CRREL Report 93-14

Total Page:16

File Type:pdf, Size:1020Kb

CRREL Report 93-14 CRREL REPORT 93-14 Malcolm Mellor Aviation Notes onAntarctic August1993 Abstract Antarctic aviation has been evolving for the best part of a century, with regular air operations developing over the past three or four decades. Antarctica is the last continent where aviation still depends almost entirely on expeditionary airfields and “bush flying,” but change seems imminent. This report describes the history of aviation in Antarctica, the types and characteristics of existing and proposed airfield facilities, and the characteristics of aircraft suitable for Antarctic use. It now seems possible for Antarctic aviation to become an extension of mainstream international aviation. The basic requirement is a well-distributed network of hard-surface airfields that can be used safely by conventional aircraft, together with good international collaboration. The technical capabilities al- ready exist. Cover: Douglas R4D Que Sera Sera, which made the first South Pole landing on 31 October 1956. (Smithsonian Institution photo no. 40071.) The contents of this report are not to be used for advertising or commercial purposes. Citation of brand names does not constitute an official endorsement or approval of the use of such commercial products. For conversion of SI metric units to U.S./British customary units of measurement consult ASTM Standard E380-89a, Standard Practice for Use of the International System of Units, published by the American Society for Testing and Materials, 1916 Race St., Philadelphia, Pa. 19103. CRREL Report 93-14 US Army Corps of Engineers Cold Regions Research & Engineering Laboratory Notes on Antarctic Aviation Malcolm Mellor August 1993 Approved for public release; distribution is unlimited. PREFACE This report was prepared by Dr. Malcolm Mellor, Experimental Engineering Division, U.S. Army Cold Regions Research and Engineering Laboratory, just prior to his death in August 1991. We hope that final efforts to assemble and edit this lengthy and detailed document have not overlooked or created problems normally caught by his keen editorial eye. This report started as a much shorter note and grew, primarily because of Malcolm’s long involvement in trafficability and transportation research in polar regions. His early interest in gliders, his experience as a pilot and a designer of snow and ice runways, and his decades of use of specialized aircraft for polar operations account for his enthusiasm in preparing this work. The commentary and perceptions found throughout the text, as well as the many photographs taken by Malcolm, some during his early involvement with the Australian Antarctic program, all reflect his first-hand experience and knowledge. Malcolm is shown here at the controls of a Soviet Ilyushin Il-18D used by the Soviet Antarctic Expedition. This report was prepared as part of CRREL’s research and engineering efforts in support of the National Science Foundation’s Antarctic Program. ii CONTENTS Page Preface .................................................................................................................................... ii Abbreviations ........................................................................................................................ viii Introduction ........................................................................................................................... 1 Brief history of Antarctic aviation ...................................................................................... 1 Early history ..................................................................................................................... 1 WW II to the IGY ............................................................................................................. 6 Post-IGY ............................................................................................................................ 8 Evolution of equipment and facilities ............................................................................... 21 Aircraft .............................................................................................................................. 21 Facilities for takeoff and landing................................................................................... 23 Navigation and radio communication ......................................................................... 28 Aviation weather services .............................................................................................. 30 Flights to and from Antarctica ............................................................................................ 32 Departure points .............................................................................................................. 32 Ports of entry in Antarctica ............................................................................................ 34 Aircraft in current use ..................................................................................................... 37 Types of Antarctic airfields ................................................................................................. 37 Open-field landings on snow ........................................................................................ 41 Groomed skiways on deep snow .................................................................................. 41 Runways on deep snowfields ........................................................................................ 46 Compacted snow on hard ice ........................................................................................ 58 Runways on snow-free glacier ice ................................................................................ 62 Runways on first-year sea ice ........................................................................................ 65 Runways on multi-year sea ice ...................................................................................... 67 Frozen lakes ...................................................................................................................... 67 Conventional rock-fill runways .................................................................................... 70 Rock fill over glacier ice .................................................................................................. 71 Manufactured landing mats .......................................................................................... 72 Bearing capacity, rutting resistance and surface roughness .......................................... 73 Bearing capacity............................................................................................................... 73 Rutting resistance ............................................................................................................ 73 Surface roughness ........................................................................................................... 73 Runway dimensions ............................................................................................................. 74 Runway length ................................................................................................................. 74 Runway width ................................................................................................................. 75 Examples of Antarctic airfields........................................................................................... 76 Groomed skiways on deep snow .................................................................................. 76 Runways on deep snowfields ........................................................................................ 79 Compacted snow runways on hard ice ........................................................................ 81 Runways on snow-free glacier ice ................................................................................ 82 Runways on first-year sea ice ........................................................................................ 98 Runways on multi-year sea ice ...................................................................................... 102 Runways on lake ice........................................................................................................ 102 Conventional rock-fill runways .................................................................................... 103 Aircraft for Antarctic operations ........................................................................................ 114 Flights to and from Antarctica....................................................................................... 114 Flights within Antarctica ................................................................................................ 119 Air drops ........................................................................................................................... 120 Aircraft characteristics for Antarctic work .................................................................. 121 Helicopters ....................................................................................................................... 123 Maintenance and service life ......................................................................................... 128 iii Fuel supplies .................................................................................................................... 129 Pilot experience ...............................................................................................................
Recommended publications
  • FUN for 13 1 Bristol Tram
    8 9 ENTRY / EXIT 15 FUN FOR 13 1 Bristol Tram VIEWPOINT 2 Bristol Boxkite (flying model) THE KIDS Take a #ConcordeSelfie 3 Bristol F.2B Fighter 17 14 10 Keep your little engineers and 4 Bristol Scout 16 12 future pilots entertained from BAe M 5 Bristol lorry take-off to landing... ? POP-UP SHOP 7 Take home a Treat 6 Jupiter VI engine 11 ? 7 Hercules engine A Family 24 N Pick up your free Fact 8 Beaufighter forward fuselage 19 ? ? Finder leaflet and help 20 CONCORDE SHOW9 Proteus engine 18 Alfie Fox on his fantastic A UNIQUE EXPERIENCE10 Bristol Type 171 Sycamore helicopter fact-finding trail. The story of Concorde ON BOARD Inspiring School Visits Cockpit Seats: ? 3 Signatures on Design an aeroplane! Launch a rocket! Journey brought to life the door: through time! A school visit to Aerospace Bristol 11 Bristol Type 173 twin rotor helicopter Number of toilets: ? is a chance to develop STEM skills and reach 22 new heights. To fi nd out more please visit: 21 FILM A l fi e F o x TOILETS 6 Crew: aerospacebristol.org/schools 12 Bristol 403 car (cutaway) Passengers: ? Can you collect all of 23 4 Top Speed: ? Top Altitude: Fact Finder Leafl et kindly sponsored by SKF Bearings the aeroplane stamps? 13 Bristol Britannia forward fuselage EXHIBITION Can you help Alfie fi nd the aircraft London to New York: ? information cards around the exhibition London to Washington: Grab a clocking-in ? and fi ll in the missing facts? 2 London to Barbados: ? 14 Bristol Bloodhound Missile Paris to New York: card and search for the 23 www.skf.co.uk Bristol Aero Collection Trust: charity no.
    [Show full text]
  • Office of Polar Programs
    DEVELOPMENT AND IMPLEMENTATION OF SURFACE TRAVERSE CAPABILITIES IN ANTARCTICA COMPREHENSIVE ENVIRONMENTAL EVALUATION DRAFT (15 January 2004) FINAL (30 August 2004) National Science Foundation 4201 Wilson Boulevard Arlington, Virginia 22230 DEVELOPMENT AND IMPLEMENTATION OF SURFACE TRAVERSE CAPABILITIES IN ANTARCTICA FINAL COMPREHENSIVE ENVIRONMENTAL EVALUATION TABLE OF CONTENTS 1.0 INTRODUCTION....................................................................................................................1-1 1.1 Purpose.......................................................................................................................................1-1 1.2 Comprehensive Environmental Evaluation (CEE) Process .......................................................1-1 1.3 Document Organization .............................................................................................................1-2 2.0 BACKGROUND OF SURFACE TRAVERSES IN ANTARCTICA..................................2-1 2.1 Introduction ................................................................................................................................2-1 2.2 Re-supply Traverses...................................................................................................................2-1 2.3 Scientific Traverses and Surface-Based Surveys .......................................................................2-5 3.0 ALTERNATIVES ....................................................................................................................3-1
    [Show full text]
  • Coproduce Or Codevelop Military Aircraft? Analysis of Models Applicable to USAN* Brazilian Political Science Review, Vol
    Brazilian Political Science Review ISSN: 1981-3821 Associação Brasileira de Ciência Política Svartman, Eduardo Munhoz; Teixeira, Anderson Matos Coproduce or Codevelop Military Aircraft? Analysis of Models Applicable to USAN* Brazilian Political Science Review, vol. 12, no. 1, e0005, 2018 Associação Brasileira de Ciência Política DOI: 10.1590/1981-3821201800010005 Available in: http://www.redalyc.org/articulo.oa?id=394357143004 How to cite Complete issue Scientific Information System Redalyc More information about this article Network of Scientific Journals from Latin America and the Caribbean, Spain and Journal's webpage in redalyc.org Portugal Project academic non-profit, developed under the open access initiative Coproduce or Codevelop Military Aircraft? Analysis of Models Applicable to USAN* Eduardo Munhoz Svartman Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil Anderson Matos Teixeira Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil The creation of the Union of South American Nations (USAN) aroused expectations about joint development and production of military aircraft in South America. However, political divergences, technological asymmetries and budgetary problems made projects canceled. Faced with the impasse, this article approaches features of two military aircraft development experiences and their links with the regionalization processes to extract elements that help to account for the problems faced by USAN. The processes of adoption of the F-104 and the Tornado in the 1950s and 1970s by countries that later joined the European Union are analyzed in a comparative perspective. The two projects are compared about the political and diplomatic implications (mutual trust, military capabilities and regionalization) and the economic implications (scale of production, value chains and industrial parks).
    [Show full text]
  • Global Military Helicopters 2015-16 Market Report Contents
    GLOBAL MILITARY HELICOPTERS 2015-16 MARKET REPORT CONTENTS MARKET OVERVIEW 2 MILITARY HELICOPTER KEY REQUIREMENTS 4 EUROPE 5 NORTH AMERICA 10 LATIN AMERICA & THE CARIBBEAN 12 AFRICA 15 ASIA-PACIFIC 16 MIDDLE EAST 21 WORLD MILITARY HELICOPTER HOLDINGS 23 EUROPE 24 NORTH AMERICA 34 LATIN AMERICA & THE CARIBBEAN 36 AFRICA 43 ASIA-PACIFIC 49 MIDDLE EAST 59 EVENT INFORMATION 65 Please note that all information herein is subject to change. Defence IQ endeavours to ensure accuracy wherever possible, but errors are often unavoidable. We encourage readers to contact us if they note any need for amendments or updates. We accept no responsibility for the use or application of this information. We suggest that readers contact the specific government and military programme offices if seeking to confirm the reliability of any data. 1 MARKET OVERVIEW Broadly speaking, the global helicopter market is currently facing a two- pronged assault. The military helicopter segment has been impacted significantly by continued defense budgetary pressures across most traditional markets, and a recent slide in global crude oil prices has impacted the demand for new civil helicopters as well as the level of activity for existing fleets engaged in the offshore oil & gas exploration sector. This situation has impacted industry OEMs significantly, many of which had been working towards strengthening the civil helicopter segment to partially offset the impact of budgetary cuts on the military segment. However, the medium- to long-term view of the market is promising given the presence of strong fundamentals and persistent, sustainable growth drivers. The market for military helicopters in particular is set to cross a technological threshold in the form of next-generation compound helicopters and tilt rotorcraft.
    [Show full text]
  • A NEWS BULLETIN Published Quarterly by the NEW ZEALAND ANTARCTIC SOCIETY (INC)
    A NEWS BULLETIN published quarterly by the NEW ZEALAND ANTARCTIC SOCIETY (INC) An English-born Post Office technician, Robin Hodgson, wearing a borrowed kilt, plays his pipes to huskies on the sea ice below Scott Base. So far he has had a cool response to his music from his New Zealand colleagues, and a noisy reception f r o m a l l 2 0 h u s k i e s . , „ _ . Antarctic Division photo Registered at Post Ollice Headquarters. Wellington. New Zealand, as a magazine. II '1.7 ^ I -!^I*"JTr -.*><\\>! »7^7 mm SOUTH GEORGIA, SOUTH SANDWICH Is- . C I R C L E / SOUTH ORKNEY Is x \ /o Orcadas arg Sanae s a Noydiazarevskaya ussr FALKLAND Is /6Signyl.uK , .60"W / SOUTH AMERICA tf Borga / S A A - S O U T H « A WEDDELL SHETLAND^fU / I s / Halley Bav3 MINING MAU0 LAN0 ENOERBY J /SEA uk'/COATS Ld / LAND T> ANTARCTIC ••?l\W Dr^hnaya^^General Belgrano arg / V ^ M a w s o n \ MAC ROBERTSON LAND\ '■ aust \ /PENINSULA' *\4- (see map betowi jrV^ Sobldl ARG 90-w {■ — Siple USA j. Amundsen-Scott / queen MARY LAND {Mirny ELLSWORTH" LAND 1, 1 1 °Vostok ussr MARIE BYRD L LAND WILKES LAND ouiiiv_. , ROSS|NZJ Y/lnda^Z / SEA I#V/VICTORIA .TERRE , **•»./ LAND \ /"AOELIE-V Leningradskaya .V USSR,-'' \ --- — -"'BALLENYIj ANTARCTIC PENINSULA 1 Tenitnte Matianzo arg 2 Esptrarua arg 3 Almirarrta Brown arc 4PttrtlAHG 5 Otcipcion arg 6 Vtcecomodoro Marambio arg * ANTARCTICA 7 Arturo Prat chile 8 Bernardo O'Higgins chile 1000 Miles 9 Prasid«fTtB Frei chile s 1000 Kilometres 10 Stonington I.
    [Show full text]
  • Isotopic Oxygen-18 Results from Blue-Ice Areas
    Isotopic oxygen-18 results Tongue blue-ice field ranges in 8180 from –40.7 to –58.8 parts per thousand. In a 200-meter transect with a sample every 10 from blue-ice areas meters, a 60-meter area of "yellow" or "dirty" ice has an av- erage 8180 value of –42.8 ± 1.4 parts per thousand, while the average for the blue-ice is –54.4 ± 0.3 parts per thousand. P.M. GROOTES and M. STUIVER Lighter 8110 values seem also to be associated with the me- teorite-carrying ice. Detailed sampling on five large sample Quaternary Isotope Laboratory blocks showed no signs of sample contamination and enrich- University of Washington ment. Seattle, Washington 98195 The observed i8O range is more than triple the glacial/in- terglacial 8180 change and the isotopically light ice, therefore, We measured the oxygen isotope abundance ratio oxygen - must have originated in the high interior of East Antarctica. 18/oxygen-16 in three sets of samples from blue-ice ablation The most negative value of –58.8 parts per thousand is, how- areas west of the Transantarctic Mountains. Samples were col- ever, still lighter than present snow accumulating at the Pole lected at the Reckling Moraine (by C. Faure), the Lewis Cliff of Relative Inaccessibility (-57 parts per thousand, Lorius 1983). Ice Tongue (by W.A. Cassidy, submitted by P. Englert), and If this ice had been formed during a glacial period, the source the Allan Hills (by J.O. Annexstad). Most samples were cut area could be closer to the Transantarctic Mountains.
    [Show full text]
  • Wildland Fire Incident Management Field Guide
    A publication of the National Wildfire Coordinating Group Wildland Fire Incident Management Field Guide PMS 210 April 2013 Wildland Fire Incident Management Field Guide April 2013 PMS 210 Sponsored for NWCG publication by the NWCG Operations and Workforce Development Committee. Comments regarding the content of this product should be directed to the Operations and Workforce Development Committee, contact and other information about this committee is located on the NWCG Web site at http://www.nwcg.gov. Questions and comments may also be emailed to [email protected]. This product is available electronically from the NWCG Web site at http://www.nwcg.gov. Previous editions: this product replaces PMS 410-1, Fireline Handbook, NWCG Handbook 3, March 2004. The National Wildfire Coordinating Group (NWCG) has approved the contents of this product for the guidance of its member agencies and is not responsible for the interpretation or use of this information by anyone else. NWCG’s intent is to specifically identify all copyrighted content used in NWCG products. All other NWCG information is in the public domain. Use of public domain information, including copying, is permitted. Use of NWCG information within another document is permitted, if NWCG information is accurately credited to the NWCG. The NWCG logo may not be used except on NWCG-authorized information. “National Wildfire Coordinating Group,” “NWCG,” and the NWCG logo are trademarks of the National Wildfire Coordinating Group. The use of trade, firm, or corporation names or trademarks in this product is for the information and convenience of the reader and does not constitute an endorsement by the National Wildfire Coordinating Group or its member agencies of any product or service to the exclusion of others that may be suitable.
    [Show full text]
  • Montgomerie-Bensen B8MR, G-BXDC
    Montgomerie-Bensen B8MR, G-BXDC AAIB Bulletin No: 1/2001 Ref: EW/C2000/04/03 - Category: 2.3 Aircraft Type and Registration: Montgomerie-Bensen B8MR, G-BXDC No & Type of Engines: 1 Rotax 582 piston engine Year of Manufacture: 1999 Date & Time (UTC): 16 April 2000 at 1411 hrs Location: Carlisle Airport, Cumbria Type of Flight: Private Persons on Board: Crew - 1 - Passengers - None Injuries: Crew - 1 - Passengers - N/A Nature of Damage: Aircraft destroyed Commander's Licence: Private Pilot's Licence (gyroplanes) Commander's Age: 51 years Commander's Flying Experience: 67 hours (of which 30 were on type) Last 90 days - 44 hours Last 28 days - 43 hours Information Source: AAIB Field Investigation Background information The pilot first showed an active interest in autogyros when in March 1999 he visited Carlisle Airport for a trial lesson. He had not flown before and enjoyed the experience so much that he flew again the same day and agreed to embark on a formal training programme with an instructor who was authorised by the CAA to conduct dual and single seat autogyro training as well as flight examinations. The instructor reported that his student approached all matters to do with his flying 'with a great deal of enthusiasm and a fair degree of ability'. From the start of his course until January 2000 the pilot undertook dual instruction, mainly at weekends, on a two seater VPM M16 autogyro. By March 2000 he was sufficiently experienced to transfer to the 'open frame' single-seat Benson autogyro. He flew this for approximately 20 hours, carrying out mainly short 'hops' along the length of the runway and practising balancing on the main wheels before progressing to flying the aircraft in the visual circuit and carrying out general handling exercises.
    [Show full text]
  • Book Reviews the SYCAMORE SEEDS
    Afterburner Book Reviews THE SYCAMORE SEEDS Early British Helicopter only to be smashed the following night in a gale. The book then covers the Cierva story in some detail, the Development chapter including, out of context, two paragraphs on By C E MacKay the Brennan propeller-driven rotor driven helicopter [helicogyro] fl own in 1924 at Farnborough but Distributed by A MacKay, 87 Knightscliffe Avenue, aborted by the Air Ministry the next year, stating that Netherton, Glasgow G13 2RX, UK (E charlese87@ there was no future for the helicopter and backing btinternet.com). 2014. 218pp. Illustrated. £12.95. Cierva’s autogyro programme contracting Avro to build ISBN 978-0-9573443-3-4. the fi rst British machines. Good coverage is given to the range of Cierva autogyros culminating in the Avro Given the paucity of coverage of British helicopter C30 Rota and its service use by the RAF. development I approached this slim (218 A5 pp) The heart of the book begins with a quotation: publication with interest. While autogyros have been “Morris, I want you to make me blades, helicopter well documented, Charnov and Ord-Hume giving blades,” with which William Weir, the fi rst Air Minister, exhaustive and well documented treatments of the founder of the RAF and supporter of Cierva, brought helicopter’s predecessor, the transition to the directly furniture maker H Morris & Co into the history of driven rotor of the helicopter is somewhat lacking. rotorcraft pulling in designers Bennett, Watson, Unfortunately MacKay’s book only contributes a Nisbet and Pullin with test pilots Marsh and Brie fi nal and short chapter to the ‘British Helicopter’ to form his team.
    [Show full text]
  • A Short History of the RAF Britannia
    A Short History of the RAF Britannia Birth of the Britannia Even as the Hastings was still in its prime as a 99 Squadron aircraft, thoughts were turning to a replacement that would take advantage of aeronauti- cal development and better meet the strategic air transport needs of the future. The Bristol Aircraft Britannia was to be the choice. If a conception date has to be determined for the totally military Britannia then it might be seen as July 1956 when the Chiefs of Staff set up the Bingley Committee (chaired by Rear Admiral A N C Bingley, the then Fifth Sea Lord and Deputy Chief of Naval Staff (Air)), to make recommendations on the inter-service requirements of the future air transport force. In mid-1957 the air transport force consisted of 20 Hastings, 10 Beverleys, 5 Comet 2s, 11 Vallettas. In an emergency this fleet could be supplemented with 30 Maritime Shackletons and 29 civil aircraft normally engaged in routine trooping. It was considered that this force did not match the possible demand and that an up-date was required. It is worth considering the backdrop to these deliberations. The Royal Air Force was con- cerned with the emergence of the thermo-nuclear bomb and acquiring its delivery system, the V- Force. Military emphasis had changed from the post-Korea threat of major war to the prospect of a prolonged period of maintaining delicately balanced forces to secure peace. There were clear signs that conflicts of a lesser nature were to be our concern, with a continuing commitment to global affairs.
    [Show full text]
  • FAA Advisory Circular 20-97B
    Subject: AIRCRAFT TIRE MAINTENANCE Date: 4/18/05 AC No.: 20-97B AND OPERATIONAL PRACTICES Initiated by: AFS-306 Change: 1. PURPOSE. This advisory circular (AC) provides recommended tire care and maintenance practices needed to assure the safety of support personnel and the continued airworthiness of aircraft. Specifically, this AC provides guidance on the installation, inflation, maintenance, and removal of aircraft tires. In addition, this AC provides guidance on those operational practices necessary to maintain safe aircraft operations. This AC is not mandatory and does not constitute a regulation. It is issued for guidance purposes and to outline acceptable tire maintenance and operational practices. In lieu of following this method without deviation, operators may elect to follow an alternative method that has also been found acceptable by the Federal Aviation Administration (FAA). 2. CANCELLATION. AC 20-97A, High-Speed Tire Maintenance and Operational Practices, dated May 13, 1987, is cancelled. 3. RELATED REGULATIONS AND DOCUMENTS. a. Title 14 of the Code of Federal Regulations (14 CFR): (1) Part 21, subpart O, Technical Standard Order Authorizations. (2) Part 23, Airworthiness Standards: Normal, Utility, Acrobatic, and Commuter Category Airplanes. (3) Part 25, Airworthiness Standards: Transport Category Airplanes. (4) Part 27, Airworthiness Standards: Normal Category Rotorcraft. (5) Part 29, Airworthiness Standards: Transport Category Rotorcraft. (6) Part 43, Maintenance, Preventive Maintenance, Rebuilding, and Alteration. (7) Part 145, Repair Stations. b. FAA ACs. Copies of the following ACs may be obtained from the U.S. Department of Transportation, Subsequent Distribution Center, Ardmore East Business Center, 3341 Q 75th Avenue, Landover, MD 20785, and may be downloaded at the following Web site: http://www.faa.gov/avr/afs/acs/ac-idx.htm.
    [Show full text]
  • Development Pressures on the Antarctic Wilderness
    XXVIII ATCM – IP May 2004 Original: English Agenda Items 3 (Operation of the CEP) and 4a (General Matters) DEVELOPMENT PRESSURES ON THE ANTARCTIC WILDERNESS Submitted to the XXVIII ATCM by the Antarctic and Southern Ocean Coalition DEVELOPMENT PRESSURES ON THE ANTARCTIC WILDERNESS 1. Introduction In 2004 the Antarctic and Southern Ocean Coalition (ASOC) tabled information paper ATCM XXVII IP 094 “Are new stations justified?”. The paper highlighted proposals for the construction of no less than five new Antarctic stations in the context of at least 73 established stations (whether full year or summer only), maintained by 26 States already operating in the Antarctic Treaty Area. The paper considered what was driving the new station activity in Antarctica, whether or not it was necessary or desirable, and what alternatives there might be to building yet more stations. Whilst IP 094 focused on new station proposals, it noted that there were other significant infrastructure projects underway in Antarctica, which included substantial upgrades of existing national stations, the development of air links to various locations in Antarctica and related runways, and an ice road to the South Pole. Since then, ASOC has become aware of additional proposals for infrastructure projects. This paper updates ASOC’s ATCM XXVII IP 094 to include most infrastructure projects planned or currently underway in Antarctica as of April 2005, and discusses their contribution to cumulative impacts. The criteria used to select these projects are: 1. The project’s environmental impact is potentially “more than minor or transitory”; 2. The project results in a development of infrastructure that is significant in the Antarctic context; 3.
    [Show full text]