Key Steps for Improving Ontario's

Total Page:16

File Type:pdf, Size:1020Kb

Key Steps for Improving Ontario's LEARNING BY DOING: KEY STEPS FOR IMPROVING ONTARIO’S RENEWABLE ENERGY PROGRAMS Mariana Eret January 30th, 2015 A MAJOR PAPER SUBMITTED TO THE FACULTY OF ENVIRONMENTAL STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER IN ENVIRONMENTAL STUDIES YORK UNIVERISTY, TORONTO, ONTARIO, CANADA __________________________ Mariana Eret, MES Candidate _________________________ Dr. Jose Etcheverry, Supervisor © Copyright by Mariana Eret, 2015 Abstract The use of renewable energies (RE) for electricity production can potentially deliver a range of social, environmental and economic benefits. With the passage of the Green Energy and Green Economy Act (GEGEA) of 2009, the Ontario government has introduced a comprehensive set of policy measures to foster the development of renewables and achieve other policy goals. The RE growth in the province has been accompanied by a number of challenges, preventing Ontario from realizing the full potential of its RE resources and capturing the associated benefits. As Ontario expands its RE generation, it is vital that it puts in place a robust support framework that can ensure successful RE implementation. This study examines Ontario’s current legal and policy framework for renewables in the power sector and offers policy recommendations for improving this framework A qualitative comparative analysis of RE policies and programs in three jurisdictions - Germany, Denmark and Ontario is used to identify policy parameters and conditions that have proved to be significant for successful RE deployment in Germany and Denmark, and to evaluate Ontario’s RE policies against these “success factors”. Qualitative expert interviews are employed to elicit experts’ perspectives about the performance of Ontario’s current RE policy framework, the barriers to RE implementation in the province and potential policy solutions to address these barriers. The findings of this study suggest that Ontario has made important progress in establishing favourable conditions for RE development with the introduction of the GEGEA legislation and the FIT program. These policy initiatives kick-started the RE development in the province and have been key to a number of other positive developments, such as clean-tech innovation, emergence of a local RE industry and community power development. However, there have also ii been adverse consequences and implications, such as local opposition to RE and the perception that FIT costs are excessive. The study offers a number of policy recommendations for improving RE policy design and implementation and overcoming other barriers to RES in Ontario. The government should give higher priority to renewables in the energy planning. The specific design elements of FIT policy should be better tailored to RE policy goals. Following best international practices in RE policy design and implementation can help achieve this goal. The public engagement opportunities in RE development should be improved. A concentrated effort is needed to create an organizational culture supportive of RETs in the electricity sector. A longer-term perspective and a more integrated approach to energy policy-making is needed in Ontario. The province should initiative a discussion about the costs and benefits of nuclear refurbishment and the implications of continuing with the current nuclear path. Measures to improve integration of RES into the grid should be strengthened. Support for public outreach, education and provision of evidence-based transparent information can help improve the reputation of renewables and create stronger public support for this energy option. iii Foreword Growing up in a rural community where people rely on the local environment for many important elements of their livelihood, I developed a special respect for nature and a desire to learn how we can achieve a more environmentally sustainable way of living. My interest in environmental sustainability provided the motivation to apply for the Masters in Environmental Studies (MES) Program at York University. Throughout my time at the Faculty of Environmental studies I became interested in the opportunities that renewable energy (RE) offers to help address some of the most pressing complex and interrelated issues facing us today, including climate change, pollution, energy security, rural development and unemployment. My Area of Concentration in the MES program - “Policy success factors for the promotion of renewable energy” - reflects my interest in policy mechanisms, conditions and parameters that can facilitate development and deployment of RE to help us achieve a more sustainable energy system, achieve the shift to a low-carbon economy and build a more sustainable future. Recognizing that RE refers to a broad range of energy sources and that its effective implementation requires the participation of many actors, I narrowed down my research interests to RES in the electricity sector and ad-hoc governmental policy responses. This research was conducted in partial fulfillment of the requirements of the MES program. Through a comparative analysis of RE policies and programs in three jurisdictions - Germany, Denmark and Ontario – I explored, in depth, key issues and questions related to my subject area to fulfil the learning objectives identified in my Plan of Study (POS). In particular, I examined Ontario’s most salient renewable power options and the key drivers of RE deployment in Ontario and beyond, which satisfies several of my learning objectives: i.e. understanding the characteristics of different energy sources and the social, economic and environmental impacts iv of different energy options. The specific and emerging barriers to RE development, the strengths and weaknesses of RE support measures and their suitability in different contexts and situations have been other major themes of my plan study. I gained further insight into these issues by evaluating the key elements of the RE support frameworks in the selected case studies, such as RE targets and feed-in tariffs. Finally, and most importantly, my research paper helped me to meet the learning objectives of the third component of my POS: i.e. to examine the policy conditions that have driven successful RE deployment in leading RE jurisdictions and to understand how lessons learned there can be adapted and extrapolated to inform future RE policy development. I thoroughly examined which policy factors and parameters have successfully driven rapid and large-scale development of RES in two leading RE jurisdictions - Germany and Denmark. The comparison of RE experiences in these jurisdictions and Ontario enabled me to inform policy recommendations for improving Ontario’s RE support framework. Interviews with experts helped assess the relevance and applicability of international best practices and lessons to Ontario’s policy context. I hope that the findings and recommendations of this study will be useful to policymakers in Ontario and other jurisdictions seeking to design a successful RE policy support framework. v Acknowledgements First and foremost, I would like to thank my supervisor Dr. Jose Etcheverry for his guidance, encouragement and understanding. This paper would not be possible without his help and support. I am deeply indebted to all those who agreed to be part of my study as interviewees and who kindly shared their thoughts and perspectives on the renewable energy situation in Ontario. Talking to you was the most interesting and exciting part of my research project. I also thank Prof. Mark Winfield, Prof. Jose Etcheverry and Prof. Peter Mulvihill for their interesting questions during my defence. I am grateful to Prof. Mark Winfield, Prof. Martin Bunch, Prof. Brian Milani, Eric Millar and other MES Faculty Members for their interesting lectures and for all those things that I learned thanks to you. Finally, I thank my fiancé Saman and my family for their support and advice. vi Table of Contents Abstract ...................................................................................................................................... ii Foreword .................................................................................................................................... iv Acknowledgements .................................................................................................................... vi Table of Contents ....................................................................................................................... vii List of Tables ............................................................................................................................. ix Chapter One: Introduction ......................................................................................................... 1 Chapter Two: Literature Review ............................................................................................... 3 2.1 Renewable Energy Definition ....................................................................................... 3 2.2 Major Renewable Energy Sources: a Brief Overview .................................................. 4 2.2.1 Renewables in Ontario: Present Utilization and Future Potential ...................... 6 2.3 Drivers and Benefits of Renewable Energy .................................................................. 8 2.3.1 Energy Security .................................................................................................. 9 2.3.2 Environmental and Health Benefits ...................................................................
Recommended publications
  • Planning for Wind Power: a Study of Public Engagement in Uddevalla, Sweden
    Planning for Wind Power: A Study of Public Engagement in Uddevalla, Sweden by Michael Friesen A Thesis submitted to the Faculty of Graduate Studies of The University of Manitoba In partial fulfilment of the requirements of the degree of MASTER OF CITY PLANNING Faculty of Architecture, Department of City Planning Winnipeg, MB Copyright © 2014 by Mike Friesen Abstract Despite seemingly widespread support, wind power initiatives often experience controversial development processes that may result in project delays or cancelations. Wind power planning – often derided for ignoring the concerns of local residents – is ideally positioned to engage citizens in determining if and where development may be appropriate. Following the process of a dialogue based landscape analysis in Uddevalla, Sweden, the research endeavours to better understand the ties between landscape and attitudes towards wind power, how concerned parties express these attitudes, and how these attitudes may change through public engagement. In contrast to many existing quantitative studies, the research uses one-on-one interviews with participants of the planning processes to provide a rich qualitative resource for the exploration of the topic. Five themes emerging from the interviews and their analysis, are explored in depth. These themes include: landscape form and function; the expression of public attitudes; changing attitudes; frustration with politicians and processes; and engagement and representation. Consideration is also given to landscape analysis as a method, wind
    [Show full text]
  • Renewables Rising
    ©iStockphoto.com/gmcoop Renewables rising Here comes the sun – the wind, hydro and the rest Industry focus — renewables November 2014 Published by Edison Investment Research Renewables rising Sector primer Here comes the sun – the wind, hydro and the rest Industrials 1 With regard to renewables, those lyrics, “Here Comes the Sun”, finally 24 November 2014 seem to be coming to fruition, as evidenced by the recent performance of many companies in the alternative energy/renewables sector. The recent plethora of yield company spin-offs, as well as similarly missioned “total Companies in this report return” companies, has provided visibility to the sector, validating it Abengoa Yield (ABY) further, and offering investors a unique way to play the alternative Brookfield Renewable Energy Partners (BEP) energy/renewables space in terms of both yield and growth potential. Capstone Infrastructure (CSE.TO) While volatility is likely to be high, overall, we are bullish on the alternative Hannon Armstrong Sustainable Infrastructure (HASI) energy/renewables sector, and believe the “total return” concept offers NextEra Energy Partners (NEP) investors the potential for diversification, higher yield and more secured cash flows associated with renewable assets. In this report, we initiate NRG Yield (NYLD) coverage of the alternative energy/renewables sector, and present an Pattern Energy Group (PEGI) overview of climate change, snapshots of the main subsectors and TransAlta Renewables (RNW.TO) spotlights on select “yieldco/total return” companies in the space. TerraForm Power (TERP) Bluefield Solar Income Fund (BSIF.L) We need more… Greencoat UK Wind (UKW.L) Energy and electricity. Despite some progress with energy efficiency, long-term population growth, increased demand for energy as developing countries further Analysts industrialize their economies and finite supplies of fossil fuels will ultimately drive Cynthia Motz, CFA +1 646 653 7026 demand for alternative and renewable sources.
    [Show full text]
  • REPORT Wind Power in Cold Climate
    Wind power in cold climate, Appendix – R&D-projects REPORT Wind Power in cold climate 5 September 2011 By: Elin Andersen, Elin Börjesson, Päivi Vainionpää & Linn Silje Undem Revised by: Christian Peterson Approved by: Eva-Britt Eklöf Assignment ref.: 10152935 Dated: 5 September 2011 Wind power in cold climate Revised: Christian Peterson Representative: Eva-Britt Eklöf Status: Final Report REPORT Wind power in cold climate Client Nordic Energy Research Stenbergsgatan 25 N-0170 Oslo NORGE Consultant WSP Environmental Box 13033 402 51 Göteborg Visitors: Rullagergatan 4 Phone: +46 31 727 25 00 Fax: +46 31 727 25 01 WSP Environment & Energy Sweden Corporate identity no.: 556057-4880 Reg. office: Stockholm www.wspgroup.se Contacts Eva-Britt Eklöf Phone: +46 31 727 28 93 Email: [email protected] 0 . 1 r e v 2 (77) Assignment ref.: 10152935 Dated: 5 September 2011 Wind power in cold climate Revised: Christian Peterson Representative: Eva-Britt Eklöf Status: Final Report Table of Contents 1 EXECUTIVESUMMARY............................................................................6 2 INTRODUCTION.....................................................................................10 2.1 Background ......................................................................................................... 10 2.2 Objectives and scope of work .............................................................................. 10 2.3 Methodology ......................................................................................................
    [Show full text]
  • Realizing British Columbia's Second Renewable Electricity Revolution
    Realizing British Columbia’s Second Renewable Electricity Revolution An Outlook 2020 Topic Paper prepared by OnPoint Consulting Inc. for the Business Council of British Columbia March 2010 Sponsored by The opinions expressed in this document are those of the authors and do not necessarily reflect those of the Business Council of British Columbia. Permission to use or reproduce this report is granted for personal or classroom use without fee and without formal request provided that it is properly cited. Copies may not be made or distributed for profit or commercial advantage. Executive Summary A renewable electricity revolution is sweeping across the globe. Many jurisdictions are accelerating the development of renewable electricity in response to concerns about climate change, energy security and supporting economic development. The United States is now the fastest growing jurisdiction for renewable electricity; however, China and India are both beginning to make a significant shift toward renewable electricity generation. The growth in renewable electricity is being supported by the rapidly evolving renewable electricity technology. As technology continues to rapidly improve, the cost of renewable electricity is also falling. British Columbia is already a renewable electricity leader, with more than 87% of the province’s generating capacity coming from renewable sources. Much of the province’s renewable electricity generation is based on a massive wave of large hydroelectric facilities constructed between the 1960’s and 1980’s to support the development of electricity‐intensive industries in the province. There is now an opportunity to create a second renewable electricity wave based on smaller renewable electricity (wind, small hydro, geothermal, ocean and biomass).
    [Show full text]
  • Community Wind in Alberta
    Status of Social Economy Provision of Wind Electric Energy in Alberta Photo: Wind turbines at Pincher Creek, AB Julie MacArthur BALTA B6 Researcher January 4, 2010 Wind electricity in Canada and Alberta Wind power is one of the fastest growing energy sources in the world and Canada is no exception to this. 2009 was a record year for the development of wind power in Canada and it now occupies the 11th country spot in total installed capacity according to the World Wind Energy Association 2009 report. Total installed capacity in Canada is now at 3,319MW (CanWEA, 2009a1), which is up from 2,370MW at the end of 2008 (40% increase) and 1,770MW in 2007 (StatsCan, 2009). Every province now has some installed capacity (with the opening of Bear Mountain Wind Park in Dawson Creek, BC). In fact, using the CanWEA numbers, installed capacity from 2000 to 2009 grew at an average of 40% every year. According to a CanWEA press release “current provincial targets and policy objectives would result in a further quadrupling of installed wind energy capacity in the next six years” (CanWEA, 2009a). While this growth is impressive, it is important to keep in mind that Canada still has one of the most underdeveloped wind resources in the world. Germany, for example, which is 28 times smaller than Canada has 10 times more installed wind capacity (Valentine 2009, p.3). Only 0.6 per cent of Canada’s total electricity production in 2008 was from wind and tidal sources (NEB, Source: CanWEA 2009(http://www.canwea.ca/farms/index_e.php) 2009, p.43- see table 1).
    [Show full text]
  • Report Download
    Low-Impact Renewable Energy Policy in Canada: Strengths, Gaps and a Path Forward February, 2003 Prepared by: Andrew Pape-Salmon Jonathan Dogterom Carissa Wieler Mark Anielski Pembina Institute About the Pembina Institute The Pembina Institute is an independent, citizen-based organization involved in environmental education, research, public policy development and client-confidential environmental consulting services. Its mandate is to develop and promote policies and practices that lead to environmental protection, resource conservation and environmentally sound and sustainable energy and resource management. The mission of the Pembina Institute is to implement holistic and practical solutions for a sustainable world. Incorporated in 1985, the Institute’s head office is in Drayton Valley, Alberta, with offices in Ottawa and Calgary, and research associates in Edmonton, Vancouver and other locations across Canada. For more information on the Pembina Institute’s work, and details of the capabilities and services offered, please visit www.pembina.org. About the Authors Andrew Pape-Salmon is the Director of Sustainable Energy at the Pembina Institute. He is a professional engineer and resource manager with a focus on sustainable energy policy, low-impact renewable energy technologies and community energy planning. He has led several sustainable energy policy advocacy efforts in Canada and has authored several related reports, including, “A Smart Electricity Policy for Alberta,” available free of charge on the Pembina Institute Web site. (For further information about the report, please contact the author at [email protected].) He has worked extensively on the implementation of low-impact renewable energy and energy efficiency at a community level with First Nations and small municipal government partners in Alberta, British Columbia and the Yukon.
    [Show full text]
  • Lesson #3 Where's the Power?
    3 Lesson #3 Where’s the Power? Subject Areas Science, Social Studies, Language Arts Students become "experts" on the pros and cons of one of nine renewable and non-renewable energy sources. In small Student Skills groups, they share what they learn with their classmates. cooperation, investigation, peer They each write a short persuasive letter about the energy teaching, communication, critical source of their choice. This lesson may be best suited to thinking, reflecting students in Grades 6 and 7. Developing Vocabulary fossil fuels, tidal power, solar power, nuclear power, wind power, Learning Objectives hydro power, geothermal, biomass, understand the pros and cons of a variety of energy sources bioenergy, ethanol, biodiesel, work collaboratively in small groups to share their energy learning photosynthesis, micro-hydro, demonstrate their learning by writing a persuasive letter in displacement, greenhouse gas, carbon support of a particular energy source dioxide, fission, atom, gravity, tidal barrage, industrialized, water cycle, competitive, earth’s crust, continental Materials You Need plates, volcano, geyser, generator, The Energy Source Cards, provided at the end of this lesson plan. turbines, watt, megawatt, gigawatt, You need one Energy Source Card per student. Select enough terawatt from the set of 36 to ensure that there are at least three or four students in each energy source group: there are four cards for RELATED each of the nine energy sources. If you choose to have only three BACKGROUNDERS cards (i.e., students) per energy source, excluding the same card number will make it easier to group students later. The jigsaw handout, also provided at the end of this lesson plan.
    [Show full text]
  • Opportunities and Challenges for Renewable Energy Development in British Columbia
    Opportunities and Challenges for Renewable Energy Development in British Columbia: Policy Instruments to Reduce Greenhouse Gas Emissions in the Provincial Electricity Sector Honours Thesis: Final Report Curtis Johnston 95301-1433 Supervisors: Robert Anderson, Adam Holbrook TABLE OF CONTENTS 1.0 INTRODUCTION…………………………………………………………………2 2.0 CLIMATE CHANGE……………………………………………………………...3 2.1 Climate Change and Canada…………………………………………………..4 2.2 Climate Change in British Columbia………………………………………….5 2.3 Provincial Greenhouse Gas Emissions………………………………………..5 3.0 BC HYDRO UTILITY OPERATIONS…………………………….……………6 3.1 BC Hydro Natural Gas Strategy………………………………………………6 3.2 Hydroelectric Limitations……………………………………………………..8 4.0 RENEWABLE ENERGY…………………………………………………………9 4.1 Key Renewable Energy Sources in British Columbia……………………….11 4.2 Biomass Energy………………………………………………………...……11 4.3 Small Hydro Energy…………………………………………...…………….12 4.4 Wind Energy…………………………………………………………………12 4.5 Ocean Wave Energy…………………………………………………………13 5.0 ENERGY PRICING…………………………………………………..………….13 5.1 Green Pricing………………………………………………………………...15 5.2 Emissions Pricing……………………………………………………………16 5.3 Financial Incentives and Subsidies……………………….………………….18 6.0 RENEWABLE PORTFOLIO STANDARD (RPS)……………...……………..20 6.1 Target Size………………………………...…………………………………22 6.2 Target Timing………………………………………………………..………22 6.3 One or Multiple Targets……………………………………………………...23 6.4 Eligible Resources………………………………………………...…………23 6.5 RPS Administration………………………………………………………….24 6.6 Provincial RPS Challenges…………………………………………………..24 6.7 Legislated
    [Show full text]
  • WIND FORCE 12 a Blueprint to Achieve 12% of the World's Electricity from Wind Power by 2020
    WIND FORCE 12 A blueprint to achieve 12% of the world's electricity from wind power by 2020 [June 2005] WIND FORCE 12 SUMMARY RESULTS IN 2020 Total MW installed 1,254,030 Annual MW installed 158,728 TWh generated to meet 12% global demand 3,054 Co2 reduction (annual million tonnes) 1,832 Co2 reduction (cumulative million tonnes) 10,771 Total investment per annum €80 billion Total job years 2.3 million Installation costs in 2020 €512/kW Electricity generation costs in 2020 €2.45cents/kWh TABLE OF CONTENTS Page - OVERVIEW . .2 - THE GLOBAL MARKET STATUS OF WIND POWER . .6 - WIND POWER AND ENERGY POLICY REFORM . .11 1. Legally binding targets for renewable energy . .11 2. Specific policy mechanisms . .12 2.1 Fixed Price Systems . .12 2.2 Renewable Quote Systems . .13 2.3. Design criteria 2.4 Defined and stable returns for investors . .13 3. Electricity market reform . .13 3.1 Removal of electricity sector barriers to renewables . .13 3.2 Removal of market distortions . .14 3.2.1 End subsidies to fossil fuel and nuclear power sources . .14 3.2.2 Internalise the social and environmental costs of polluting energy . .15 - INTERNATIONAL POLICIES . .17 Implementation of the Kyoto Protocol and post 2012 reductions framework . .17 Reform of Export Credit Agencies (ECAs), Multi-Lateral Development Banks (MDBs) and International Finance Institutions (IFIs) . .18 G8 recommendations . .18 Policy summary . .19 - COUNTRY REPORTS . .20 Australia . .20 Brazil . .23 Global map . .24 Canada . .26 China . .28 France . .31 India . .32 Italy . .34 Japan . .35 Offshore . .36 Philippines . .39 Poland . .40 Turkey .
    [Show full text]
  • Gwecglobal Windpower 05 R
    TABLE OF CONTENTS INTRODUCTION: Tackling the global energy challenge . 4 GLOBAL SUMMARY: The Status of the Global Wind Markets . 7 Market forecast for 2006-2010 . 13 COUNTRY REPORTS Europe . .16 European Union. 16 Germany. 18 Spain . 20 Italy . 22 United Kingdom . 24 Americas . .28 United States . 28 Canada. 30 Brazil . 32 Mexico . 34 Asia . .36 India . 36 China . 38 Japan. 40 Philippines . 42 Pacifi c. .44 Australia . 44 Africa . .46 Egypt. 46 CONCLUSIONS: The need for solid political frameworks . .48 Benefi ts of Wind Energy . 49 About GWEC . 50 FOREWORD Today, wind energy is a global business, growing at a faster rate than any other energy source. In 2005, the global wind markets grew by 40.5 %, generating some 12 billion euro, or 14 billion USD, in new generating equipment. While Europe remains the biggest market, other regions such as Asia and North and Latin America are quickly catching up. As a response to these developments, the Global Wind Energy Council OF CONTENTS TABLE (GWEC) was founded in March 2005 with the aim to provide a credible and representative forum for the entire wind energy industry at international level. GWEC’s mission is to ensure that wind power establishes itself as one of the world’s leading energy sources, providing substantial environmental and economic benefi ts. In the fi rst year since its inception, GWEC has focused on engaging external stakeholders to assist the creation of effi cient policy frameworks for wind power development. GWEC works with emerging markets to transfer know- how and strengthen the development of wind energy.
    [Show full text]
  • Exploring Renewable Energy Opportunties for Nunavut
    University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies Graduate Capstones 2018 Exploring Renewable Energy Opportunties for Nunavut Byrne, Dixon Louis Byrne, D. L. (2018). Exploring Renewable Energy Opportunties for Nunavut (Unpublished report). University of Calgary, Calgary, AB. doi:10.11575/PRISM/33094 http://hdl.handle.net/1880/108742 report University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY “Exploring Renewable Energy Opportunities for Nunavut” By Dixon L. Byrne A RESEARCH PROJECT SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE GRADUATE PROGRAM IN SUSTAINABLE ENERGY DEVELOPMENT CALGARY, ALBERTA AUGUST, 2018 © Dixon L. Byrne, 2018 Abstract The Canadian territory of Nunavut covers one fifth of Canada’s landmass and, without a road network or linked power grid, residents rely exclusively on off-grid diesel generated power stations to supply electricity. Once considered convenient, these systems have now become inefficient and difficult to maintain. Economic, environmental, and social analyses must be conducted in order to recognize the viability of developing clean, renewable, and sustainable energy in the territory. For the community of Rankin Inlet, this involves understanding the benefits of reducing harmful diesel fuel emissions. Simulations of potential wind and solar power plants help to create an understanding of the economics behind such a project.
    [Show full text]
  • Finding the Energy to Act: Reducing Canada's
    HOUSE OF COMMONS CANADA FINDING THE ENERGY TO ACT: REDUCING CANADA’S GREENHOUSE GAS EMISSIONS Report of the Standing Committee on Environment and Sustainable Development Alan Tonks, M.P. Chair July 2005 The Speaker of the House hereby grants permission to reproduce this document, in whole or in part for use in schools and for other purposes such as private study, research, criticism, review or newspaper summary. Any commercial or other use or reproduction of this publication requires the express prior written authorization of the Speaker of the House of Commons. If this document contains excerpts or the full text of briefs presented to the Committee, permission to reproduce these briefs, in whole or in part, must be obtained from their authors. Also available on the Parliamentary Internet Parlementaire: http://www.parl.gc.ca Available from Communication Canada — Publishing, Ottawa, Canada K1A 0S9 FINDING THE ENERGY TO ACT: REDUCING CANADA’S GREENHOUSE GAS EMISSIONS Report of the Standing Committee on Environment and Sustainable Development Alan Tonks, M.P. Chair July 2005 STANDING COMMITTEE ON ENVIRONMENT AND SUSTAINABLE DEVELOPMENT CHAIR Alan Tonks VICE-CHAIRS Bernard Bigras Lee Richardson MEMBERS Nathan Cullen Yasmin Ratansi Brian Jean Christian Simard David McGuinty Jeff Watson Bob Mills Hon. Bryon Wilfert Hon. Denis Paradis OTHER MEMBERS OF PARLIAMENT PARTICIPATING IN THIS STUDY Dean Allison Marc Godbout Russ Powers David L. Anderson Peter Goldring Anthony Rota Hon. Larry Bagnell Susan Kadis Francis Scarpaleggia Gord Brown Wajid Khan Andrew Sheer Serge Cardin Ed Komarnicki Mario Silva Colin Carrie Mario Laframboise David Smith Roy Cullen Hon. Jack Layton Hon.
    [Show full text]