Bulletin of the Geological Society of Denmark, Vol. 29/4, Pp. 203-244

Total Page:16

File Type:pdf, Size:1020Kb

Bulletin of the Geological Society of Denmark, Vol. 29/4, Pp. 203-244 Albian and Cenomanian ammonites from the island of Bornholm (Denmark) WILLIAM JAMES KENNEDY, JAKE MICHAEL HANCOCK AND WALTER KEGEL CHRISTENSEN Kennedy, W. J., Hancock, J. M. & Christensen, W. K.: Albian and Cenomanian ammonites from the DGF island of Bornholm (Denmark). Bull. geol. Soc. Denmark, vol. 29, pp. 203-244, Copenhagen, January 26th, 1981. The ammonite faunas from the Amager Greensand and its conglomerate on the island of Bornholm (Denmark) are revised. Three time intervals are represented in the phosphatic conglomerate. The ammo­ nites from the primary nodules represent two time intervals in the Lower Albian (Leymeriella tardefurcata and Douvilleiceras mammilatum Zones). The ammonites from the phosphatized matric of the secondary nodules are assigned to the Lower Cenomanian (Mantelliceras saxbii and/or M. dixoni Zones). The Amager Greensand sensu stricto is low in the Middle Cenomanian (Turrilites costatus Zone) on the basis of ammonites and planktic foraminifers. The transgressive history of the Mid-Cretaceous on the island of Bornholm is outlined. W. J. Kennedy, Geological Collections, University Museum, Oxford 0X1 3PW, England. J. M. Hancock, Department of Geology, King's College, Strand, London WC2R 2LS, England. W. K. Christensen, Geological Museum, Øster Voldgade 5-7, DK-1350 Copenhagen, Denmark. September 18th, 1980. This paper is a contribution to IGCP-project Mid-Cretaceous Events. Introduction General geological setting More than fifty years have passed since Ravn The island of Bornholm in the Baltic Sea is a (1916, 1925) monographed the ammonites from horst in the Fennoscandian Border Zone: that is the Amager Greensand and its phosphatic con­ the marginal area between the stable Pre-Cam- glomerate on the south coast of the island of brian Baltic Shield and the generally subsiding Bornholm. Ravn also gave a detailed description Permo-Mesozoic Danish Embayment which of the greensand, its conglomerate, and the lower forms part of the Danish-Polish Trough (fig. 1), boundary of the formation. Ravn considered the and can be followed from northern Jutland across conglomerate to be a basal conglomerate for the marine Cretaceous, and he defined the conglomerate as the base of the Arnager Green- sand. The aim of the present paper is to revise the ammonite faunas from the Arnager Greensand \ %r>v BALTIC SHIELD and its conglomerate, because (1) rich ammonite faunas from the mid-Cretaceous are not found elsewhere in the Baltic area, northern Germany or Scandinavia, and (2) the ammonite faunas provide important information on the transgres­ sive history of the mid-Cretaceous in the Fenno- scandian Border Zone. Moreover, the boundary between the Cenomanian Arnager Greensand and the Early Cretaceous Jydegaard Formation, N earlier referred to the Wealden needs discussion. BORNHOLJVM Comments are also made on the foraminifers |£si Fig. 1. Map showing the location of the island of Bornholm and from the Arnager Greensand. the approximate location of the Fennoscandian Border Zone. 204 Kennedy, Hancock & Christensen: Albian and Cenomanian ammonites Scania and Bornholm to Poland. This marginal of Bornholm: (1) between Grødby Å and Læså, area is characterized by graben and horst struc­ (2) in the Nyker area, and (3) between Madse- tures trending NW-SE and is crossed by faults grav and Amager on the south coast of Bornholm with a mean direction NNE-SSW, creating a (Gry 1960). At the last locality the Amager mosaic of tilted blocks. The Border Zone has also Greensand crops out in low sea cliffs. The general been discussed under other names, viz. Tornquist dip of this fault block is 6° towards SW. However, Line, Tornquist-Jentzsch Line or Tornquist- near or at the coast the dip might be slightly Teissyre Line; see a recent review by Baartman & greater, and at Madsegrav itself the Amager Bruun Christensen, 1975. Greensand dips 12-13° towards SW (Ravn 1916, The northern two-thirds of the island of Born- 1925). holm consists of Pre-Cambrian granite and The Amager Greensand is a loose, poorly gneiss, and Mesozoic sediments are found to the sorted, glauconitic quartz sand deposit that rests south in down-faulted areas (fig. 2). Mesozoic with a slight angular uncorformity on the Early sediments are also found in a small down-faulted Cretaceous Jydegaard Formation (Gry 1960). area at Nyker. The latter formation was earlier referred to the Wealden, but according to Bruun Christensen Amager Greensand (1972) it might be Valanginian-Hauterivian. The thickness of the Amager Greensand is estimated The Cenomanian Amager Greensand has been to be ca. 85 m (E. Stenestad, pers. comm. 1977). found in three down-faulted areas on the island The basal part of the Amager Greensand is ex- TOWN Locality Bavnodde Greensand 2~<^7j Amager Limestone Amager Greensand Jydegaard Formation RØNN (Valanginian-Hauterivian) Rabekke Fm and Robbe- dale Fm (Berriasian) Triassic -Jurassic Precambrian and Palaeozoic BALTIC SEA Fault ARNAGER 0 5km Madsegrav l i_ Fig. 2. Geological map of southwestern part of the island of Bornholm showing the lithostratigraphical formations at the base of the Quaternary (after Gry 1960). Bulletin of the Geological Society of Denmark, vol. 29 1980 205 posed immediately west of the Madsegrav creek, Rankin (1969), Stenestad (1972) and Christen­ and the topmost part of the formation can be seen sen (1973). From a hitherto unknown horizon in at the beach approximately 110-130 m west of the upper part of the Arnager Greensand (ca. Arnager. Here the Amager Greensand is 4-5 m below the basal conglomerate of the Ar­ overlain by the Arnager Limestone, which was nager Limestone) a sample was collected in 1975 referred to the late Coniacian by Douglas & by WKC during a temporary excavation for a approximate 85 m to top t of Arnager Greensand glauconitic quartz sand with scattered phosphatised pebbles indurated glauconitic quartz sand with scattered phosphatised pebbles glauconitic quartz sand with scattered phosphatised pebbles < CO indurated glauconitic quartz sand z with scattered phosphatised pebbles LU LU cc glauconitic quartz sand with o scattered phosphatised pebbles DC LU O conglomerate with I e phosphatised ammonites DC T- < glauconitic quartz sand with few burrows 30 white sand with many burrows m (spotted sand of Ravn) clay cross-bedded white sand 5| >50 with few burrows -3LL cm Fig. 3. Section of the boundary between the Jydegaard Formation of Valanginian-Hauterivian age and the overlying Arnager Greensand Formation at Madsegrav. The phosphatized ammonites came from the conglomerate, and the unphosphatized ammonites came by and large from the two indurated glauconitic quartz sand beds. 206 Kennedy, Hancock Christensen: Albian and Cenomanian ammonites sewerage plant. This sample has yielded strati- Ravn (1925). It consists mainly of phosphatic graphically diagnostic foraminifers (Hart 1979; nodules ranging in size from 1 cm up to 30 cm. see below). Lower Cambrian sandstone and quartzite, and A section of the boundary between the fresh Jurassic or Early Cretaceous lignite were also re­ and brackish water Jydegaard Formation and the ported from the conglomerate. Ravn recognized basal part of the Arnager Greensand at Madse- two generations of phosphatic nodules in the grav, as measured by WKC in 1977, is shown in conglomeratic pebble bed: (1) primary nodules fig. 3 (se also Bromley 1979, fig. 6). The upper consisting largely of phosphatized glauconitic part of the Jydegaard Formation consists of sandstone, and (2) secondary nodules that are cross-bedded white sand with a few thalassinoid built up by primary nodules cemented together burrows. This layer is overlain by a 30 cm thick by a matrix of brownish phosphatized glauconitic bed of white sand which has been heavily biotu- sand. The nodules often carry encrusting animals. bated by thalassinoid burrows. The burrows are The conglomeratic pebble and cobble bed was infilled by the overlying glauconitic quartz sand, reported from several outcrops and shallow bor­ resulting in a spotted appearance of the sand ings on the southern fault block (between Mad­ ('spotted sand' of Ravn 1916). Upon the spotted segrav and Stampe Å) and the thickness varies sand follows the Arnager Greensand which starts between 18-55 cm, with a mean thickness of 37 with a 30 cm thick glauconitic quartz sand with­ cm (Ravn 1925). out phosphatic pebbles. This sand has yielded a few foraminifers without stratigraphical value (E. Stenestad, pers. comm. 1977) and shark-teeth; Age of the Arnager Greensand faunas Bromley (1979) records 'Rhynchonella' sigma and Avellana incrassata. The glauconitic quartz Ravn (1925) referred the fauna from the primary sand is succeeded upwards by a 40 cm thick con­ nodules ('Hoplites Horizons' of Ravn) to the glomerate with complexly built phosphatized Lower Albian (tardefurcata-regularis Zone) and pebbles and cobbles (hiatus concretions). The the fauna from the matrix of the secondary conglomerate is followed upwards by a loose nodules ('Schloenbachia Horizon' of Ravn) to the glauconitic quartz sand with two layers of indu­ Upper Albian and Lower Cenomanian. The Arn­ rated glauconitic quartz sand. The greensand ager Greensand could be younger. Ravn arrived above the conglomerate also contains scattered at these conclusions on the basis of mollusks, phosphatized pebbles. mainly ammonites. Rosenkrantz (1945), on the It should be stressed at this point that the basis of a single specimen of Acanthoceras, Bir­ boundary between the Arnager Greensand and kelund (1957), on the basis of the belemnite Ac- the Jydegaard Formation is placed at a lower tinocamax primus, and Douglas & Rankin level in the section than Ravn did (1916, 1925), (1967), on the basis of planktic foraminifers, because it seems more natural to include the confirmed Ravn's dating of the Arnager Green- glauconitic quartz sand below the conglomerate sand sensu stricto. in the Amager Greensand. Our revision of Ravn's and Rosenkrantz' am­ The conglomerate was described in detail by monites is as follows: RAVN, 1916 and 1925 Revised determinations Kossmatella? sp. Sonneratia spp.
Recommended publications
  • Handbook of Texas Cretaceous Fossils
    University of Texas Bulletin No. 2838: October 8, 1928 HANDBOOK OF TEXAS CRETACEOUS FOSSILS B y W. S. ADKINS Bureau of Economic Geology J. A. Udden, Director E. H. Sellards, Associate Director PUBLISHED BY THE UNIVERSITY FOUR TIMES A MONTH, AND ENTERED AS SECOND-CLASS MATTER AT THE POSTOFFICE AT AUSTIN, TEXAS. UNDER THE ACT OF AUGUST 24. 1912 The benefits of education and of useful knowledge, generally diffused through a community, are essential to the preservation of a free govern­ m en t. Sam Houston Cultivated mind is the guardian genius of democracy. It is the only dictator that freemen acknowl­ edge and the only security that free­ men desire. Mirabeau В. Lamar CONTENTS P age Introduction __________________________________________________ 5 Summary of Formation Nomenclature_______________________ 6 Zone Markers and Correlation_______________________________ 8 Types of Texas Cretaceous Fossils___________________________ 36 Bibliography ________________________________________________ 39 L ist and Description of Species_________________________________ 46 P lants ______________________________________________________ 46 Thallophytes ______________________________________________ 46 Fungi __________________________________________________ 46 Algae __________________________________________________ 47 Pteridophytes ____________________________________________ 47 Filices __________________________________________________ 47 Spermatophytes __________________________________________ 47 Gymnospermae _________________________________________
    [Show full text]
  • Start List 2021 IRONMAN Copenhagen (Last Update: 2021-08-15) Sorted by PRO, AWA, Pole Posistion and Age Group (AG) Search for Your Name with "Ctrl F"
    Start list 2021 IRONMAN Copenhagen (last update: 2021-08-15) Sorted by PRO, AWA, Pole Posistion and Age Group (AG) Search for your name with "Ctrl F" BIB First name Last name AG AWA TriClub Nationallty Please note that BIBs will be given onsite according to the selected swim time you choose in registration oniste. 1 Hogenhaug Kristian MPRO DNK (Denmark) 2 Molinari Giulio MPRO ITA (Italy) 3 Wojt Lukasz MPRO DEU (Germany) 4 Svensson Jesper MPRO SWE (Sweden) 5 Sanders Lionel MPRO CAN (Canada) 6 Smales Elliot MPRO GBR (United Kingdom) 7 Heemeryck Pieter MPRO BEL (Belgium) 8 Mcnamee David MPRO GBR (United Kingdom) 9 Nilsson Patrik MPRO SWE (Sweden) 10 Hindkjær Kristian MPRO DNK (Denmark) 11 Plese David MPRO SVN (Slovenia) 12 Kovacic Jaroslav MPRO SVN (Slovenia) 14 Jarrige Yvan MPRO FRA (France) 15 Schuster Paul MPRO DEU (Germany) 16 Dário Vinhal Thiago MPRO BRA (Brazil) 17 Lyngsø Petersen Mathias MPRO DNK (Denmark) 18 Koutny Philipp MPRO CHE (Switzerland) 19 Amorelli Igor MPRO BRA (Brazil) 20 Petersen-Bach Jens MPRO DNK (Denmark) 21 Olsen Mikkel Hojborg MPRO DNK (Denmark) 22 Korfitsen Oliver MPRO DNK (Denmark) 23 Rahn Fabian MPRO DEU (Germany) 24 Trakic Strahinja MPRO SRB (Serbia) 25 Rother David MPRO DEU (Germany) 26 Herbst Marcus MPRO DEU (Germany) 27 Ohde Luis Henrique MPRO BRA (Brazil) 28 McMahon Brent MPRO CAN (Canada) 29 Sowieja Dominik MPRO DEU (Germany) 30 Clavel Maurice MPRO DEU (Germany) 31 Krauth Joachim MPRO DEU (Germany) 32 Rocheteau Yann MPRO FRA (France) 33 Norberg Sebastian MPRO SWE (Sweden) 34 Neef Sebastian MPRO DEU (Germany) 35 Magnien Dylan MPRO FRA (France) 36 Björkqvist Morgan MPRO SWE (Sweden) 37 Castellà Serra Vicenç MPRO ESP (Spain) 38 Řenč Tomáš MPRO CZE (Czech Republic) 39 Benedikt Stephen MPRO AUT (Austria) 40 Ceccarelli Mattia MPRO ITA (Italy) 41 Günther Fabian MPRO DEU (Germany) 42 Najmowicz Sebastian MPRO POL (Poland) If your club is not listed, please log into your IRONMAN Account (www.ironman.com/login) and connect your IRONMAN Athlete Profile with your club.
    [Show full text]
  • Life and Cult of Cnut the Holy the First Royal Saint of Denmark
    Life and cult of Cnut the Holy The first royal saint of Denmark Edited by: Steffen Hope, Mikael Manøe Bjerregaard, Anne Hedeager Krag & Mads Runge Life and cult of Cnut the Holy The first royal saint of Denmark Report from an interdisciplinary research seminar in Odense. November 6th to 7th 2017 Edited by: Steffen Hope, Mikael Manøe Bjerregaard, Anne Hedeager Krag & Mads Runge Kulturhistoriske studier i centralitet – Archaeological and Historical Studies in Centrality, vol. 4, 2019 Forskningscenter Centrum – Odense Bys Museer Syddansk Univeristetsforlag/University Press of Southern Denmark KING CNUT’S DONATION LETTER AND SETTLEMENT STRUCTURE IN DENMARK, 1085 – NEW PERSPECTIVES ON AN OLD DOCUMENT King Cnut’s donation letter and settle- ment structure in Denmark, 1085 – new perspectives on an old document By Jesper Hansen One of the most important sources to the history of donated to the Church of St Laurentius, the cathedral medieval Denmark is the donation letter of Cnut IV, church in Lund, and it represents the first written re- dated 21st of May 1085 and signed in Lund (fig. 1). cord of rural administration and fiscal rights in Den- This letter is a public affirmation of the royal gifts mark (Latin text, appendix 1). Cnut’s donation letter Skälshög, two hides. In Flädie, five this agreed-upon decree against the to the church in Lund and a half hides which Håkon gave to command of holy religion, he is to be the king. In Hilleshög, half a hide. In excommunicated upon the Return of (Dipl. Dan 1.2:21) Håstad, one hide. In Gärd. In Venestad, our Lord and to be consigned to eternal In the name of the indivisible Trinity, one hide.
    [Show full text]
  • GSSP) for the Base of the Cenomanian Stage, Mont Risou, Hautes-Alpes, France
    21 by W.J. Kennedy1, A.S. Gale2, J.A. Lees3, and M. Caron4 The Global Boundary Stratotype Section and Point (GSSP) for the base of the Cenomanian Stage, Mont Risou, Hautes-Alpes, France 1 Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW, U.K. 2 Department of Palaeontology, The Natural History Museum, Cromwell Road, London SW7 5BP, U.K. and School of Earth and Environ- mental Sciences, University of Greenwich, Chatham Maritime Campus, Chatham, Kent ME4 4AW, U.K. 3 Research School of Geological and Geophysical Sciences, Birkbeck College and University College London, Gower Street, London WC1E 6BT, U.K. 4 Institut de Géologie, Université de Fribourg, CH-1700 Fribourg, Switzerland. Following the unanimous recommendation of the Inter- Grès Vert Supérieur etc., and taking the name from Touraine national Commission on Stratigraphy, the Global (Roman Turonia). Five years later, he realized that two distinct ammonite and rudist faunas were present, and he restricted the term boundary Stratotype Section and Point (GSSP) for the Turonian to beds corresponding to his third zone of rudists, yielding base of the Cenomanian Stage is defined at a level 36 “Ammonites lewesiensis, peramplus, Vielbancii, Woolgari, Fleuri- metres below the top of the Marnes Bleues Formation, a ausianus, Deverianus etc.”, “le plus beau type côtier étant très prononcé dans toute la Touraine, et nous donnerons à la partie level that corresponds to the the first appearance of the inférieure le nom d’étage Cénomanien, le Mans (Cenomanum), en planktonic foraminiferan Rotalipora globotruncanoides montrant à la fois le type sous-marin” (d'Orbigny, 1848–1851, p.
    [Show full text]
  • ALBIAN AMMONITES of POLAND (Plates 1—25)
    PALAEONTOLOGIA POLQNICA mm ■'Ъ-Ь POL T S H ACADEMY OF SCIENCES INSTITUTE OF PALEOBIOLOGY PALAEONTOLOGIA POLONICA—No. 50, 1990 t h e a l b ia w AMMONITES OF POLAND (AMQNITY ALBU POLS К I) BY RYSZARD MARCINOWSKI AND JOST WIEDMANN (WITH 27 TEXT-FIGURES, 7 TABLES AND 25 PLATES) WARSZAWA —KRAKÔW 1990 PANSTWOWE WYDAWNICTWO NAUKOWE KEDAKTOR — EDITOR JOZEP KA2MIERCZAK 2ASTEPCA HEDAKTOHA _ ASSISTANT EDITOR m AôDAlenA BÛRSUK-BIALYNICKA Adres Redakcjl — Address of the Editorial Office Zaklad Paleobiologij Polska Akademia Nauk 02-089 Warszawa, AI. 2w irki i Wigury 93 KOREKTA Zespol © Copyright by Panstwowe Wydawnictwo Naukowe Warszawa — Krakôw 1990 ISBN 83-01-09176-2 ISSN 0078-8562 Panstwowe Wydawnielwo Naukowe — Oddzial w Krakowie Wydanie 1, Naklad 670 + 65 cgz. Ark. wyd. 15. Ark. druk. 6 + 25 wkladek + 5 wklejek. Papier offset, sat. Ill kl. 120 g. Oddano do skiadania w sierpniu 1988 r. Podpisano do druku w pazdzierniku 1990 r. Druk ukoriczono w listopadzie 1990 r. Zara. 475/87 Drukarnia Uniwersytetu Jagielloriskiego w Krakowie In Memory of Professor Edward Passendorfer (1894— 1984) RYSZARD MARCINOWSKI and JOST WIEDMANN THE ALBIAN AMMONITES OF POLAND (Plates 1—25) MARCINOWSKI, R. and WIEDMANN, J.: The Albian ammonites of Poland. Palaeonlologia Polonica, 50, 3—94, 1990. Taxonomic and ecological analysis of the ammonite assemblages, as well as their general paleogeographical setting, indicate that the Albian deposits in the Polish part of the Central European Basin accumulated under shallow or extremely shallow marine conditions, while those of the High-Tatra Swell were deposited in an open sea environment. The Boreal character of the ammonite faunas in the epicontinental area of Poland and the Tethyan character of those in the Tatra Mountains are evident in the composition of the analyzed assemblages.
    [Show full text]
  • The Middelgrunden Offshore Wind Farm
    The Middelgrunden Offshore Wind Farm A Popular Initiative 1 Middelgrunden Offshore Wind Farm Number of turbines............. 20 x 2 MW Installed Power.................... 40 MW Hub height......................... 64 metres Rotor diameter................... 76 metres Total height........................ 102 metres Foundation depth................ 4 to 8 metres Foundation weight (dry)........ 1,800 tonnes Wind speed at 50-m height... 7.2 m/s Expected production............ 100 GWh/y Production 2002................. 100 GWh (wind 97% of normal) Park efficiency.................... 93% Construction year................ 2000 Investment......................... 48 mill. EUR Kastrup Airport The Middelgrunden Wind Farm is situated a few kilometres away from the centre of Copenhagen. The offshore turbines are connected by cable to the transformer at the Amager power plant 3.5 km away. Kongedybet Hollænderdybet Middelgrunden Saltholm Flak 2 From Idea to Reality The idea of the Middelgrunden wind project was born in a group of visionary people in Copenhagen already in 1993. However it took seven years and a lot of work before the first cooperatively owned offshore wind farm became a reality. Today the 40 MW wind farm with twenty modern 2 MW wind turbines developed by the Middelgrunden Wind Turbine Cooperative and Copenhagen Energy Wind is producing electricity for more than 40,000 households in Copenhagen. In 1996 the local association Copenhagen Environment and Energy Office took the initiative of forming a working group for placing turbines on the Middelgrunden shoal and a proposal with 27 turbines was presented to the public. At that time the Danish Energy Authority had mapped the Middelgrunden shoal as a potential site for wind development, but it was not given high priority by the civil servants and the power utility.
    [Show full text]
  • 12. Lower Cretaceous Ammonites from the South Atlantic Leg 40 (Dsdp), Their Stratigraphic Value and Sedimentologic Properties
    12. LOWER CRETACEOUS AMMONITES FROM THE SOUTH ATLANTIC LEG 40 (DSDP), THEIR STRATIGRAPHIC VALUE AND SEDIMENTOLOGIC PROPERTIES Jost Wiedmann and Joachim Neugebauer, Geol.-palaont. Institut der Universitat Tubingen, BRD ABSTRACT Eleven ammonites have been cored during Leg 40. They were found concentrated in the lower parts of the drilled section at Sites 363 (Walvis Ridge) and 364 (Angola Basin), and permit recognition of upper Albian, middle Albian, and upper Aptian. So far, no lower Albian could be recognized. A high ammonite density can be assumed for the South Atlantic Mid-Cretaceous. In contrast to data available so far, the Walvis Ridge associations consisting of phylloceratids and desmoceratids show more open- basin relationships than those of the Angola Basin, which are composed of mortoniceratids, desmoceratids, and heteromorphs. Paleobiogeographically, the South Atlantic fauna can be related to the well-known onshore faunas of Angola, South Africa, and Madagascar as well as to the European Mid-Cretaceous. This means that the opening of the South Atlantic and its connection with the North Atlantic occurred earlier as was generally presumed, i.e., in the middle Albian. Records of lower Aptian ammonite faunas from Gabon and Brazil remain doubtful. High rates of sedimentation prevailed especially in the Aptian and Albian, in connection with the early deepening of the South Atlantic basins. The mode of preservation of the ammonites suggests that they were deposited on the outer shelf or on the upper continental slope and were predominantly buried under sediments of slightly reducing conditions. In spite of a certain variability of the depositional environment, the ammonites show a uniform and particular mode of preservation.
    [Show full text]
  • Download Curriculum Vitae
    NEIL H. LANDMAN CURATOR, CURATOR-IN-CHARGE AND PROFESSOR DIVISION OF PALEONTOLOGY HIGHEST DEGREE EARNED Ph.D. AREA OF SPECIALIZATION Evolution, life history, and systematics of externally shelled cephalopods EDUCATIONAL EXPERIENCE Ph.D. in Geology, Yale University, 1982 M. Phil. in Geology, Yale University, 1977 M.S. in Earth Sciences, Adelphi University, 1975 B.S. in Mathematics, summa cum laude, Polytechnic University of New York, 1972 PREVIOUS EXPERIENCE IN DOCTORAL EDUCATION FACULTY APPOINTMENTS Adjunct Professor, Department of Biology, City College Adjunct Professor, Department of Geology, Brooklyn College GRADUATE ADVISEES Susan Klofak, Biology, CUNY, 1999-present Krystal Kallenberg, Marine Sciences, Stony Brook, 2003-present GRADUATE COMMITTEES Christian Soucier, Biology, Brooklyn College, 2004-present Krystal Kallenberg, Marine Sciences, Stony Brook, 2003-present Yumiko Iwasaki, Geology, CUNY, 2000-2009 Emily Allen, Geology, University of Chicago, 2002-2005 Susan Klofak, Biology, CUNY, 1996-present Claude Monnet, University of Zurich, presently Sophie Low, Geology, Harvard University RESEARCH GRANT SUPPORT Kosciuszko Foundation. Comparative study of ammonite faunas from the United States Western Interior and Polish Lowland. Post-doc: Izabela Ploch, Geological Museum of Polish Geological Institute. 2011. NSF Grant MR1-R2 (Co-PI): Acquisition of a High Resolution CT-Scanner at the American Museum of Natural History: 2010-2013. NSF Grant No. DBI 0619559 (Co-PI): Acquisition of a Variable Pressure SEM at the AMNH: 2006-2009 NSF Grant No. EAR 0308926 (PI): Collaborative Research: Paleobiology, paleoceanography, and paleoclimatology of a time slice through the Western Interior Seaway: 2003-2006 National Science Foundation, Collaborative Research: Soft Tissues and Membrane Preservation in Permian Cephalopods, $40,000, February 1, 2002-January 31, 2006.
    [Show full text]
  • The Cretaceous of North Greenland
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Zitteliana - Abhandlungen der Bayerischen Staatssammlung für Paläontologie und Histor. Geologie Jahr/Year: 1982 Band/Volume: 10 Autor(en)/Author(s): Birkelund Tove, Hakansson Eckhart Artikel/Article: The Cretaceous of North Greenland - a stratigraphic and biogeographical analysis 7-25 © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at 7 Zitteliana 10 7-25 München, 1. Juli 1983 ISSN 0373-9627 The Cretaceous of North Greenland - a stratigraphic and biogeographical analysis By TOVE BIRKELUND & ECKART HÄKANSSON*) With 6 text figures and 3 plates ABSTRACT Mapping of the Wandel Sea Basin (81-84°N) has revealed realites, Peregrinoceras, Neotollia, Polyptycbites, Astieripty- an unusually complete Late Jurassic to Cretaceous sequence chites) are Boreal and Sub-Boreal, related to forms primarily in the extreme Arctic. The Cretaceous pan of the sequence in­ known from circum-arctic regions (Sverdrup Basin, Svalbard, cludes marine Ryazanian, Valanginian, Aptian, Albian, Tu­ Northern and Western Siberia), but they also have affinities to ranian and Coniacian deposits, as well as outliers of marine occurrences as far south as Transcaspia. The Early Albian Santonian in a major fault zone (the Harder Fjord Fault Zone) contains a mixing of forms belonging to different faunal pro­ west of the main basin. Non-marine PHauterivian-Barremian vinces (e. g. Freboldiceras, Leymeriella, Arctboplites), linking and Late Cretaceous deposits are also present in addition to North Pacific, Atlantic, Boreal/Russian platform and Trans­ Late Cretaceous volcanics. caspian faunas nicely together. Endemic Turonian-Coniacian Scapbites faunas represent new forms related to European An integrated dinoflagellate-ammonite-5«c/;D stratigra­ species.
    [Show full text]
  • The Barremian Heteromorph Ammonite Dissimilites from Northern Italy: Taxonomy and Evolutionary Implications
    The Barremian heteromorph ammonite Dissimilites from northern Italy: Taxonomy and evolutionary implications ALEXANDER LUKENEDER and SUSANNE LUKENEDER Lukeneder, A. and Lukeneder, S. 2014. The Barremian heteromorph ammonite Dissimilites from northern Italy: Taxon- omy and evolutionary implications. Acta Palaeontologica Polonica 59 (3): 663–680. A new acrioceratid ammonite, Dissimilites intermedius sp. nov., from the Barremian (Lower Cretaceous) of the Puez area (Dolomites, northern Italy) is described. Dissimilites intermedius sp. nov. is an intermediate form between D. dissimilis and D. trinodosum. The new species combines the ribbing style of D. dissimilis (bifurcating with intercalating single ribs) with the tuberculation style of D. trinodosum (trituberculation on entire shell). The shallow-helical spire, entirely comprising single ribs intercalated by trituberculated main ribs, is similar to the one of the assumed ancestor Acrioceras, whereas the increasing curvation of the younger forms resembles similar patterns observed in the descendant Toxoc- eratoides. These characters support the hypothesis of a direct evolutionary lineage from Acrioceras via Dissimilites to Toxoceratoides. D. intermedius sp. nov. ranges from the upper Lower Barremian (Moutoniceras moutonianum Zone) to the lower Upper Barremian (Toxancyloceras vandenheckii Zone). The new species allows to better understand the evolu- tion of the genus Dissimilites. The genus appears within the Nicklesia pulchella Zone represented by D. duboise, which most likely evolved into D. dissimilis. In the Kotetishvilia compressissima Zone, two morphological forms developed: smaller forms very similar to Acrioceras and forms with very long shaft and juvenile spire like in D. intermedius sp. nov. The latter most likely gave rise to D. subalternatus and D. trinodosum in the M.
    [Show full text]
  • 06 Kennedy ACTA LAYAUT
    Acta Geologica Polonica, Vol. 65 (2015), No. 4, pp. 545–553 DOI: 10.1515/agp-2015-0024 A late Albian ammonite assemblage from the mid- Cretaceous succession at Annopol, Poland WILLIAM J. KENNEDY1 and MARCIN MACHALSKI2 1Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, United Kingdom. E-mail: [email protected] 2Institute of Paleobiology, Polish Academy of Sciences, ul. Twarda 51/55, PL 00-818 Warszawa, Poland. E-mail: [email protected] ABSTRACT: Kennedy, W.J. and Machalski, M. 2015. A late Albian ammonite assemblage from the mid-Cretaceous succes- sion at Annopol, Poland. Acta Geologica Polonica, 65 (4), 545–553. Warszawa. A previously unrecorded ammonite assemblage, comprising Lepthoplites sp., Callihoplites tetragonus (Seeley, 1865), C. cf. tetragonus, Arrhaphoceras cf. substuderi Spath, 1923, Cantabrigites sp., Stoliczkaiella (Stoliczkaiella) sp., Hamites cf. duplicatus Pictet and Campiche, 1861, H. cf. subvirgulatus Spath, 1941, and H. cf. venetzianus Pictet, 1847, is described from the mid-Cretaceous condensed succession at Annopol, Poland. These specimens are pre- served as pale phosphates or sandstone moulds in a bed of reworked phosphatic nodules near the top of the Albian. This assemblage has many species in common with the late late Albian faunas from condensed deposits of Eng- land, Switzerland, and France. The presence of Callihoplites tetragonus indicates the lowermost upper upper Al- bian Mortoniceras fallax Zone. The ammonites studied are the youngest elements in the phosphate bed, which also contains taxa as old as the middle Albian Hoplites dentatus Zone. This bed originated through condensation and reworking of nodules and fossils in a period of low net sedimentation rate, being probably a reflection of a sea-level drop at the boundary between the classic ammonite zones of Mortoniceras inflatum and Stoliczkaiella dispar.
    [Show full text]
  • Ancyloceratina
    Heteromorph Ammonites: Ancyloceratina Anatomy: Ammonites were a diverse group of Not much about Ancyloceratina sea-dwelling spiral shelled molluscs anatomy can be determined from the first arising in the Devonian thought fossil specimen. However, we do to be most closely related to modern know that Ancyloceratina is most cephalopods [1] [4]. Ammonites commonly five-lobed [2]. We also survived three mass extinctions, know that they had strange shell finally dying at the K/Pg Extinction. forms, commonly uncoiled [1]. Their Ammonites ancestrally have a strange uncoiled spiral shape would planospiral (simple spiral) shell be far less advantageous to structure (we call these swimming than the tightly coiled monomorphs), but throughout their planospiral shape [1]. Because of history they have also developed Monomorph [4] Ancycloceratina [4] this, we believe that heteromorph more strange and complex shell ammonites would have been very forms [1] [4]. These ammonites are poor swimmers [1]. Ancyloceratina called Ancyloceratina or heteromorph Caspianites wassiliewskyi: also had a lot of variety in shell ammonites, and they first arose in ● Heteromorphic origin of the monomorph shape [2]. the late Jurassic, becoming more Deshayesitoidea [2]. common and geographically diverse ● Crescent-like cross section replaced in the during the Cretaceous [1]. While first whorl [2]. Ancyloceratina are ancestrally ● Reduced first umbilical lobe and the return heteromorphs, there are some of a four-lobed structure, transitioning to a species that are convergent planospiral shell [2]. monomorphs. ● Appearance of umbilical perforations [2] The crescent-like cross-section of the first whorl in the suborder Ancyloceratina is reduced to a rounded cross-section. A Retrieved from Ebel-k five-lobed primary suture is typical for most ancyloceratids, though it may be unstable [3].
    [Show full text]