Shrubland Ecosystem Genetics and Biodiversity: Proceedings; 2000 June 13–15; Provo, 0.34 Percent (A

Total Page:16

File Type:pdf, Size:1020Kb

Shrubland Ecosystem Genetics and Biodiversity: Proceedings; 2000 June 13–15; Provo, 0.34 Percent (A Artemisia Communities in Arid Zones of Uzbekistan (Central Asia) Lyubov A. Kapustina Montserrat Torrell Joan Vallès Abstract—Central Asia, and particularly the former Soviet Middle mapping methods. In addition to the location of Artemisia Asian countries, with more than 180 taxa (45 endemics), is one of the species and communities in Uzbekistan (fig. 1), we present centers of origin and speciation of the genus Artemisia L. (Asteraceae, some data on general distribution, ecology, chemical compo- Anthemideae). Several species of this genus, mainly belonging to sition, chromosome numbers, and uses of the main taxa of subgenus Seriphidium (Besser) Rouy, are shrubs that dominate the the genus (table 1). landscape and form large communities in arid (desertic, semidesertic, The species belonging to the subgenus Seriphidium, which steppic, and other) zones of this region. Arid lands constitute includes most of the Central Asian taxa of Artemisia that are approximately 90 percent of the territory of Uzbekistan, and there relevant in the landscape, have some elements of xeric are approximately 40 Artemisia species. In this paper we present a structure: tomentose leaves, biological repose in summer, characterization of some of these species (including six Central and the possibility to expel essential oils in hot weather for Asian endemics) and communities, with ecological, chorological plant protection from excessive heating due to very high (with a distribution map), biogeographical, cytogenetic, and chemi- temperatures. Species of this subgenus have three vegeta- cal data. We also include some references to plant use and manage- tion phases: (1) mesothermic (in spring) for growing and ment in these areas. development, (2) xerothermic (in summer) for biological repose, and (3) microthermic (in autumn and winter) for seed production and death of the inflorescences. The struc- ture of A. ferganensis, A. porrecta, and A. serotina is simpler, because they have only a very small woody perennial stem Introduction ____________________ (Mailun 1976). Most of the species in this subgenus are The region of our investigation belongs to the Turanian (or predominant in vegetation and good forage plants for live- Aralo-Caspian) and Turkestanian Provinces of the Irano- stock. Dry mass content of the forage plants of desert Turanian region in the Tethyan (Ancient Mediterranean) shrubland with predominating Artemisia species varies floristic subkingdom (Takhtajan 1986). The Middle Asiatic from 1.3 to 2.6 centner per hectare. Forage plant dry mass Desert includes the Irano-Turanian Desert region that occu- protein content varies from 0.15 to 0.09 centner per hectare. pies the southern portion of the Aralo-Caspian Desert and Some species are used for other purposes, such as A. juncea the southern part of Kazakhstan, including Dsungaria. The (medicine and perfumery) and A. serotina (soap-boiling) Central Asiatic Desert comprises a part of Dsungaria, the (Larin 1937; Goryaev and others 1962). Gobi Desert, the western part of Ordos on the great bend of Essential oil content of Artemisia species predominating the Hwan-Ho, Ala-Schan, Bei-Schan, and the Tarim basin in vegetation in different zones of Uzbekistan varies from (Kaschgaria), together with the Takla-Makan Desert and 0.32 to 3.1 percent, the highest concentrators being A. dracun- the more elevated Tsaidan basin (Walter 1979). culus (up to 3.1 percent), A. ferganensis (up to 2.1 percent), and One hundred and eighty Artemisia species are present in A. porrecta (up to 1.5 percent) (Goryaev and others 1962). Middle Asia, 45 of which are endemic to this zone (Poljakov Camphor is present in the essential oils of A. leucodes (93 1961b). From these taxa, 36 grow in Uzbekistan, some of percent), A. ferganensis (85 percent), and A. porrecta them in desert or semidesert zones, and others in mountain (37 percent); cinneol in A. serotina (78 percent), A. porrecta zones. The existence of 19 Middle Asian endemic species of (47 percent), and A. leucodes (35 percent); and thujone in the genus (Vvedenskii 1962) is remarkable in Uzbekistan. A. baldshuanica (60 percent) (Goryaev and others 1962). Investigations of the Artemisia species and their distribu- Flavonoids are present in A. leucodes, A. dracunculus, and tion were carried out using basic ecogeographical and A. serotina; sesquiterpene lactones in A. tenuisecta, A. san- tolina, A. serotina, A. juncea, and A. leucodes; coumarins in A. porrecta, A. diffusa, and A. dracunculus; acetylenes in A. turanica and A. dracunculus (Marco and Barberá 1990). Essential oil concentration in weed species varies from In: McArthur, E. Durant; Fairbanks, Daniel J., comps. 2001. Shrubland ecosystem genetics and biodiversity: proceedings; 2000 June 13–15; Provo, 0.34 percent (A. tournefortiana and A. annua) to 1 percent UT. Proc. RMRS-P-21. Ogden, UT: U.S. Department of Agriculture, Forest (A. vulgaris, A. scoparia, and A. absinthium—up to 2 per- Service, Rocky Mountain Research Station. Lyubov A. Kapustina,Botanical Garden and Botanical Institute, Academy cent) (Goryaev and others 1962). Most of these weed species of Sciences of the Republic of Uzbekistan, 32, F. Khodzhaev str. Tashkent also contain acetylenes, coumarins, flavonoids and sesquit- 700143, Uzbekistan. Current address: 4636 Laurel Ave., Glenview, IL 60026- erpene lactones (Marco and Barberá 1990). 1417. Montserrat Torrell and Joan Vallès, Laboratori de Botànica, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII, s/n, 08028 Barcelona, Catalonia, Spain. 104 USDA Forest Service Proceedings RMRS-P-21. 2001 Artemisia USDA Forest ServiceProceedings RMRS-P-21. 2001 CommunitiesinAridZonesofUzbekistan(CentralAsia) Kapustina,Torrell,andVallès Figure 1—Distribution of the most widespread Artemisia in Uzbekistan: communities dominated by Artemisia species (1–14) and weed taxa of this genus (15–21). 1. Artemisia terrae-albae with Anabasis salsa, Salsola orientalis, and Haloxylon ammodendron on gypsum gray-brown soils. 1 A. Artemisia terrae-albae with Haloxylon persicum, Calligonum setosum, and Carex physodes on sandy desert soils. 2. Artemisia diffusa with Calligonum leucocladum, Astragalus villosissimus, and Carex physodes on sandy desert and sandy gray-brown soils. 10. Artemisia baldshuanica with Carex pachystylis, Amygdalus bucharica, Otostegia 2A. Artemisia diffusa with Salsola orientalis, Carex pachystylis, Salsola arbuscula, and Ferula foetida bucharica, and Pistacia vera on dark serozem soils. on gray- brown soils. 11. Artemisia lehmanniana with Festuca sulcata on light-brown soils. ✩ 3. Artemisia turanica with A. diffusa, Carex pachystylis, Poa bulbosa, Salsola arbuscula, and 12. Artemisia dracunculus with Cousinia allolepis, C. macilenta, Acanthophyllum alatavicum, S. orientalis on gray-brown soils. Festuca sulcata, and Prangos pabularia on light-brown soils. 4. Artemisia santolina with Carex physodes and Mausolea eriocarpa on sandy desert soils. 13. Artemisia porrecta with Carex pachystylis, Salsola sclerantha, Phlomis thapsoides, 5. Artemisia juncea with A. diffusa, Ceratoides latens, Convolvulus fruticosus, Astragalus scleroxylon, and Eremostachys eriocalyx on serozem soils, sometimes slightly salty. Zygophyllum atriplicoides, and Salsola arbusculiformis on gray-brown soils of the low mountain ● 14. Artemisia persica with Cerasus verrucosa, Dactylus glomerata, Poa nemoralis, Agro- slopes. pyron trichophorum, and Origanum tyttanthum on chernozem soils. 6. Artemisia ferganensis with A. diffusa, Halocharis hispida, and Climacoptera longistylosa, on 15. Artemisia sieversiana. saltiest light serozem soils. 16. Artemisia scoparia. 7. Artemisia leucodes with A. diffusa, Convolvulus hamadae, and Astragalus villosissimus. 17. Artemisia tournefortiana. 8. Artemisia sogdiana with Carex pachystylis, Poa bulbosa, Bromus danthoniae, Ceratocarpus 18. Artemisia annua. utriculosus, and Vulpia myuros on typical serozem soils. n 19. Artemisia absinthium. 9. Artemisia tenuisecta with Elytrigia trichophora, Prangos pabularia, Inula grandis, and Amygdalus 20. Artemisia vulgaris. 105 spinosissima on typical and dark serozem soils. ▲ 21. Artemisia serotina. 9A. Artemisia tenuisecta with Juniperus seravschanica, J. semiglobosa, and Elytrigia trichophora on typical brown soils. 106 Kapustina, Torrell,and Vallès Table 1—Systematic, chorological, ecological, chemical, and karyological data on Uzbek Artemisia species, and main uses of these taxa (information drawn from references and our personal knowledge). Species Chromosome Subgenus (and life form) Distribution area Ecology Chemical composition Utilization number (2n) Artemisia A. vulgaris L. Central Asia, Siberia Weed species, from plain Essential oil containing cinneol, thujone, Food for livestock, 16 (perennial) China, Afghanistan, up to the middle zone of paraffin, and borneol. Acetylenes, rabbit, beaver, gopher, Japan, India, Caucasus, mountains, river beaches, coumarins, flavonoids, and sesquiterpene marmot. Used for North America, gardens, and meadows lactones. Root contains inulin, tannic medical purposes by Mediterranean region, substances, and resin. Leaves contain local people. Leaves and Mongolia, West Europe, vitamins A and C. stems are used as a European part of the condiment for meat dishes. former Soviet Union A. persica Boiss. Central Asia (Tian-Shan, Road metal slopes from foot Essential oil containing pinene, Mountain specimens of 18 (perennial) Pamir-Alai), Iran, Tibet, up to middle zones of the camphorene, camphor, borneol, and this species can be used Afghanistan
Recommended publications
  • Atlas of Rare Endemic Vascular Plants of the Arctic
    Atlas of Rare Endemic Vascular Plants of the Arctic Technical Report No. 3 About CAFF Theprogram for the Conservation of Arctic Flora and Fauna (CAFF) of the Arctic Council was established lo address the special needs of Arctic ecosystems, species and thcir habitats in the rapid ly developing Arctic region. Itwas initiated as one of'four programs of the Arctic Environmental Protcction Strategy (AEPS) which was adopted by Canada, Denmark/Greenland, Finland, lceland, Norway, Russia, Swcdcn and the United States through a Ministeria! Declaration at Rovaniemi, Finland in 1991. Other programs initi­ ated under the AEPS and overlaken hy the Are.tie Council are the ArcticMonitoring and assessment Programme (AMAP), the program for Emergency Prevention, Preparcd­ ness and Response (EPPR) and the program for Protection of the Arctic Marine Envi­ ronment (PAME). Sinceits inaugural mccti.ng in Ottawa, Canada in 1992, the CAFF program has provided scientists, conscrvation managers and groups, and indigenous people of the north with a distinct forum in which lo tackle a wide range of Arctic conservation issues at the cir­ cumpolar level. CAFF's main goals, which are achieved in keeping with the concepts of sustainable developrnertt and utilisation, are: • to conserve Arctic Jlora and fauna, thcir diversity and thcir habitats; • to protect the Arctic ecosystems from threats; • to improve conservation management laws, reg ulations and practices for the Arclic; • to integrale Arctic interests into global conservation fora. CAFF operates rhrough a system of Designated Agencies and National Representatives responsible for CAFF in thcir rcspcctivc countries. CAFF also has an International Work­ ing Group wh.ith has met annually to assess progrcss and to develop Annual WorkPlans.
    [Show full text]
  • 5. KALIDIUM Moquin-Tandon in Candolle, Prodr. 13(2): 46, 146
    Flora of China 5: 355-356. 2003. 5. KALIDIUM Moquin-Tandon in Candolle, Prodr. 13(2): 46, 146. 1849. 盐爪爪属 yan zhua zhua shu Shrubs small, much branched; branches not jointed. Leaves alternate, terete or undeveloped, fleshy, basally decurrent. Inflorescence pedunculate, spicate. Flowers spirally arranged, (1 or)3 borne in axil of a fleshy bract, appearing sunken into fleshy rachis, without bractlets, bisexual. Perianth 4- or 5-lobed, spongy in fruit, flat on top surface. Stamens 2. Ovary ovoid; stigmas 2, papillate. Fruit a utricle, enclosed by perianth. Seed vertical, compressed; testa subleathery; embryo semi-annular; perisperm present. Five species: C and SW Asia, SE Europe; five species in China. 1a. Leaves 4–10 mm; spikes 3–4 mm in diam. .................................................................................................................... 1. K. foliatum 1b. Leaves less than 3 mm or undeveloped; spikes 1.5–3 mm in diam. 2a. Branchlets slender; flowers 1 per bract ..................................................................................................................... 5. K. gracile 2b. Branchlets stout; flowers 3 per bract. 3a. Leaves developed, 1–3 mm, ovate, adaxially curved, apex acute ............................................................... 2. K. cuspidatum 3b. Leaves undeveloped, tuberculate, less than 1 mm, apex obtuse. 4a. Plants 10–25 cm tall, branched from base; leaves of branchlets narrow and obconic at base ......... 3. K. schrenkianum 4b. Plants 20–70 cm tall, branched from middle; leaves of branchlets sheathing at base ............................ 4. K. caspicum 1. Kalidium foliatum (Pallas) Moquin-Tandon in Candolle, 1b. Leaves 1–1.5 mm; plants densely Prodr. 13(2): 147. 1849. branched .................................................... 2b. var. sinicum 盐爪爪 yan zhua zhua 2a. Kalidium cuspidatum var. cuspidatum Salicornia foliata Pallas, Reise Russ. Reich. 1: 482.
    [Show full text]
  • Embryological and Cytological Features of Gagea Bohemica (Liliaceae)
    Turk J Bot 36 (2012) 462-472 © TÜBİTAK Research Article doi:10.3906/bot-1107-11 Embryological and cytological features of Gagea bohemica (Liliaceae) Filiz VARDAR*, Işıl İSMAİLOĞLU, Meral ÜNAL Department of Biology, Science and Arts Faculty, Marmara University, 34722 Göztepe, İstanbul - TURKEY Received: 19.07.2011 ● Accepted: 29.02.2012 Abstract: Th e present study describes the developmental features of the embryo sac and ovular structures, particularly the obturator, during development in Gagea bohemica (Zauschn.) Schult. & Schult. f. Th e nucellar epidermis is poorly developed and composed of 1-2 layers of cuboidal cells. Th e tissue at the chalazal end of the nucellus diff erentiates into a hypostase. Th e micropyle is formed by the inner integument and composed of 4-5 cell layers that include starch grains. Th e functional megaspore results in an 8-nucleated embryo sac and conforms to a tetrasporic, Fritillaria L. type. Cytoplasmic nucleoloids consisting of protein and RNA are obvious during megasporogenesis. Th e obturator attracts attention during embryo sac development. Cytochemical tests indicated that the cells of the obturator present a strong reaction in terms of insoluble polysaccharide, lipid, and protein. Obturator cells are coated by a smooth and thick surface layer that starts to accumulate partially and then merges. Ultrastructural studies reveal that obturator cells are rich in rough endoplasmic reticulum, polysomes, plastids with osmiophilic inclusions, dictyosomes with large vesicles, mitochondria, and osmiophilic secretory granules. Aft er fertilisation, the vacuolisation in obturator cells increases by fusing small vacuoles to form larger ones. Some of the small vacuoles contain electron dense deposits.
    [Show full text]
  • CHENOPODIACEAE 藜科 Li Ke Zhu Gelin (朱格麟 Chu Ge-Ling)1; Sergei L
    Flora of China 5: 351-414. 2003. CHENOPODIACEAE 藜科 li ke Zhu Gelin (朱格麟 Chu Ge-ling)1; Sergei L. Mosyakin2, Steven E. Clemants3 Herbs annual, subshrubs, or shrubs, rarely perennial herbs or small trees. Stems and branches sometimes jointed (articulate); indumentum of vesicular hairs (furfuraceous or farinose), ramified (dendroid), stellate, rarely of glandular hairs, or plants glabrous. Leaves alternate or opposite, exstipulate, petiolate or sessile; leaf blade flattened, terete, semiterete, or in some species reduced to scales. Flowers monochlamydeous, bisexual or unisexual (plants monoecious or dioecious, rarely polygamous); bracteate or ebracteate. Bractlets (if present) 1 or 2, lanceolate, navicular, or scale-like. Perianth membranous, herbaceous, or succulent, (1–)3–5- parted; segments imbricate, rarely in 2 series, often enlarged and hardened in fruit, or with winged, acicular, or tuberculate appendages abaxially, seldom unmodified (in tribe Atripliceae female flowers without or with poorly developed perianth borne between 2 specialized bracts or at base of a bract). Stamens shorter than or equaling perianth segments and arranged opposite them; filaments subulate or linear, united at base and usually forming a hypogynous disk, sometimes with interstaminal lobes; anthers dorsifixed, incumbent in bud, 2-locular, extrorse, or dehiscent by lateral, longitudinal slits, obtuse or appendaged at apex. Ovary superior, ovoid or globose, of 2–5 carpels, unilocular; ovule 1, campylotropous; style terminal, usually short, with 2(–5) filiform or subulate stigmas, rarely capitate, papillose, or hairy on one side or throughout. Fruit a utricle, rarely a pyxidium (dehiscent capsule); pericarp membranous, leathery, or fleshy, adnate or appressed to seed. Seed horizontal, vertical, or oblique, compressed globose, lenticular, reniform, or obliquely ovoid; testa crustaceous, leathery, membranous, or succulent; embryo annular, semi-annular, or spiral, with narrow cotyledons; endosperm much reduced or absent; perisperm abundant or absent.
    [Show full text]
  • Molecular Phylogeny of Subtribe Artemisiinae (Asteraceae), Including Artemisia and Its Allied and Segregate Genera Linda E
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications in the Biological Sciences Papers in the Biological Sciences 9-26-2002 Molecular phylogeny of Subtribe Artemisiinae (Asteraceae), including Artemisia and its allied and segregate genera Linda E. Watson Miami University, [email protected] Paul E. Bates University of Nebraska-Lincoln, [email protected] Timonthy M. Evans Hope College, [email protected] Matthew M. Unwin Miami University, [email protected] James R. Estes University of Nebraska State Museum, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/bioscifacpub Watson, Linda E.; Bates, Paul E.; Evans, Timonthy M.; Unwin, Matthew M.; and Estes, James R., "Molecular phylogeny of Subtribe Artemisiinae (Asteraceae), including Artemisia and its allied and segregate genera" (2002). Faculty Publications in the Biological Sciences. 378. http://digitalcommons.unl.edu/bioscifacpub/378 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications in the Biological Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. BMC Evolutionary Biology BioMed Central Research2 BMC2002, Evolutionary article Biology x Open Access Molecular phylogeny of Subtribe Artemisiinae (Asteraceae), including Artemisia and its allied and segregate genera Linda E Watson*1, Paul L Bates2, Timothy M Evans3,
    [Show full text]
  • Tulip Meadows of Kazakhstan & the Tien Shan Mountains
    Tulip Meadows of Kazakhstan & the Tien Shan Mountains Naturetrek Tour Report 12 - 27 April 2008 Tulipa ostrowskiana Tulipa buhsiana Tulipa kauffmanaina Tulipa gregeii Report & images compiled by John Shipton Naturetrek Cheriton Mill Cheriton Alresford Hampshire SO24 0NG England T: +44 (0)1962 733051 F: +44 (0)1962 736426 E: [email protected] W: www.naturetrek.co.uk Tour Report Tulip Meadows of Kazakhstan & the Tien Shan Mountains Tour Leaders: Anna Ivanshenko (Local Guide) John Shipton (Naturetrek Leader) Translator Yerken Kartanbeyovich Participants: Diane Fuell Andrew Radgick Jennifer Tubbs Christina Hart-Davies Day 1 Saturday 12th April Travelling from the UK Day 2 Sunday 13th April LAKE KAPCHAGAI We arrived at Almaty at dawn. I had to negotiate with the rapacious taxi drivers to take us to the Otrar hotel was booked ready for us, and Julia from the local agents office, phoned soon after to let us know the day’s plan. This allowed us two hours rest before breakfast. At 10am Julia introduced us to Anna and Yerken and we drove with driver Yerlan two hours (80km) north out of town to Lake Kapchagai by the dam on the Ili River. Starting from the rather dilapidated industrial scene and negotiating a crossing of the main road with two imposing policeman we started on the west side of the road. Almost immediately we saw Tulipa kolpakowskiana in flower and our first Ixiolirion tartaricum. Further up the bank we found wonderful specimens of Tulipa albertii, although many flowers had already gone over as spring apparently was unusually advanced. Our tally of Tulips was increased by Tulipa buhsiana but not in flower.
    [Show full text]
  • Species Selected by the CITES Plants Committee Following Cop14
    PC19 Doc. 12.3 Annex 3 Review of Significant Trade: Species selected by the CITES Plants Committee following CoP14 CITES Project No. S-346 Prepared for the CITES Secretariat by United Nations Environment Programme World Conservation Monitoring Centre PC19 Doc. 12.3 UNEP World Conservation Monitoring Centre 219 Huntingdon Road Cambridge CB3 0DL United Kingdom Tel: +44 (0) 1223 277314 Fax: +44 (0) 1223 277136 Email: [email protected] Website: www.unep-wcmc.org ABOUT UNEP-WORLD CONSERVATION CITATION MONITORING CENTRE UNEP-WCMC (2010). Review of Significant Trade: The UNEP World Conservation Monitoring Species selected by the CITES Plants Committee Centre (UNEP-WCMC), based in Cambridge, following CoP14. UK, is the specialist biodiversity information and assessment centre of the United Nations Environment Programme (UNEP), run PREPARED FOR cooperatively with WCMC, a UK charity. The CITES Secretariat, Geneva, Switzerland. Centre's mission is to evaluate and highlight the many values of biodiversity and put authoritative biodiversity knowledge at the DISCLAIMER centre of decision-making. Through the analysis The contents of this report do not necessarily and synthesis of global biodiversity knowledge reflect the views or policies of UNEP or the Centre provides authoritative, strategic and contributory organisations. The designations timely information for conventions, countries employed and the presentations do not imply and organisations to use in the development and the expressions of any opinion whatsoever on implementation of their policies and decisions. the part of UNEP or contributory organisations The UNEP-WCMC provides objective and concerning the legal status of any country, scientifically rigorous procedures and services. territory, city or area or its authority, or These include ecosystem assessments, support concerning the delimitation of its frontiers or for the implementation of environmental boundaries.
    [Show full text]
  • Tulips of the Tien Shan Kazakhstan Greentours Itinerary Wildlife
    Tulips of the Tien Shan A Greentours Itinerary Days 1 & 2 Kapchagai After our overnight flight from the UK one can relax in the hotel or start in the sands of the Kapchagai where we’ll have our first meeting with the wonderful bulbous flora of the Central Asian steppes. Tulips soon start appearing, here are four species, and all must be seen today as they do not occur in the other parts of Kazakhstan we visit during the tour! These special species include a lovely yellow form of Tulipa albertii which blooms amidst a carpet of white blossomed Spiraea hypericifolia subshrubs. Elegant Eremurus crispus can be seen with sumptuous red Tulipa behmiana, often in company with pale Gagea ova, abundant Gagea minutiflora and local Gagea tenera. There are myriad flowers as the summer sun will not yet have burnt the sands dry. Low growing shrubs of Cerasus tianshanicus, their pale and deep pink blooms perfuming the air, shelter Rindera cyclodonta and Corydalis karelinii. In the open sandy areas we’ll look for Iris tenuifolia and both Tulipa talievii and the yellow-centred white stars of Tulipa buhseana. We’ll visit a canyon where we can take our picnic between patches of Tulipa lemmersii, a newly described and very beautiful tulip. First described in 2008 and named after Wim Lemmers, this extremely local endemic grows only on the west-facing rocks on the top of this canyon! Day 3 The Kordoi Pass and Merke After a night's sleep in the Hotel Almaty we will wake to find the immense snow- covered peaks of the Tien Shan rising from the edge of Almaty's skyline - a truly magnificent sight! We journey westwards and will soon be amongst the montane steppe of the Kordoi Pass where we will find one of the finest shows of spring flowers one could wish for.
    [Show full text]
  • Ephemerality of a Spring Ephemeral Gagea Lutea (L.) Is Attributable to Shoot Senescence Induced by Free Linolenic Title Acid
    Ephemerality of a Spring Ephemeral Gagea lutea (L.) is Attributable to Shoot Senescence Induced by Free Linolenic Title Acid Author(s) Iwanami, Hiroko; Takada, Noboru; Koda, Yasunori Plant and Cell Physiology, 58(10), 1724-1729 Citation https://doi.org/10.1093/pcp/pcx109 Issue Date 2017-10-01 Doc URL http://hdl.handle.net/2115/71778 © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved., This is a pre-copyedited, author-produced version of an article accepted for publication in Plant and cell physiology following peer review. The version of record [Iwanami, Hiroko; Takada, Noboru; Koda, Yasunori Rights (2017). Ephemerality of a Spring Ephemeral Gagea lutea (L.) is Attributable to Shoot Senescence Induced by Free Linolenic Acid . Plant and Cell Physiology, 58(10), 1724‒1729] is available online at: https://doi.org/10.1093/pcp/pcx109. Type article (author version) File Information MS for Plant and Cell Physiology with all Figs. .pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Ephemerality of a spring ephemeral Gagea lutea (L.) is attributable to shoot senescence induced by free linolenic acid Plant and Cell Physiology 58(10):1724-1729 (2017) Doi:10.1093/pcp/pcx109 Running title: Linolenic acid induces shoot senescence Hiroko Iwanami1, Noboru Takada2 and Yasunori Koda3,* 1Tokyo Laboratory of Kagome Co. Ltd., Product Development Department, Nihonbashi-Kakigaracho, Tokyo, 103-8462, Japan. 2Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, 036-8561, Japan. 3Department of Botany, Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.
    [Show full text]
  • Phylogenetic Taxonomy of Artemisia L. Species from Kazakhstan Based On
    PROCEEDINGS OF THE LATVIAN ACADEMY OF SCIENCES. Section B, Vol. 72 (2018), No. 1 (712), pp. 29–37. DOI: 10.1515/prolas-2017-0068 PHYLOGENETIC TAXONOMY OF ARTEMISIA L. SPECIES FROM KAZAKHSTAN BASED ON MATK ANALYSES Yerlan Turuspekov1,5, Yuliya Genievskaya1, Aida Baibulatova1, Alibek Zatybekov1, Yuri Kotuhov2, Margarita Ishmuratova3, Akzhunis Imanbayeva4, and Saule Abugalieva1,5,# 1 Institute of Plant Biology and Biotechnology, 45 Timiryazev Street, Almaty, KAZAKHSTAN 2 Altai Botanical Garden, Ridder, KAZAKHSTAN 3 Karaganda State University, Karaganda, KAZAKHSTAN 4 Mangyshlak Experimental Botanical Garden, Aktau, KAZAKHSTAN 5 Al-Farabi Kazakh National University, Biodiversity and Bioresources Department, Almaty, KAZAKHSTAN # Corresponding author, [email protected] Communicated by Isaak Rashal The genus Artemisia is one of the largest of the Asteraceae family. It is abundant and diverse, with complex taxonomic relations. In order to expand the knowledge about the classification of Kazakhstan species and compare it with classical studies, matK genes of nine local species in- cluding endemic were sequenced. The infrageneric rank of one of them (A. kotuchovii) had re- mained unknown. In this study, we analysed results of sequences using two methods — NJ and MP and compared them with a median-joining haplotype network. As a result, monophyletic origin of the genus and subgenus Dracunculus was confirmed. Closeness of A. kotuchovii to other spe- cies of Dracunculus suggests its belonging to this subgenus. Generally, matK was shown as a useful barcode marker for the identification and investigation of Artemisia genus. Key words: Artemisia, Artemisia kotuchovii, DNA barcoding, haplotype network. INTRODUCTION (Bremer, 1994; Torrel et al., 1999). Due to the large amount of species in the genus, their classification is still complex Artemisia of the family Asteraceae is a genus with great and not fully completed.
    [Show full text]
  • 5. Tribe CICHORIEAE 菊苣族 Ju Ju Zu Shi Zhu (石铸 Shih Chu), Ge Xuejun (葛学军); Norbert Kilian, Jan Kirschner, Jan Štěpánek, Alexander P
    Published online on 25 October 2011. Shi, Z., Ge, X. J., Kilian, N., Kirschner, J., Štěpánek, J., Sukhorukov, A. P., Mavrodiev, E. V. & Gottschlich, G. 2011. Cichorieae. Pp. 195–353 in: Wu, Z. Y., Raven, P. H. & Hong, D. Y., eds., Flora of China Volume 20–21 (Asteraceae). Science Press (Beijing) & Missouri Botanical Garden Press (St. Louis). 5. Tribe CICHORIEAE 菊苣族 ju ju zu Shi Zhu (石铸 Shih Chu), Ge Xuejun (葛学军); Norbert Kilian, Jan Kirschner, Jan Štěpánek, Alexander P. Sukhorukov, Evgeny V. Mavrodiev, Günter Gottschlich Annual to perennial, acaulescent, scapose, or caulescent herbs, more rarely subshrubs, exceptionally scandent vines, latex present. Leaves alternate, frequently rosulate. Capitulum solitary or capitula loosely to more densely aggregated, sometimes forming a secondary capitulum, ligulate, homogamous, with 3–5 to ca. 300 but mostly with a few dozen bisexual florets. Receptacle naked, or more rarely with scales or bristles. Involucre cylindric to campanulate, ± differentiated into a few imbricate outer series of phyllaries and a longer inner series, rarely uniseriate. Florets with 5-toothed ligule, pale yellow to deep orange-yellow, or of some shade of blue, including whitish or purple, rarely white; anthers basally calcarate and caudate, apical appendage elongate, smooth, filaments smooth; style slender, with long, slender branches, sweeping hairs on shaft and branches; pollen echinolophate or echinate. Achene cylindric, or fusiform to slenderly obconoidal, usually ribbed, sometimes compressed or flattened, apically truncate, attenuate, cuspi- date, or beaked, often sculptured, mostly glabrous, sometimes papillose or hairy, rarely villous, sometimes heteromorphic; pappus of scabrid [to barbellate] or plumose bristles, rarely of scales or absent.
    [Show full text]
  • Effect of Small Ruminant Grazing on the Plant Community Characteristics of Semiarid Mediterranean Ecosystems
    INTERNATIONAL JOURNAL OF AGRICULTURE & BIOLOGY ISSN Print: 1560–8530; ISSN Online: 1814–9596 09–104/MSA/2009/11–6–681–689 http://www.fspublishers.org Full Length Article Effect of Small Ruminant Grazing on the Plant Community Characteristics of Semiarid Mediterranean Ecosystems MOUNIR LOUHAICHI1, AMIN K. SALKINI AND STEVEN L. PETERSEN† International Center for Agricultural Research in the Dry Areas (ICARDA), Aleppo, Syria †Plant and Animal Sciences Department, Brigham Young University, Provo, UT 84602, USA 1Corresponding author’s e-mail: [email protected] ABSTRACT Rangeland degradation has been widespread and severe throughout the Syrian steppe as a result of both unfavorable environmental conditions and human induced impacts. To explore the effectiveness of management-based strategies on establishing sustainable rangeland development, we compared the response of temporarily removing grazing from rangelands ecosystems to those under a continuous heavy grazing regime. Results indicated that ungrazed sites had both higher biomass production and plant species composition than grazed sites. Ungrazed plots produced more than fourfold herbaceous biomass production than continuously grazed plots (p < 0.001). Extent of plant cover was 20% greater in ungrazed plots than grazed plots (33.5 & 13.5%, respectively). Furthermore areas protected from heavy grazing had over 200% greater species composition. Thus, protection from grazing can increase forage production and species composition, but may not necessarily improve plant species available for livestock utilization. A more balanced grazing management approach is recommended to achieve an optimal condition of biomass production (quantity), vegetation cover, quality and available forage species that contribute to proving livestock grazing conditions. Key Words: Vegetation sampling; Overgrazing; Species diversity; Semiarid; Steppe INTRODUCTION population.
    [Show full text]