PDF Download Hovering Helicopters

Total Page:16

File Type:pdf, Size:1020Kb

PDF Download Hovering Helicopters HOVERING HELICOPTERS PDF, EPUB, EBOOK Molly Aloian | 32 pages | 15 Sep 2010 | Crabtree Publishing Co,Canada | 9780778730620 | English | New York, Canada Hovering Helicopters PDF Book His writings on his experiments and models would become influential on future aviation pioneers. Oil companies charter helicopters to move workers and parts quickly to remote drilling sites located at sea or in remote locations. His notes suggested that he built small flying models, but there were no indications for any provision to stop the rotor from making the craft rotate. During the closing years of the 20th century designers began working on helicopter noise reduction. Guinness World Record. Retrieved 24 September American inventor Arthur M. Tilts main rotor disk forward and back via the swashplate. From design, engineering and production, to maintenance, training and partnerships, Airbus is focused on meeting and exceeding industry safety standards and supporting the flight safety for the thousands of men and women around the world who are transported in its aircraft every day. Special jet engines developed to drive the rotor from the rotor tips are referred to as tip jets. These issues are due to the exposed tail rotor cutting through open air around rear of the vehicle. Most also have vibration dampers for height and pitch. For other uses, see Helicopter disambiguation. The rotor consists of a mast, hub and rotor blades. On 25 July , the Japanese bulk carrier Wakashio ran aground on a coral reef in Mauritius. Two Army National Guard helicopters flew low over the protesters, with the downward blast from their rotor blades sending protesters scurrying for cover and ripping signs from the sides of buildings. Quote: [Rotor speed] "is constant in a helicopter". LA Times. Of course, any helicopter taking off or landing must undertake NOE flight, if only for a few moments. Hovering is the most challenging part of flying a helicopter. AirbusWorld Keycopter portal becomes AirbusWorld. ACH flying over LA. In , Christian de Launoy , and his mechanic , Bienvenu, used a coaxial version of the Chinese top in a model consisting of contrarotating turkey flight feathers [33] as rotor blades, and in , demonstrated it to the French Academy of Sciences. HD P x px 2GB. Main article: Helicopter rotor. In fact, film footage from the era often shows helicopters rapidly skimming the Earth's surface, machine-gunners firing from open rear doors or hovering with their skids just a few feet off the ground as troops disembark at a target location. Sikorsky Competition winner. Archived from the original on 29 August Civil helicopters calendar Download the civil calendar. Some radio-controlled helicopters and smaller, helicopter-type unmanned aerial vehicles , use electric motors. Floyd died after being restrained by Minneapolis police officers. The manual throttle may also be considered a flight control because it is needed to maintain rotor speed on smaller helicopters without governors. Archived PDF from the original on 25 February Therefore, if a collective input is made, all the blades change equally, and the result is the helicopter increasing or decreasing in altitude. Helicopters also vibrate; an unadjusted helicopter can easily vibrate so much that it will shake itself apart. For a standard helicopter with a single main rotor, maintaining steady flight with a crosswind presents an additional flight control problem, where strong crosswinds from certain angles will increase or decrease lift from the main rotors. Retrieved 29 April Given that the Martian atmosphere is times thinner than that of Earth's, its two blades will spin at close to 3, revolutions a minute, approximately 10 times faster than that of a terrestrial helicopter. Police departments and other law enforcement agencies use helicopters to pursue suspects. Backpack helicopter Cyclogyro Disk loading Gyrodyne Helicopter dynamics Helicopter height—velocity diagram Helicopter manufacturer Helicopter Underwater Escape Training Jesus nut , the top central big nut that holds the rotor on List of helicopter airlines List of rotorcraft Monocopter Transverse flow effect Utility helicopter Wire strike protection system , "WSPS" for helicopters. Solution F Prototype. This effect is also triggered in a no-wind condition when moving the craft diagonally in various directions, depending on the direction of main rotor rotation. Turbine engines revolutionized the aviation industry; and the turboshaft engine for helicopter use, pioneered in December by the aforementioned Kaman K, finally gave helicopters an engine with a large amount of power and a low weight penalty. Zaschka's plane, the first helicopter, which ever worked so successfully in miniature, not only rises and descends vertically, but is able to remain stationary at any height. One of these toys, given as a gift by their father, would inspire the Wright brothers to pursue the dream of flight. Oxford: Elsevier Butterworth- Heinemann, Retrieved 10 February The cyclic control is usually located between the pilot's legs and is commonly called the cyclic stick or just cyclic. Edison: the Man and His Work. The ability to hover is critical to all the daring operations that helicopters take part in. Hovering Helicopters Writer Retrieved 12 April Note: in some helicopters the throttle control s is a part of the collective stick. The ability to hover is critical to all the daring operations that helicopters take part in. A rotor system may be mounted horizontally, as main rotors are, providing lift vertically, or it may be mounted vertically, such as a tail rotor, to provide horizontal thrust to counteract torque from the main rotors. Retrieved: 16 February The rotor consists of a mast, hub and rotor blades. There are also human-powered helicopters. Ryan D. Archived from the original on 29 May London: R. From design, engineering and production, to maintenance, training and partnerships, Airbus is focused on meeting and exceeding industry safety standards and supporting the flight safety for the thousands of men and women around the world who are transported in its aircraft every day. Principles of Helicopter Aerodynamics. Hovering is the most challenging part of flying a helicopter. Any rotor system has a delay between the point in rotation where the controls introduce a change in pitch and the point where the desired change in the rotor blade's flight occurs. Watkinson, John. People at the scene expressed their disbelief and fear. Developed from the VS, Sikorsky's R-4 was the first large-scale mass-produced helicopter, with a production order for aircraft. Archived from the original on 3 March HD P x px 59MB. For a standard helicopter with a single main rotor, maintaining steady flight with a crosswind presents an additional flight control problem, where strong crosswinds from certain angles will increase or decrease lift from the main rotors. Dallas, Tx. These attributes allow helicopters to be used in congested or isolated areas where fixed- wing aircraft and many forms of VTOL Vertical TakeOff and Landing aircraft cannot perform. There are three basic types: hingeless, fully articulated, and teetering; although some modern rotor systems use a combination of these. The Times Tensions have risen in the nation's capital in recent days following the death of George Floyd in police custody on May All 84 passengers were killed and all four crew members survived. Thus, frequent control inputs and corrections must be made by the pilot to keep the helicopter at a desired location and altitude. Albert Gillis von Baumhauer , a Dutch aeronautical engineer, began studying rotorcraft design in Crash near Pegnitz , then located in West Germany. They are often mounted with lighting and heat-sensing equipment for night pursuits. Aerospatiale Lama. Military versions are mission-proven in the most demanding front-line conditions, and are trusted by more than armed forces worldwide. From Wikipedia, the free encyclopedia. H pilot pre-flight check. HAI Day 2. The VSR is an unmanned aerial system designed to fulfil the demanding requirements of global navies. Hovering Helicopters Reviews D'Amecourt's linguistic contribution would survive to eventually describe the vertical flight he had envisioned. Tip jets powered by a remote compressor are referred to as cold tip jets, while those powered by combustion exhaust are referred to as hot tip jets. For a standard helicopter with a single main rotor, the tips of the main rotor blades produce a vortex ring in the air, which is a spiraling and circularly rotating airflow. HD P x px 37MB. Some pilots consider hovering the most challenging aspect of helicopter flight. On Friday, The Washington Post reported that all District of Columbia National Guard helicopter operations had been suspended pending the results of the investigation, although it was unclear if that affects medical patient transfers. Help Learn to edit Community portal Recent changes Upload file. Jane's Encyclopedia of Aviation , p. Archived PDF from the original on 25 February Archived from the original on 2 January Flight Standards Service. People at the scene expressed their disbelief and fear. Retrieved 15 July New York: Garden City Publishers, This was overcome in early successful helicopters by using the smallest engines available. Aviation Safety Network. Berlin-Charlottenburg: C. This issue disappears when the tail is instead ducted, using an internal impeller enclosed in the tail and a jet of high pressure air sideways out of the tail, as the main rotor vortices can not impact the operation of an internal impeller. Dual counter-rotating blades prevent this situation due to having two advancing and two retreating blades with balanced forces. HD P x px 35MB. The compound helicopter also has a separate thrust system, but continues to supply power to the rotor throughout normal flight. Using hingeless rotors and co-rotation also minimised the stress on the hull. The introduction of the internal combustion engine at the end of the 19th century became the watershed for helicopter development as engines began to be developed and produced that were powerful enough to allow for helicopters able to lift humans.
Recommended publications
  • Helicopter Dynamics Concerning Retreating Blade Stall on a Coaxial Helicopter
    Helicopter Dynamics Concerning Retreating Blade Stall on a Coaxial Helicopter A project presented to The Faculty of the Department of Aerospace Engineering San José State University In partial fulfillment of the requirements for the degree Master of Science in Aerospace Engineering by Aaron Ford May 2019 approved by Prof. Jeanine Hunter Faculty Advisor © 2019 Aaron Ford ALL RIGHTS RESERVED ABSTRACT Helicopter Dynamics Concerning Retreating Blade Stall on a Coaxial Helicopter by Aaron Ford A model of helicopter blade flapping dynamics is created to determine the occurrence of retreating blade stall on a coaxial helicopter with pusher-propeller in straight and level flight. Equations of motion are developed, and blade element theory is utilized to evaluate the appropriate aerodynamics. Modelling of the blade flapping behavior is verified against benchmark data and then used to determine the angle of attack distribution about the rotor disk for standard helicopter configurations utilizing both hinged and hingeless rotor blades. Modelling of the coaxial configuration with the pusher-prop in straight and level flight is then considered. An approach was taken that minimizes the angle of attack and generation of lift on the advancing side while minimizing them on the retreating side of the rotor disk. The resulting asymmetric lift distribution is compensated for by using both counter-rotating rotor disks to maximize lift on their respective advancing sides and reduce drag on their respective retreating sides. The result is an elimination of retreating blade stall in the coaxial and pusher-propeller configuration. Finally, an assessment of the lift capability of the configuration at both sea level and at “high and hot” conditions were made.
    [Show full text]
  • Book Reviews the SYCAMORE SEEDS
    Afterburner Book Reviews THE SYCAMORE SEEDS Early British Helicopter only to be smashed the following night in a gale. The book then covers the Cierva story in some detail, the Development chapter including, out of context, two paragraphs on By C E MacKay the Brennan propeller-driven rotor driven helicopter [helicogyro] fl own in 1924 at Farnborough but Distributed by A MacKay, 87 Knightscliffe Avenue, aborted by the Air Ministry the next year, stating that Netherton, Glasgow G13 2RX, UK (E charlese87@ there was no future for the helicopter and backing btinternet.com). 2014. 218pp. Illustrated. £12.95. Cierva’s autogyro programme contracting Avro to build ISBN 978-0-9573443-3-4. the fi rst British machines. Good coverage is given to the range of Cierva autogyros culminating in the Avro Given the paucity of coverage of British helicopter C30 Rota and its service use by the RAF. development I approached this slim (218 A5 pp) The heart of the book begins with a quotation: publication with interest. While autogyros have been “Morris, I want you to make me blades, helicopter well documented, Charnov and Ord-Hume giving blades,” with which William Weir, the fi rst Air Minister, exhaustive and well documented treatments of the founder of the RAF and supporter of Cierva, brought helicopter’s predecessor, the transition to the directly furniture maker H Morris & Co into the history of driven rotor of the helicopter is somewhat lacking. rotorcraft pulling in designers Bennett, Watson, Unfortunately MacKay’s book only contributes a Nisbet and Pullin with test pilots Marsh and Brie fi nal and short chapter to the ‘British Helicopter’ to form his team.
    [Show full text]
  • Micro Coaxial Helicopter Controller Design
    Micro Coaxial Helicopter Controller Design A Thesis Submitted to the Faculty of Drexel University by Zelimir Husnic in partial fulfillment of the requirements for the degree of Doctor of Philosophy December 2014 c Copyright 2014 Zelimir Husnic. All Rights Reserved. ii Dedications To my parents and family. iii Acknowledgments There are many people who need to be acknowledged for their involvement in this research and their support for many years. I would like to dedicate my thankfulness to Dr. Bor-Chin Chang, without whom this work would not have started. As an excellent academic advisor, he has always been a helpful and inspiring mentor. Dr. B. C. Chang provided me with guidance and direction. Special thanks goes to Dr. Mishah Salman and Dr. Humayun Kabir for their mentorship and help. I would like to convey thanks to my entire thesis committee: Dr. Chang, Dr. Kwatny, Dr. Yousuff, Dr. Zhou and Dr. Kabir. Above all, I express my sincere thanks to my family for their unconditional love and support. iv v Table of Contents List of Tables ........................................... viii List of Figures .......................................... ix Abstract .............................................. xiii 1. Introduction .......................................... 1 1.1 Vehicles to be Discussed................................... 1 1.2 Coaxial Benefits ....................................... 2 1.3 Motivation .......................................... 3 2. Helicopter Flight Dynamics ................................ 4 2.1 Introduction ........................................
    [Show full text]
  • Over Thirty Years After the Wright Brothers
    ver thirty years after the Wright Brothers absolutely right in terms of a so-called “pure” helicop- attained powered, heavier-than-air, fixed-wing ter. However, the quest for speed in rotary-wing flight Oflight in the United States, Germany astounded drove designers to consider another option: the com- the world in 1936 with demonstrations of the vertical pound helicopter. flight capabilities of the side-by-side rotor Focke Fw 61, The definition of a “compound helicopter” is open to which eclipsed all previous attempts at controlled verti- debate (see sidebar). Although many contend that aug- cal flight. However, even its overall performance was mented forward propulsion is all that is necessary to modest, particularly with regards to forward speed. Even place a helicopter in the “compound” category, others after Igor Sikorsky perfected the now-classic configura- insist that it need only possess some form of augment- tion of a large single main rotor and a smaller anti- ed lift, or that it must have both. Focusing on what torque tail rotor a few years later, speed was still limited could be called “propulsive compounds,” the following in comparison to that of the helicopter’s fixed-wing pages provide a broad overview of the different helicop- brethren. Although Sikorsky’s basic design withstood ters that have been flown over the years with some sort the test of time and became the dominant helicopter of auxiliary propulsion unit: one or more propellers or configuration worldwide (approximately 95% today), jet engines. This survey also gives a brief look at the all helicopters currently in service suffer from one pri- ways in which different manufacturers have chosen to mary limitation: the inability to achieve forward speeds approach the problem of increased forward speed while much greater than 200 kt (230 mph).
    [Show full text]
  • Development of a Helicopter Vortex Ring State Warning System Through a Moving Map Display Computer
    Calhoun: The NPS Institutional Archive Theses and Dissertations Thesis Collection 1999-09 Development of a helicopter vortex ring state warning system through a moving map display computer Varnes, David J. Monterey, California. Naval Postgraduate School http://hdl.handle.net/10945/26475 DUDLEY KNOX LIBRARY NAVAL POSTGRADUATE SCHOOL MONTEREY CA 93943-5101 NAVAL POSTGRADUATE SCHOOL Monterey, California THESIS DEVELOPMENT OF A HELICOPTER VORTEX RING STATE WARNING SYSTEM THROUGH A MOVING MAP DISPLAY COMPUTER by David J. Varnes September 1999 Thesis Advisor: Russell W. Duren Approved for public release; distribution is unlimited. Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington. VA 22202-4302, and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188) Washington DC 20503. REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED 1. agency use only (Leave blank) September 1999 Master's Thesis 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS DEVELOPMENT OF A HELICOPTER VORTEX RING STATE WARNING SYSTEM THROUGH A MOVING MAP DISPLAY COMPUTER 6. AUTHOR(S) Varnes, David, J. 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) PERFORMING ORGANIZATION Naval Postgraduate School REPORT NUMBER Monterey, CA 93943-5000 10.
    [Show full text]
  • Robot Dynamics Rotary Wing UAS: Introduction Design and Aerodynamics
    Robot Dynamics Rotary Wing UAS: Introduction Design and Aerodynamics 151-0851-00 V Marco Hutter, Roland Siegwart and Thomas Stastny Autonomous Systems Lab Robot Dynamics - Rotary Wing UAS: Propeller Analysis and Dynamic Modeling| 27.10.2015 | 1 Contents | Rotary Wing UAS 1. Introduction - Design and Propeller Aerodynamics 2. Propeller Analysis and Dynamic Modeling 3. Control of a Quadrotor 4. Rotor Craft Case Study Autonomous Systems Lab Robot Dynamics - Rotary Wing UAS: Propeller Analysis and Dynamic Modeling| 27.10.2015 | 2 Introduction Rotary Wing UAS: Introduction Design and Aerodynamics Autonomous Systems Lab Robot Dynamics - Rotary Wing UAS: Propeller Analysis and Dynamic Modeling| 27.10.2015 | 3 Rotorcraft: Definition . Rotorcraft: Aircraft which produces lift from a rotary wing turning in a plane close to horizontal “A helicopter is a collection of vibrations held together by differential equations” John Watkinson Advantage Disadvantage Ability to hover High maintenance costs Power efficiency during hover Poor efficiency in forward flight “If you are in trouble anywhere, an airplane can fly over and drop flowers, but a helicopter can land and save your life” Igor Sikorsky Autonomous Systems Lab Robot Dynamics: Rotary Wing UAS| 07.11.2016 | 4 Rotorcraft | Overview on Types of Rotorcraft Helicopter Autogyro Gyrodyne Power driven main rotor Un-driven main rotor, tilted Power driven main propeller away The air flows from TOP to The air flows from BOTTOM The air flows from TOP to BOTTOM to TOP BOTTOM Tilts its main rotor to fly Forward
    [Show full text]
  • The Pennsylvania State University
    The Pennsylvania State University The Graduate School Department of Aerospace Engineering REAL-TIME PATH PLANNING AND AUTONOMOUS CONTROL FOR HELICOPTER AUTOROTATION A Dissertation in Aerospace Engineering by Thanan Yomchinda 2013 Thanan Yomchinda Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy May 2013 The dissertation of Thanan Yomchinda was reviewed and approved* by the following: Joseph F. Horn Associate Professor of Aerospace Engineering Dissertation Co-Advisor Co-Chair of Committee Jacob W. Langelaan Associate Professor of Aerospace Engineering Dissertation Co-Advisor Co-Chair of Committee Edward C. Smith Professor of Aerospace Engineering Christopher D. Rahn Professor of Mechanical Engineering George A. Lesieutre Professor of Aerospace Engineering Head of the Department of Aerospace Engineering *Signatures are on file in the Graduate School iii ABSTRACT Autorotation is a descending maneuver that can be used to recover helicopters in the event of total loss of engine power; however it is an extremely difficult and complex maneuver. The objective of this work is to develop a real-time system which provides full autonomous control for autorotation landing of helicopters. The work includes the development of an autorotation path planning method and integration of the path planner with a primary flight control system. The trajectory is divided into three parts: entry, descent and flare. Three different optimization algorithms are used to generate trajectories for each of these segments. The primary flight control is designed using a linear dynamic inversion control scheme, and a path following control law is developed to track the autorotation trajectories. Details of the path planning algorithm, trajectory following control law, and autonomous autorotation system implementation are presented.
    [Show full text]
  • ELECTRIC ROTARY WING AIRCRFTS. [3290] Field of Invention Relates to Rotary Wing Aircrafts and the Like. This Invention Relates T
    ELECTRIC ROTARY WING AIRCRFTS. [3290] Field of invention relates to rotary wing aircrafts and the like. This invention relates to vertical propulsion turbine motors and generators combined including a digital glass cabin and manual navigation controllers consisting of a sphere or ball mounting in bearing in the stator casing and electrically connected with the flyby wire system. Helicopters and modern rotary wing aircraft and more particularly to helicopters with reduced blade length and increased speed and maneuverability with increased RPM. [3291] Combined propulsion and generator with linear rotors and perpendicular rotors. Helicopter in which in-plane Description of the prior art Sustainable and Zero emission helicopter with new means for navigating and power generating for electric flying vehicles. With wind turbines integrated in the duct and a steam turbine generator in a compressed machine casing electrically connected to the power supply. BACKGROUND OF THE INVENTION [3292] Conventional rotary wing aircraft are driven by combustion engines and are limited in application by rendering the aerial vehicles electric and digital with zero emission. Consisting rotary wing aircrafts ar helicopters and utility aerial vehicles, privet transport chopper, is a type of rotorcraft in which lift and thrust are supplied by propeller rotors. This allows the helicopter to take off and land vertically, to hover, and to fly forward, backward, and laterally. These attributes allow helicopters to be used in congested or isolated areas where fixed-wing aircraft and many forms of VTOL (Vertical Takeoff and Landing) aircraft cannot perform. The Electric aircraft is navigated by the main rotor and tail rotor and turbine engines and boosters comprising electric generators for power supply.
    [Show full text]
  • Aerodynamic Concept of the Uav in the Gyrodyne Configuration
    TRANSACTIONS OF THE INSTITUTE OF AVIATION 1 (250) 2018, pp. 49–66 DOI: 10.2478/tar-2018-0005 © Copyright by Wydawnictwa Naukowe Instytutu Lotnictwa AERODYNAMIC CONCEPT OF THE UAV IN THE GYRODYNE CONFIGURATION Jan Muchowski*, Marek Szumski*, Andrzej Krzysiak** *Department of Fluid Mechanics and Aerodynamics, Mechanical Engineering and Aeronautics, Rzeszow University of Technology, al. Powstańców Warszawy 8, 35-959 Rzeszow **Aerodynamics Department, Institute of Aviation, Al. Krakowska 110/114, 02-256 Warsaw [email protected], [email protected], [email protected], Abstract The article presents an aerodynamic concept of UAV in the gyrodyne configuration, as a more efficient one than the currently used UAV airframe configuration applied for monitoring tasks of pow- er lines and railway infrastructure. A sample task which is realised by conceptual gyrodyne based on monitoring aerial power lines was characterised and described . The assumed idea of UAV was shown in comparison to the currently used aircraft configuration presented in the introduction. Referring to momentum theory, hover efficiency of the multicopter and the helicopter was evaluated. In relation to the helicopter, an initial draft of the airframe conception accompanied by a description of advan- tages of the gyrodyne configuration was exposed. Problems related to the gyrodyne configuration were emphasised in the summary. Keywords: aerodynamic concept, UAV, VTOL, gyrodyne, airframe configuration 1. INTRODUCTION In recent years a dynamic growth of the UAV (Unmanned Aerial Vehicle) usage in civil and mili- tary missions can be observed . Economic aspects are the main reasons of that increase, i.e. the purchas- ing cost of the UAS (Unmanned Aircraft System) varies from 40% up to 80% of the manned system cost.
    [Show full text]
  • Helicopter Controllability. Reference 2 Presents a Comprehensive History and References 1 and 3 Present Summarized Histories of Helicopter Development
    Calhoun: The NPS Institutional Archive Theses and Dissertations Thesis Collection 1989-09 Helicopter controllability Carico, Dean Monterey, California. Naval Postgraduate School http://hdl.handle.net/10945/27077 DTfltttf NAVAL POSTGRADUATE SCHOOL Monterey , California THESIS C2D L/5~ HELICOPTER CONTROLLABILITY by Dean Carico September 1989 Thesis Advisor: George J. Thaler Approved for public release; distribution unlimited lclassified V CLASSi^'CATiON QF THIS PAGE REPORT DOCUMENTATION PAGE ORT SECURITY CLASSIFICATION 1b RESTRICTIVE MARKINGS assif ied IURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION /AVAILABILITY OF REPORT Approved for public release :lassification t DOWNGRADING SCHEDULE Distribution is unlimited ORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S) ME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION il Postgraduate School (If applicable) 62 Naval Postgraduate School DRESS {City, State, and ZIP Code) 7b ADDRESS (C/fy, State, and ZIP Code) :erey, California 93943-5000 Monterey, California 93943-5000 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER DRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS IE (include Security Claudication) HELICOPTER CONTROLLABILITY RSONAL AUTHOR(S) ICO, G. Dean YPE OF REPORT 4 DATE OF REPORT (Year, Month. Day) ter ' s Thesis 1989, September ipplementary notation T h e views expressed in this thesis are thos e of the hor and do not reflect the official policy or position of the Department r,nyprninpnf npfpnsp nr ___ , COSATi CODES 18 SUBJECT TERMS {Continue on reverse if pecessary and identify Helicopter Controllability, Helicop Flight Control Systems, Helicopter Flying Qualities and Flying Qualities Spec if ications i 3STRACT {Continue I reverse if necessary and identify by block number) 'he concept of helicopter controllability is explained.
    [Show full text]
  • Download (6MB)
    Trchalik, Josef (2009) Aeroelastic modelling of gyroplane rotors. PhD thesis. http://theses.gla.ac.uk/1232/ Copyright and moral rights for this thesis are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Glasgow Theses Service http://theses.gla.ac.uk/ [email protected] Aeroelastic Modelling of Gyroplane Rotors Josef Trchalík, Dipl.Ing. Ph. D. Thesis Department of Aerospace Engineering University of Glasgow July 2009 Thesis submitted to the Faculty of Engineering in fulfillment of the requirements for the degree of Doctor of Philosophy c J. Trchalík, 2009 Abstract The gyroplane represents the first successful rotorcraft design and it paved the way for the development of the helicopter during the 1940s. Gyroplane rotors are not powered in flight and work in autorotative regime and hence the characteristics of a helicopter rotor during powered flight and a rotor in autorotation differ sig- nificantly. Gyroplanes in the UK have been involved in number of fatal accidents during the last two decades. Despite several research projects focused on gyroplane flight dynamics, the cause of some of gyroplane accidents still remains unclear. The aeroelastic behaviour of autorotating rotors is a relatively unexplored problem and it has not yet been investigated as possible cause of the accidents.
    [Show full text]
  • Nonlinear Dynamics and Robust Control of a Gyroplane Rotor ?
    NONLINEAR DYNAMICS AND ROBUST CONTROL OF A GYROPLANE ROTOR ? Yevgeny I. Somov ∗,† and Oleg Ye. Polyntsev ‡ ∗ Stability and Nonlinear Dynamics Research Center, Mechanical Engineering Research Institute (IMASH), the Russian Academy of Sciences (RAS) 5 Dm. Ul’yanov Str. Moscow 119333 Russia † Research Institute of Mechanical Systems Reliability 244 Molodogvardeyeskaya Str. Samara 443100 Russia [email protected] e−[email protected] ‡ JSC Scientific & Production Corporation IRKUT 3 Novatorov Str. Irkutsk 664020 Russia [email protected] Abstract: Mathematical models of a gyroplane rotor have been carried out. Their approximate analytical solutions have been obtained. Software allowing one to simulate and study a rotor dynamics has been created. Major physical features on the forced flexible oscillations of the rotor have been investigated. The results obtained have successfully been applied to design the A-002 gyroplane rotor. Copyright c 2005 IFAC Keywords: gyroplane rotor, nonlinear dynamics, robust control 1. INTRODUCTION Some assumptions of the analytical models of auto- rotation applied earlier do not allow one to investigate At present due to new advanced technologies gy- entirely a GP rotor. The problem posed can effectively roplanes (GPs) are being created across the world. be solved due to computers having great capacities. Therefore, in order to predict operational features of a The purpose of the paper are modeling and research wind-milling rotor it is of significance to advance the of nonlinear dynamics and robust stabilization by a theory of auto-rotation. As against helicopter main gyroplane rotor, see Fig. 1. The rotor consists of two rotor an auto-rotating rotor is revolved under the blades attached to a hub by means of teeter hinge influence of an air stream rush.
    [Show full text]