Book Reviews the SYCAMORE SEEDS

Total Page:16

File Type:pdf, Size:1020Kb

Book Reviews the SYCAMORE SEEDS Afterburner Book Reviews THE SYCAMORE SEEDS Early British Helicopter only to be smashed the following night in a gale. The book then covers the Cierva story in some detail, the Development chapter including, out of context, two paragraphs on By C E MacKay the Brennan propeller-driven rotor driven helicopter [helicogyro] fl own in 1924 at Farnborough but Distributed by A MacKay, 87 Knightscliffe Avenue, aborted by the Air Ministry the next year, stating that Netherton, Glasgow G13 2RX, UK (E charlese87@ there was no future for the helicopter and backing btinternet.com). 2014. 218pp. Illustrated. £12.95. Cierva’s autogyro programme contracting Avro to build ISBN 978-0-9573443-3-4. the fi rst British machines. Good coverage is given to the range of Cierva autogyros culminating in the Avro Given the paucity of coverage of British helicopter C30 Rota and its service use by the RAF. development I approached this slim (218 A5 pp) The heart of the book begins with a quotation: publication with interest. While autogyros have been “Morris, I want you to make me blades, helicopter well documented, Charnov and Ord-Hume giving blades,” with which William Weir, the fi rst Air Minister, exhaustive and well documented treatments of the founder of the RAF and supporter of Cierva, brought helicopter’s predecessor, the transition to the directly furniture maker H Morris & Co into the history of driven rotor of the helicopter is somewhat lacking. rotorcraft pulling in designers Bennett, Watson, Unfortunately MacKay’s book only contributes a Nisbet and Pullin with test pilots Marsh and Brie fi nal and short chapter to the ‘British Helicopter’ to form his team. G J Weir of Cathcart, Glasgow, pioneers of Weir, Brennan, Shapiro, Castular, Bennet took on license production of the Cierva designs, and, fi nally, Hafner in the last nine pages. developing the C30, introducing clutched rotor According to its Preface this book arose out of a drive and commencing their own redesign of the planned two-volume set covering British helicopter Top: Avro 671 Cierva C30A C28 later re-designated Weir W1, fi rst fl own by autogyro, G-ACWO, over development through to 1995 initiated by Neil Morris Cierva himself in May 1933 superseded by the W2 Hampton Court fl own by R A of the Glasgow-based Morris Furniture Company in 1934 with Ken Watson’s auto-dynamic clutched C Brie. c1934. suppliers of wooden rotor blades to Weir and Cierva. rotor enabling jump starts thus removing the need Above: Cierva Weir W14 Documentary research was ‘exhaustive’ and without for a take-off run to rotate the rotor. Continuing Sceptre, G-AJCJ, the Skeeter prototype. the benefi t of computers and the Internet. The development of the autogyro continued through to RAeS (NAL). project withered and folded but in 2013 the fl oppy the fi nal C40 designed by Bennett but Air Ministry discs containing the draft manuscript was found and interest had declined and the success of the German MacKay used this as the basis of his book. Focke-Wulf FW61 side-by-side twin-rotor helicopter It is a private publication and suffers brought autogyro development to an end, paving accordingly. Continuity is lacking, there is no index, the way to the modern powered-rotor helicopter no references, the illustrations are tiny and the now to be pursued by Weir with the fi rst British true The heart photographs are poorly reproduced. That said, helicopter, the side-by-side W5 fl own in June 1938 it does give insights into the rotorcraft world of by Raymond Pullin the son of its designer. of the book Cierva, Weir and Kay with an excellent coverage German and American activities follow with good begins with of the Hafner Rotachutes and Rotorbuggies of the coverage of the introduction of the Sikorsky R4 a quotation: Airborne Forces Experimental Establishment at Hoverfl y into British military service and its test fl ying “Morris, I want Ringway during the War. Given its origins, the book by Lt Cdr [Winkle] Brown at Farnborough. After a is understandably of a Scottish nature beginning round-up of the various eclectic German rotorcraft you to make with the bird-man monk Damien launching himself revealed as Spoils of War which gave impetus to me blades, from Stirling Castle on leather wings [date not further the British helicopter cause, the fi nal chapter helicopter given] then quickly moving on to Weir of Glasgow ‘Pioneering the British Helicopter’ surveys all too blades” and Kay of Perth with their Cierva-based autogyros. briefl y the fi nal Weir designs up to the Cierva W11 The book begins with a strange prelude Air Horse and the W14 Skeeter, later taken on reproducing a 1947 article by Air Ministry authors Hall by Saunders-Roe. Hafner’s Bristol Sycamore and and Sizer explaining, ‘How does a Helicopter Fly?’ It is tandem rotor helicopters leading to the Belvedere probably meant as light reading for the non-specialist, follow, MacKay giving a fi nal salute to Bennet’s it is best left unread! The fi rst chapter [Chapters Fairey Gyrodyne with a single photo of the Rotodyne are unnumbered] ‘Evolution’, gives a short overview with no supporting text other than a caption. of man’s attempts to fl y, fi nishing with Mumford’s Appendices include lists of patents and NACA six-rotor helicopter initiated by William Denny, ship reports, the story of a dog-fi ght between an Avro builders on Clydeside which, after tethered fl ights, Rota and a FW190 (adapted from Norman Hill), lifted off in 1913 but during attempts to restrain a history of H Morris furniture company, a list of its remaining free-fl ight it broke up and crashed. passengers fl own in the W6, thumbnail photographs His second machine, equipped with fl oats, fl ew of British helicopter pioneers and the life of Jeep Mike Breward successfully at 10ft for 100 yards on 31 July 1914 Cable. A select bibliography concludes the book. CEng FRAeS 44 AEROSPACE / SEPTEMBER 2016 KING OF ALL BALLOONS James Sadler’s ascent from The Adventurous Life of Merton Fields, Oxford, 7 July James Sadler, the First English 1810. RAeS (NAL). Aeronaut By M Davies Amberley Publishing, The Hill, Merrywalks, Stroud, Gloucestershire GL5 4EP, UK. 2015. 256pp. Illustrated. £20. ISBN 978-1-4456-5308-2. James Sadler (1753-1828) should be famous for not being famous. He misses out on the claim to be the fi rst English aeronaut because nobody saw him make a fl ight said to have happened on employed as Chemist to the Board of Naval Works, 4 October 1784: it was reported (by the local and designed mobile batteries for land cannon a new reputable newspaper Jackson’s Oxford Journal, light musket and ship cannon before returning to which had been following balloon news avidly) but the air in a spectacular launch from Oxford on 7 not witnessed or attested. Sadler had successfully July 1810, about which it was said 50,000 people launched grand unmanned balloons during the crammed into the city to see. This fl ight occasioned Undoubtedly summer, with the usual cat and dog passengers a new song celebrating Sadler as the King of all Britain’s best returned safely, but the mystery around his own Balloons, a deserved accolade (and catchy title for balloonist fi rst alleged ascent and fl ight of six miles – an Davies’ book). His son Windham – who made the impressive feat – keeps him out of the record fi rst successful crossing of the Irish Sea in 1814 – during the books. Equally mysterious is why Sadler is was extending aeronautic intrepidity but it was the fi rst mad uncelebrated in his home town, except that, as Mark father whose ascent from Birmingham on 7 October enthusiasm Davies explains in his engaging biography, Sadler’s 1811 survived a ferocious wind to travel at a record- original occupation as a pastry cook attracted breaking (fi nally!) 84mph. for balloons, snobbish disdain from Oxford University, which There are still many gaps in Sadler’s biography, making fl ights anyway prefers gown heroes to town ones. and Davies is sensible in his conjectures. Making of around 50 Happily Davies restores Sadler to full view, with the case for Sadler not only as local hero but also miles, Sadler a carefully researched account of his varied and as an Enlightenment fi gure, he provides a very interesting achievements. Undoubtedly Britain’s readable and thoughtful account of an important narrowly best balloonist during the fi rst mad enthusiasm inventor and adventurer. missed being for balloons, making fl ights of around 50 miles, fi rst to cross Sadler narrowly missed being fi rst to cross the Professor Clare Brant the English English Channel in January 1785, and he missed Professor of Eighteenth-Century Literature and another record crossing in 1812, ditching in Culture Channel in the Irish Channel just short of Liverpool, in his King’s College London January 1785 second period of ballooning activity. Nonetheless he made successful fl ights around the Midlands and Cotswolds, within reach of some national limelight. Davies fi lls in the backstory to identify exactly the places and people signifi cant in Sadler’s achievements, with new information of great local interest. For instance, he proves Sadler was able to use the Oxford Physic Gardens to attempt ascents thanks to help from John Sibthorp, Professor of Botany: that’s one mystery cleared up. Davies also positions Sadler perfectly in the big story of ballooning as it unfolded from Europe, though no fewer than nine appendices gather up various narrative loose ends.
Recommended publications
  • Montgomerie-Bensen B8MR, G-BXDC
    Montgomerie-Bensen B8MR, G-BXDC AAIB Bulletin No: 1/2001 Ref: EW/C2000/04/03 - Category: 2.3 Aircraft Type and Registration: Montgomerie-Bensen B8MR, G-BXDC No & Type of Engines: 1 Rotax 582 piston engine Year of Manufacture: 1999 Date & Time (UTC): 16 April 2000 at 1411 hrs Location: Carlisle Airport, Cumbria Type of Flight: Private Persons on Board: Crew - 1 - Passengers - None Injuries: Crew - 1 - Passengers - N/A Nature of Damage: Aircraft destroyed Commander's Licence: Private Pilot's Licence (gyroplanes) Commander's Age: 51 years Commander's Flying Experience: 67 hours (of which 30 were on type) Last 90 days - 44 hours Last 28 days - 43 hours Information Source: AAIB Field Investigation Background information The pilot first showed an active interest in autogyros when in March 1999 he visited Carlisle Airport for a trial lesson. He had not flown before and enjoyed the experience so much that he flew again the same day and agreed to embark on a formal training programme with an instructor who was authorised by the CAA to conduct dual and single seat autogyro training as well as flight examinations. The instructor reported that his student approached all matters to do with his flying 'with a great deal of enthusiasm and a fair degree of ability'. From the start of his course until January 2000 the pilot undertook dual instruction, mainly at weekends, on a two seater VPM M16 autogyro. By March 2000 he was sufficiently experienced to transfer to the 'open frame' single-seat Benson autogyro. He flew this for approximately 20 hours, carrying out mainly short 'hops' along the length of the runway and practising balancing on the main wheels before progressing to flying the aircraft in the visual circuit and carrying out general handling exercises.
    [Show full text]
  • Over Thirty Years After the Wright Brothers
    ver thirty years after the Wright Brothers absolutely right in terms of a so-called “pure” helicop- attained powered, heavier-than-air, fixed-wing ter. However, the quest for speed in rotary-wing flight Oflight in the United States, Germany astounded drove designers to consider another option: the com- the world in 1936 with demonstrations of the vertical pound helicopter. flight capabilities of the side-by-side rotor Focke Fw 61, The definition of a “compound helicopter” is open to which eclipsed all previous attempts at controlled verti- debate (see sidebar). Although many contend that aug- cal flight. However, even its overall performance was mented forward propulsion is all that is necessary to modest, particularly with regards to forward speed. Even place a helicopter in the “compound” category, others after Igor Sikorsky perfected the now-classic configura- insist that it need only possess some form of augment- tion of a large single main rotor and a smaller anti- ed lift, or that it must have both. Focusing on what torque tail rotor a few years later, speed was still limited could be called “propulsive compounds,” the following in comparison to that of the helicopter’s fixed-wing pages provide a broad overview of the different helicop- brethren. Although Sikorsky’s basic design withstood ters that have been flown over the years with some sort the test of time and became the dominant helicopter of auxiliary propulsion unit: one or more propellers or configuration worldwide (approximately 95% today), jet engines. This survey also gives a brief look at the all helicopters currently in service suffer from one pri- ways in which different manufacturers have chosen to mary limitation: the inability to achieve forward speeds approach the problem of increased forward speed while much greater than 200 kt (230 mph).
    [Show full text]
  • DYNAMIC MODELING of AUTOROTATION for SIMULTANEOUS LIFT and WIND ENERGY EXTRACTION by SADAF MACKERTICH B.S. Rochester Institute O
    DYNAMIC MODELING OF AUTOROTATION FOR SIMULTANEOUS LIFT AND WIND ENERGY EXTRACTION by SADAF MACKERTICH B.S. Rochester Institute of Technology, 2012 A thesis submitted in partial fulfilment of the requirements for the degree of Master of Science in the Department of Mechanical and Aerospace Engineering in the College of Engineering and Computer Science at the University of Central Florida Orlando, Florida Spring Term 2016 Major Professor: Tuhin Das c 2016 Sadaf Mackertich ii ABSTRACT The goal of this thesis is to develop a multi-body dynamics model of autorotation with the objective of studying its application in energy harvesting. A rotor undergoing autorotation is termed an Autogyro. In the autorotation mode, the rotor is unpowered and its interaction with the wind causes an upward thrust force. The theory of an autorotating rotorcraft was originally studied for achieving safe flight at low speeds and later used for safe descent of helicopters under engine failure. The concept can potentially be used as a means to collect high-altitude wind energy. Autorotation is inherently a dynamic process and requires detailed models for characterization. Existing models of autorotation assume steady operating conditions with constant angu- lar velocity of the rotor. The models provide spatially averaged aerodynamic forces and torques. While these steady-autorotation models are used to create a basis for the dynamic model developed in this thesis, the latter uses a Lagrangian formulation to determine the equations of motion. The aerodynamic effects on the blades that produce thrust forces, in- plane torques, and out-of-plane torques, are modeled as non-conservative forces within the Lagrangian framework.
    [Show full text]
  • Aviation Safety Letter Produce a Flurry of Re-Circulating Snow, Reducing Local Visibility and Causing Whiteout Conditions
    Transport Transports Canada Canada Transport Transports aviation safety in history Canada Canada TP 185E A Issue 1/2008 viation Safety in History 1907—The Helicopter’s Chaotic Beginnings by Guy Houdin, Chief, Aviation Terminology Standardization, Policy and Regulatory Services, Civil Aviation, Transport Canada In those days, the safety of humans and machines was a concept that was buried in the subconscious. What mattered most was rising up, flying in the air, and landing without damaging the machine, or “beating up” the pilot. But first, the sky had to be iation Safety in History conquered and mastered. Av On July 14, 2007, I was watching the military parade, ones to witness this first successful flight, and although celebrating France’s National Day in Paris, on television. others before him—such as Léger in Monaco, Bréguet Approximately one hundred aircraft had been invited to and Vollumard in Douai, France—had some good, but less Snow Landing and Take-off Techniques for Helicopters the event. The airplanes started the procession down the convincing, attempts, historians retained November 13, 1907, Champs-Élysées, followed by the troops on foot and in as the birth date of free flight by a rotary wing aircraft. Throughout the course of winter operations, helicopters face a significant hazard associated with takeoffs, vehicles, and then about 30 helicopters brought up the landings and hovering when the ground is covered with fresh or light snow. The rotor down wash can rear. When you could barely see them, high above the La aviation safety letter produce a flurry of re-circulating snow, reducing local visibility and causing whiteout conditions.
    [Show full text]
  • ELECTRIC ROTARY WING AIRCRFTS. [3290] Field of Invention Relates to Rotary Wing Aircrafts and the Like. This Invention Relates T
    ELECTRIC ROTARY WING AIRCRFTS. [3290] Field of invention relates to rotary wing aircrafts and the like. This invention relates to vertical propulsion turbine motors and generators combined including a digital glass cabin and manual navigation controllers consisting of a sphere or ball mounting in bearing in the stator casing and electrically connected with the flyby wire system. Helicopters and modern rotary wing aircraft and more particularly to helicopters with reduced blade length and increased speed and maneuverability with increased RPM. [3291] Combined propulsion and generator with linear rotors and perpendicular rotors. Helicopter in which in-plane Description of the prior art Sustainable and Zero emission helicopter with new means for navigating and power generating for electric flying vehicles. With wind turbines integrated in the duct and a steam turbine generator in a compressed machine casing electrically connected to the power supply. BACKGROUND OF THE INVENTION [3292] Conventional rotary wing aircraft are driven by combustion engines and are limited in application by rendering the aerial vehicles electric and digital with zero emission. Consisting rotary wing aircrafts ar helicopters and utility aerial vehicles, privet transport chopper, is a type of rotorcraft in which lift and thrust are supplied by propeller rotors. This allows the helicopter to take off and land vertically, to hover, and to fly forward, backward, and laterally. These attributes allow helicopters to be used in congested or isolated areas where fixed-wing aircraft and many forms of VTOL (Vertical Takeoff and Landing) aircraft cannot perform. The Electric aircraft is navigated by the main rotor and tail rotor and turbine engines and boosters comprising electric generators for power supply.
    [Show full text]
  • Aerodynamic Concept of the Uav in the Gyrodyne Configuration
    TRANSACTIONS OF THE INSTITUTE OF AVIATION 1 (250) 2018, pp. 49–66 DOI: 10.2478/tar-2018-0005 © Copyright by Wydawnictwa Naukowe Instytutu Lotnictwa AERODYNAMIC CONCEPT OF THE UAV IN THE GYRODYNE CONFIGURATION Jan Muchowski*, Marek Szumski*, Andrzej Krzysiak** *Department of Fluid Mechanics and Aerodynamics, Mechanical Engineering and Aeronautics, Rzeszow University of Technology, al. Powstańców Warszawy 8, 35-959 Rzeszow **Aerodynamics Department, Institute of Aviation, Al. Krakowska 110/114, 02-256 Warsaw [email protected], [email protected], [email protected], Abstract The article presents an aerodynamic concept of UAV in the gyrodyne configuration, as a more efficient one than the currently used UAV airframe configuration applied for monitoring tasks of pow- er lines and railway infrastructure. A sample task which is realised by conceptual gyrodyne based on monitoring aerial power lines was characterised and described . The assumed idea of UAV was shown in comparison to the currently used aircraft configuration presented in the introduction. Referring to momentum theory, hover efficiency of the multicopter and the helicopter was evaluated. In relation to the helicopter, an initial draft of the airframe conception accompanied by a description of advan- tages of the gyrodyne configuration was exposed. Problems related to the gyrodyne configuration were emphasised in the summary. Keywords: aerodynamic concept, UAV, VTOL, gyrodyne, airframe configuration 1. INTRODUCTION In recent years a dynamic growth of the UAV (Unmanned Aerial Vehicle) usage in civil and mili- tary missions can be observed . Economic aspects are the main reasons of that increase, i.e. the purchas- ing cost of the UAS (Unmanned Aircraft System) varies from 40% up to 80% of the manned system cost.
    [Show full text]
  • Performance Analysis of the Slowed-Rotor Compound Helicopter Configuration
    Performance Analysis of the Slowed-Rotor Compound Helicopter Configuration Matthew W. Floros Wayne Johnson Raytheon ITSS Army/NASA Rotorcraft Division Moffett Field, California NASA Ames Research Center Moffett Field, California The calculated performance of a slowed-rotor compound aircraft, particularly at high flight speeds, is exam- ined. Correlation of calculated and measured performance is presented for a NASA Langley high advance ratio test and the McDonnell XV-1 demonstrator to establish the capability to model rotors in such flight conditions. The predicted performance of a slowed-rotor vehicle model based on the CarterCopter Technology Demonstra- tor is examined in detail. An isolated rotor model and a model of a rotor and wing are considered. Three tip speeds and a range of collective pitch settings are investigated. A tip Mach number of 0.2 and zero collective pitch are found to be the optimum condition to minimize rotor drag. Performance is examined for both sea level and cruise altitude conditions. Nomenclature Much work has been focused on tilt rotor aircraft; both military and civilian tilt rotors are currently in development. But other configurations may provide comparable benefits to CT thrust coefficient tilt rotors in terms of range and speed. Two such configura- CQ torque coefficient tions are the compound helicopter and the autogyro. These CH longitudinal inplane force coefficient configurations provide STOL or VTOL capability, but are ca- D drag pable of higher speeds than a conventional helicopter because L lift the rotor does not provide the propulsive force or at high MTIP tip Mach number speed, the vehicle lift. The drawback is that redundant lift VT tip speed and/or propulsion add weight and drag which must be com- q dynamic pressure pensated for in some other way.
    [Show full text]
  • Helicopter Controllability. Reference 2 Presents a Comprehensive History and References 1 and 3 Present Summarized Histories of Helicopter Development
    Calhoun: The NPS Institutional Archive Theses and Dissertations Thesis Collection 1989-09 Helicopter controllability Carico, Dean Monterey, California. Naval Postgraduate School http://hdl.handle.net/10945/27077 DTfltttf NAVAL POSTGRADUATE SCHOOL Monterey , California THESIS C2D L/5~ HELICOPTER CONTROLLABILITY by Dean Carico September 1989 Thesis Advisor: George J. Thaler Approved for public release; distribution unlimited lclassified V CLASSi^'CATiON QF THIS PAGE REPORT DOCUMENTATION PAGE ORT SECURITY CLASSIFICATION 1b RESTRICTIVE MARKINGS assif ied IURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION /AVAILABILITY OF REPORT Approved for public release :lassification t DOWNGRADING SCHEDULE Distribution is unlimited ORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S) ME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION il Postgraduate School (If applicable) 62 Naval Postgraduate School DRESS {City, State, and ZIP Code) 7b ADDRESS (C/fy, State, and ZIP Code) :erey, California 93943-5000 Monterey, California 93943-5000 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER DRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS IE (include Security Claudication) HELICOPTER CONTROLLABILITY RSONAL AUTHOR(S) ICO, G. Dean YPE OF REPORT 4 DATE OF REPORT (Year, Month. Day) ter ' s Thesis 1989, September ipplementary notation T h e views expressed in this thesis are thos e of the hor and do not reflect the official policy or position of the Department r,nyprninpnf npfpnsp nr ___ , COSATi CODES 18 SUBJECT TERMS {Continue on reverse if pecessary and identify Helicopter Controllability, Helicop Flight Control Systems, Helicopter Flying Qualities and Flying Qualities Spec if ications i 3STRACT {Continue I reverse if necessary and identify by block number) 'he concept of helicopter controllability is explained.
    [Show full text]
  • Pilot Operating Handbook Pilot Operating Handbook for Gyroplane Cavalon
    Pilot Operating Handbook Pilot Operating Handbook for Gyroplane Cavalon AutoGyro_POH_Cavalon Revision 3.1 – Issue Date 20.10.2018 Pre-pages 1 All rights reserved. Under the copyright laws, this manual may not be copied, in whole or in part, without the written consent of AutoGyro GmbH. AutoGyro reserves the right to change or improve its products and to make changes in the content of this manual without obligation to notify any person or organisation of such changes or improvements. Notifications to the Civil Aviation Authorities or other organisations based on legal regulations are unaffected. MTOsport, Calidus, Cavalon, the AutoGyro logo and word picture mark are trademarks or registered trademarks of AutoGyro AG, registered in Germany and other countries. Other company and product names mentioned herein may be trademarks of their respective companies. Mention of third- party products is for informational purposes only and constitutes neither an endorsement nor a recommendation. AutoGyro assumes no responsibility with regard to the performance or use of these products. All understandings, agreements, or warranties, if any, take place directly between the vendors and the prospective users. U.S. and foreign patents of AutoGyro AG are used in the Calidus and Cavalon gyroplanes - (US.Pat.No. 8,690,100; US.Pat.No. D699,153) Every effort has been made to ensure that the information in this manual is accurate. AutoGyro GmbH is not responsible for printing or clerical errors. AutoGyro_POH_Cavalon Revision 3.1 – Issue Date 20.10.2018 Pre-pages
    [Show full text]
  • NASA Design and Analysis of Rotorcraft User Training
    https://ntrs.nasa.gov/search.jsp?R=20180008700 2019-08-31T17:42:25+00:00Z NDARC NASA Design and Analysis of Rotorcraft User Training March 2014 NDARC User Training March 2014 1 PREPARED BY Christopher Silva Jeffrey Sinsay U.S. Army Aviation Development Directorate (AFDD) Aviation & Missile Research, Development & Engineering Center Research, Development and Engineering Command Wayne Johnson National Aeronautics and Space Administration Ames Research Center, Moffett Field, California 94035 NDARC User Training March 2014 2 Training Objectives Purpose: • Provide overview of how NDARC conducts design and analysis tasks • Introduce NDARC input/output construct and syntax • Explain steps necessary to accomplish common design / analysis tasks • Illuminate common pitfalls and methods for debugging input Assumptions: • Familiar with the preliminary design process • Understand classic helicopter and fixed wing theory that underpins NDARC analysis (see Theory manual for details) • Familiar with FORTRAN namelist input Outcomes: • User can execute and parse input/output of NDARC examples • User can create a new design by modifying an example • User can use Theory manual and Input manual to set up more complex cases NDARC User Training March 2014 3 Outline Introduction Documentation Overview • Tasks • Aircraft NDARC Job • Input • Organization • Output Solution Procedures • Debugging Input Manual • Aircraft • Tasks Tutorial NDARC User Training March 2014 4 Rotorcraft System Design and Analysis Rotorcraft design work in government laboratory supports
    [Show full text]
  • Autogyro C-30 Fuselage Finite Element Model Analysis
    BACHELOR'S THESIS Degree in Aerospace Engineering Autogyro C-30 Fuselage Finite Element Model Analysis Enrique Labiano Laserna Supervisor Jos´e D´ıaz Alvarez´ February 2019 Abstract The main objective of this paper is to design and analyze the autogyro C-30 fuse- lage structure. The autogyro, considered as a hybrid between an airplane and a helicopter, is one the most important milestone in aircraft aviation. It was invented by Juan De la Cierva and became the first rotary wing aircraft that achieved suc- cess. In fact, this kind of rotorcraft will have a lot of influence on how the helicopter operates nowadays. The project will be divided into several parts. Firstly, all the information and draw- ings of the fuselage structure will be gathered and analyzed. After that, the fuselage structure will be modeled in a finite element software, called Abaqus. Secondly, all parts that composed the autogyro will be determined and their weights will be esti- mated taking into account the MTOW of the aircraft. According to the regulations established in the British Civil Airworthiness Requirements (BCAR), loads will be introduced in the model simulating a symmetric pull-up maneuver. The scope of the study will involve a stress analysis and finally, a modal analysis in order to determine the natural frequencies of the structure. Finally, a socio-economic impact of designing an autogyro will be presented together with a rough budget of manufacturing the fuselage structure of the autogyro C-30. Keywords: Autogyro C-30, fuselage structure, FEM analysis, modal analysis iii Acknowledgements First of all, I would like to thank my parents and my brothers who have helped me from the beginning.
    [Show full text]
  • Measurement of In-Flight Rotor Blade Loads of an Autogyro
    Measurement of In-Flight Rotor Blade Loads of an Autogyro Helmut Rapp, Peter Wedemeyer Institut für Aerospace-Technologie, Hochschule Bremen, Bremen, Germany Christian Teuber STN Atlas Elektronik GmbH, Bremen, Germany Abstract go ahead in gyroplane development until there was Autogyros, or gyroplanes, are rotary wing aircraft extensive pressure due to military requirements. with no driven main rotor. The rotor keeps rotating In later stages their gyroplane was able to take only by the airflow resulting from the plane’s forward off vertically, to proceed the so-called "Direct Take- speed. Since WW2 there has been only a few investi- Off" over a 10 m obstacle and a vertical landing, if gations concerning the flying characteristics and per- required. Several gyroplanes were obtained by the formance of autogyros including blade loading. US-Military and a thorough research programme was This work covers both the theoretical and exper- undertaken at NACA-Laboratories compared to the imental investigations of rotor blade loading. The small research programmes done by the British, Ger- main parameters for the flapping moment are rotor man and French military. However, due to different speed and mass distribution of the rotor blades. For design the later developed Gyrocopter does not reflect the experimental investigations, a small telemetric the NACA results. In some short term research this system was developed. Up to four strains in the ro- type of aircraft was covered, even as a solution for a tor blades can be measured by using strain gauges. Mars-Landing-Vehicle and Pilot-Recovery-Systems. Wireless transmission of the strain data from the ro- Major design effort was put into gyroplanes for the tating rotor to a computer inside the fuselage is ac- civil market, reflected in the McCulloch J-2 and Um- complished by 433 MHz transceivers.
    [Show full text]