of the Museum of Comparative of the American Museum of Natural History 322, 1e177. Zoology 149, 372e543. Vucetich, M.G., 1984. Los roedores de la edad Friasense (Mioceno medio) de Pata- Pérez, M.E., 2010. A new rodent (Cavioidea, Hystricognathi) from the middle gonia. Revista del Museo de La Plata 8, 47e126. Miocene of Patagonia, mandibular homologies, and the origin of the crown Vucetich, M.G., Kramarz, G.A., 2003. New Miocene rodents from Patagonia group Cavioidea sensu stricto. Journal of Vertebrate Paleontology 30, 1848e (Argentina) and their bearing on the early radiation of the octodontoids (Hys- 1859. tricognathi). Journal of Vertebrate Paleontology 23, 435e444. Pérez, M.E., Vucetich, M.G., 2011. A new extinct genus of Cavioidea (Rodentia, Vucetich, M.G., Mazoni, M.M., Pardiñas, F.J., 1993. Los roedores de la formacion Hystricognathi) from the Miocene of Patagonia (Argentina) and the evolution of Collón Cura (Mioceno Medio) y la Ygnimbrita Pilcaniyeu, Cañadon del Trotillo, cavioid mandibular morphology. Journal of Mammalian Evolution 18, 163e183. Neuquén. Ameghiniana 30, 361e381. Pons, D., De Franceschi, D., 2007. Neogene woods from western Peruvian Amazon Vucetich, M.G., Kramarz, A.G., Candela, A.M., 2010. The Colhuehuapian rodents from and palaeoenvironmental interpretation. Bulletin of Geosciences 82, 343e354. Gran Barranca and other Patagonian localities: the state of the art. In: Pujos, F., Albino, A.M., Baby, P., Guyot, J.-L., 2009. Presence of the extinct Lizard Madden, R.H., Carlini, A.A., Vucetich, M.G., Kay, R. (Eds.), The Paleontology of Paradracaena (Teiidae) in the middle Miocene of the Peruvian Amazon. Journal Gran Barranca: Evolution and Environmental Change through the Middle of Vertebrate Paleontology 29, 594e598. Cenozoic. Cambridge University Press, Cambridge, pp. 206e219. Pujos, F., Salas-Gismondi, Baby, G., Baby, P., Goillot, C., Tejada, J., Antoine, P.-O. Vucetich, M.G., Mazzoni, M.M., Hartenberger, J.-L., 1999. Review and analysis of the Implication of the presence of Megathericulus (Xenarthra: Tardigrada: Mega- radiation of the south American Hystricognathi (Mammalia, Rodentia). Comp- theriidae) in the Laventan of Peruvian Amazonia. Journal of Systematic Palae- tes Rendus de l’Académie des Sciences de Paris, Sciences de la terre et des ontology, in press. planètes 329, 763e769. Roddaz, M., Viers, J., Brusset, S., Baby, P., Hérail, G., 2005. Sediment provenances and Walton, A.H., 1997. Rodents. In: Kay, R.F., Madden, R.H., Cifelli, R.L., Flynn, J.J. (Eds.), drainage evolution of the Neogene Amazonian foreland basin. Earth and Vertebrate Paleontology in the Neotropics. The Miocene Fauna of La Venta, Planetary Science Letters 239, 57e78. Colombia. Smithsonian Institution Press, Washington, pp. 392e409. Roddaz, M., Brusset, S., Baby, P., Hérail, G., 2006. Miocene tidal-influenced sedi- Wesselingh, F.P., Ramos, M.I.F., 2010. Amazonian aquatic invertebrate faunas mentation to continental Pliocene sedimentation in the forebulge-backbulge (Mollusca, Ostracoda) and their development over the past 30 million years. In: depozones of the Beni-Mamore foreland basin (northern Bolivia). Journal of Hoorn, C., Wesselingh, F.P. (Eds.), Amazonia, Landscape and Species Evolution: A South American Earth Sciences 20, 351e368. Look into the Past. Blackwell-Wiley, Hoboken, pp. 302e316. Roddaz, M., Hermoza, W., Mora, A., Baby, P., Parra, M., Christophoul, F., Brusset, S., Wesselingh, F.P., Kaandorp, R.J.G., Vonhof, H.B., Räsänen, M.E., Renema, W., Espurt, N., 2010. Cenozoic sedimentary evolution of the Amazonian foreland Gingras, M., 2006. The nature of aquatic landscapes in the Miocene of western basin system. In: Hoorn, C., Wesselingh, F.P. (Eds.), Amazonia, Landscape and Amazonia: an integrated palaeontological and geochemical approach. Scripta Species Evolution: A Look into the Past. Blackwell-Wiley, Hoboken, pp. 61e88. Geologica 133, 363e393. Rossi, R.V., Voss, R.S., Lunde, D.P., 2010. A revision of the didelphid marsupial genus Wood, A.E., Patterson, B., 1959. The rodents of the Deseadan Oligocene of Patagonia Marmosa. Part 1. The species in Tate’s ‘mexicana’ and ‘mitis’ sections and other and the beginnings of south American rodent evolution. Bulletin of the closely related forms. Bulletin of the American Museum of Natural History 334, Museum of Comparative Zoology 120, 281e428. 1e83. Wood, A.E., Wilson, R.W., 1936. A suggested nomenclature for the cusps of the Sánchez-Villagra, M.R., Clack, J.A., 2004. Fossils of the Miocene Castillo Formation, cheek teeth of Rodents. Journal of Paleontology 10, 388e391. Venezuela: contributions on neotropical palaeontology. Special Papers in Zachos, J.C., Pagani, M., Sloan, L., Thomas, E., Billups, K., 2001. Trends, rhythms, and Palaeontology 71, 1e112. aberrations in global climate 65 Ma to present. Science 292, 686e693. Sánchez-Villagra, M.R., Asher, R.J., Rincón, A.D., Carlini, A.A., Meylan, P., Purdy, A.W., Zachos, J.C., Dickens, G.R., Zeebe, R.E., 2008. An early Cenozoic perspective on 2004. New faunal reports for the Cerro La Cruz locality (lower Miocene), north- greenhouse warming and carbon-cycle dynamics. Nature 451, 279e283.

297 Map 1: Structural Map of the study area (focused on the Madre de Dios SAZ)

298 Map 2: Structural Map of the study area (focused on the Madre de Dios SAZ) and position of the 2D seismic sections used in this study (bold yellow lines)

299 Quaternary

Neogene

CENOZOIC Paleogene

Late Cretaceous MESOZOIC Siluro-Devonian

Ordovician “Iscaybamba Complex” PALEOZOIC Cambrian/

Paleozoic (Undif.)

Plutonic Rocks (Triassic or Mesozoic)

Thrust Fault Back-thrust

Outcrops (before 2010)

PhD-Outcrops (2010-2012)

Map 3: Outcrops described during the PhD (red dots) and previous outcrops from the University of Toulouse (blue dots)

300 Quaternary

Neogene

CENOZOIC Paleogene

Late Cretaceous

MESOZOIC Carboniferous Devonian

Siluro-Devonian

Ordovician Cambrian PALEOZOIC “Iscaybamba Complex” Cambrian/ PreCambrian

Paleozoic (Undif.) Pongo de Coñeq Canyon Plutonic Rocks (Triassic or Mesozoic)

Inambari Bridge Thrust Fault Back-thrust

Miocene

Paleocene

Post Cenomanian

Turonian-Cenomanian

Cretaceous (?)

Upper Carboniferous

Map 4: Biostratigraphic results (PhD) and samples number in the Madre de Dios SAZ

301 Quaternary

Neogene

Paleogene CENOZOIC

Late Cretaceous MESOZ.

Carboniferous

Devonian PALEOZOIC

Thrust Fault Back-thrust

Miocene

Paleocene

Post Cenomanian

Turonian-Cenomanian

Cretaceous (?)

Upper Carboniferous

Map 5: Biostratigraphic results (PhD) and samples number Pongo de Coñeq Canyon in the Pongo de Coñeq Canyon area (southern flank of the Salvación syncline) 5 km 302

Quaternary

Neogene

Paleogene CENOZOIC

PALEOZOIC-MESOZOIC

Late Cretaceous

Carboniferous

Thrust Fault Back-thrust

Miocene

Paleocene

Post Cenomanian

Turonian-Cenomanian

Cretaceous (?) Map 6: Biostratigraphic results (PhD) and samples number Upper Carboniferous in the Pantiacolla anticline area (northern flank of the Salvación area) 5 km 303 Map 7: Biostratigraphic results (PhD) and samples number in the Inambari area (southern flank of the Punquiri syncline)

Quaternary

Neogene

Paleogene CENOZOIC

Late Cretaceous MESOZ.

Thrust Fault Back-thrust

Miocene

Paleocene

Post Cenomanian

Turonian-Cenomanian

Cretaceous (?)

Upper Carboniferous

5 km 304 Quaternary

Neogene

CENOZOIC Paleogene

Late Cretaceous MESOZ. Carboniferous Devonian

Siluro-Devonian

Ordovician Cambrian PALEOZOIC “Iscaybamba Complex” Pongo de Coñeq Canyon Cambrian/ PreCambrian

Paleozoic (Undif.)

Plutonic Rocks (Triassic or Mesozoic)

Thrust Fault Inambari Bridge Back-thrust

Nd/Sr isotopic analysis

40 km

Map 8: Samples for the Nd/Sr isotopic composition analyses realized in the Madre de Dios SAZ 305 Quaternary

Neogene

Pongo de Coñeq Canyon CENOZOIC Paleogene

Late Cretaceous MESOZ. Carboniferous Devonian

Siluro-Devonian

Inambari Bridge Ordovician Cambrian PALEOZOIC “Iscaybamba Complex” Cambrian/ PreCambrian

Paleozoic (Undif.)

Plutonic Rocks (Triassic or Mesozoic)

Thrust Fault Back-thrust

Ar/Ar on Biotite

Ar/Ar on Muscovite

U/Pb dating

Map 9: Geochronology results (Ar/Ar on muscovites/biotites and U-Pb) in the Eastern Cordillera and the Madre de Dios SAZ

40 km 306 FIGURE A: Pongo de Coñeq Stratigraphic Section 1, Southern Flank of the Salvación Syncline

307 FIGURE B: Pongo de Coñeq Stratigraphic Section 2 and 3, Northern flank of the Salvación Syncline 308 FIGURE C: Inambari Stratigraphic Section 4 (Part 1/3), Punquiri Syncline

309 FIGURE D: Inambari Stratigraphic Section 4 (Part 2/3), Punquiri Syncline

310 FIGURE F: Inambari Stratigraphic Section 5 (Santa Rosa section), Northern flank of the Punquiri Syncline

FIGURE E: Inambari Stratigraphic Section 4 (Part 3/3), Punquiri Syncline

311 312

Figure G: Legend for the Stratigraphic Sections Figure H: The Inambari regional structural cross-section (focused on the eastern border of the EC and on the SAZ). 1= Punquiri syncline; 2= Nusiniscati syncline; 3= Imbricates Area (IA); 4= Inambari anticline; 5= Internal Duplex; 6=External Duplex; 7= Basement wedge (back-stop).

313 FIGURE I: The Inambari regional cross-section. AFT and AHe ages (Ma) are plotted on the section. Vitrinite reflectance (Ro% results) are also indicated.

314