REPORT Wind Power in Cold Climate

Total Page:16

File Type:pdf, Size:1020Kb

REPORT Wind Power in Cold Climate Wind power in cold climate, Appendix – R&D-projects REPORT Wind Power in cold climate 5 September 2011 By: Elin Andersen, Elin Börjesson, Päivi Vainionpää & Linn Silje Undem Revised by: Christian Peterson Approved by: Eva-Britt Eklöf Assignment ref.: 10152935 Dated: 5 September 2011 Wind power in cold climate Revised: Christian Peterson Representative: Eva-Britt Eklöf Status: Final Report REPORT Wind power in cold climate Client Nordic Energy Research Stenbergsgatan 25 N-0170 Oslo NORGE Consultant WSP Environmental Box 13033 402 51 Göteborg Visitors: Rullagergatan 4 Phone: +46 31 727 25 00 Fax: +46 31 727 25 01 WSP Environment & Energy Sweden Corporate identity no.: 556057-4880 Reg. office: Stockholm www.wspgroup.se Contacts Eva-Britt Eklöf Phone: +46 31 727 28 93 Email: [email protected] 0 . 1 r e v 2 (77) Assignment ref.: 10152935 Dated: 5 September 2011 Wind power in cold climate Revised: Christian Peterson Representative: Eva-Britt Eklöf Status: Final Report Table of Contents 1 EXECUTIVESUMMARY............................................................................6 2 INTRODUCTION.....................................................................................10 2.1 Background ......................................................................................................... 10 2.2 Objectives and scope of work .............................................................................. 10 2.3 Methodology ....................................................................................................... 11 3 NATIONALCONDITIONSANDSUMMARIES....................................12 3.1 Denmark ............................................................................................................. 12 3.1.1 Introduction..................................................................................................... 12 3.1.2 Climate ............................................................................................................ 13 3.1.3 Research and development .............................................................................. 13 3.2 Finland ................................................................................................................ 14 3.2.1 Introduction..................................................................................................... 14 3.2.2 Climate ............................................................................................................ 15 3.2.3 Research and development .............................................................................. 16 3.3 Norway................................................................................................................ 18 3.3.1 Introduction..................................................................................................... 18 3.3.2 Climate ............................................................................................................ 18 3.3.3 Research and development .............................................................................. 18 3.4 Sweden ............................................................................................................... 19 3.4.1 Introduction..................................................................................................... 19 3.4.2 Climate ............................................................................................................ 19 3.4.3 Research and development .............................................................................. 19 3.5 Canada ................................................................................................................ 20 3.5.1 Introduction..................................................................................................... 20 3.5.2 Climate and geography .................................................................................... 21 3.5.3 Research and development .............................................................................. 22 3.6 Reflections .......................................................................................................... 23 4 CONDITIONSFORICING......................................................................23 4.1 Weather conditions and different types of icing .................................................. 24 4.1.1 Precipitation icing ............................................................................................ 24 4.1.2 In-cloud icing ................................................................................................... 25 4.1.3 Hoar frost ........................................................................................................ 26 4.2 Geographical impact ........................................................................................... 26 4.3 Ice build-up and appearance on wind turbines .................................................... 26 4.4 Reflections .......................................................................................................... 27 5 EFFECTSOFICING.................................................................................27 5.1 Production losses ................................................................................................ 27 5.1.1 Results from case studies ................................................................................. 30 5.2 Turbine loads....................................................................................................... 31 5.2.1 On-going tests and measures ........................................................................... 32 5.3 Influence on expected lifetime of components.................................................... 32 0 . 1 5.4 Uncertainties in production forecasts.................................................................. 33 r e v 5.5 Power curves do not match ................................................................................. 33 3 (77) Assignment ref.: 10152935 Dated: 5 September 2011 Wind power in cold climate Revised: Christian Peterson Representative: Eva-Britt Eklöf Status: Final Report 5.6 Increase of blade generated noise ....................................................................... 33 5.7 Safety threats due to ice throw ........................................................................... 33 5.7.1 Risk assessment of ice throw ............................................................................ 34 5.8 Reflections .......................................................................................................... 36 6 MEASUREMENTSANDPREDICTIONOFICEACCRETION............36 6.1 Measurement of icing parameters ...................................................................... 37 6.2 Ice detection methods and instruments .............................................................. 38 6.2.1 On-going tests ................................................................................................. 39 6.3 Heated anemometers .......................................................................................... 40 6.4 Ice mapping and other methods for forecasts of icing ......................................... 40 6.5 Classification of sites, measurement instruments and icing prevention systems . 42 6.6 Reflections .......................................................................................................... 42 7 METHODSFORDE-ICINGANDICINGPREVENTION.....................43 7.1 Blade heating ...................................................................................................... 44 7.2 Ice-repellent coating............................................................................................ 45 7.3 Black paint........................................................................................................... 46 7.4 Chemicals ............................................................................................................ 47 7.5 Flexible blade/active pitching .............................................................................. 47 7.6 Mechanical .......................................................................................................... 47 7.7 Microwaves ......................................................................................................... 47 7.8 Reflections .......................................................................................................... 48 8 ECONOMICASPECTSOFICING...........................................................48 8.1 Increased loads ................................................................................................... 48 8.2 Insurance............................................................................................................. 49 8.3 Production losses and costs ................................................................................. 49 8.4 Maintenance ....................................................................................................... 50 8.5 Financial losses .................................................................................................... 50 8.6 Safety regulations ............................................................................................... 50 8.7 Mapping of ice..................................................................................................... 50 8.8 Expensive measurements of wind climate and icing ............................................ 51 8.9 Cost
Recommended publications
  • Wind Turbine Foundations
    IFC - ESMAP - RENEWABLE ENERGY TRAINING PROGRAM Wind Module I. Technology Overview, Market Analysis and Economics Washington DC, June 16th 2014 1 Index Wind Technology Overview, Market Analysis and Economics • Introduction and Technology Overview • Market Analysis and Perspectives • Support Schemes and Price Forecasting • Grid Integration and System Flexibility • Challenges and Competitiveness 22 Wind Power Generation Wind power generation: Conversion of wind energy into electricity using wind turbines Max Power output for a wind speed: 1 W····(,) UOE A3 v C m 2 p ͻ U= 1,225 kg/m3 ї density of the air ͻ A= swept Area ͻ V= wind Speed ͻ Cp= Power Coefficient 33 Wind - Power Coefficient Power Coefficient: Efficiency of a wind turbine transforming wind power into electricity Betz Limit: Maximum Power Coefficient of an ideal wind turbine For commercial turbines, Cp is typically between 40-50% 44 Wind - Weibull Distribution Wind speeds can be modeled using the Weibull Distribution. This function represents how often winds of different speeds will be observed at a location with a certain average wind speed. The shape of the Weibull Distribution depends on a parameter called Shape. In Northern Europe and most other locations around the world the value of Shape is approximately 2, then the distribution is named Rayleigh Distribution. 55 Wind - Capacity factor Weibull Distribution of Wind Speeds for a site with an average wind speed of 7m/s. It demonstrates visually how low and moderate winds are very common, and that strong gales are relatively rare. It is used to work out the number of hours that a certain wind speeds are likely to be recorded and the likely total energy output of a WT a year.
    [Show full text]
  • Offshore Technology Yearbook
    Offshore Technology Yearbook 2 O19 Generation V: power for generations Since we released our fi rst offshore direct drive turbines, we have been driven to offer our customers the best possible offshore solutions while maintaining low risk. Our SG 10.0-193 DD offshore wind turbine does this by integrating the combined knowledge of almost 30 years of industry experience. With 94 m long blades and a 10 MW capacity, it generates ~30 % more energy per year compared to its predecessor. So that together, we can provide power for generations. www.siemensgamesa.com 2 O19 20 June 2019 03 elcome to reNEWS Offshore Technology are also becoming more capable and the scope of Yearbook 2019, the fourth edition of contracts more advanced as the industry seeks to Wour comprehensive reference for the drive down costs ever further. hardware and assets required to deliver an As the growth of the offshore wind industry offshore wind farm. continues apace, so does OTY. Building on previous The offshore wind industry is undergoing growth OTYs, this 100-page edition includes a section on in every aspect of the sector and that is reflected in crew transfer vessel operators, which play a vital this latest edition of OTY. Turbines and foundations role in servicing the industry. are getting physically larger and so are the vessels As these pages document, CTVs and their used to install and service them. operators are evolving to meet the changing needs The growing geographical spread of the sector of the offshore wind development community. So is leading to new players in the fabrication space too are suppliers of installation vessels, cable-lay springing up and players in other markets entering vessels, turbines and other components.
    [Show full text]
  • Offshore Wind: Can the United States Catch up with Europe? January 2016
    Offshore Wind: Can the United States Catch up with Europe? January 2016 Wind energy power generation is on the rise around the world, due to its low fixed prices and lack of greenhouse gas emissions. A cumulative total of 369,553 megawatts (MW) of wind energy capacity was installed globally by the end of 2014.1 Of that total, only two percent came from offshore wind farms, which are able to capture stronger and more reliable ocean winds to generate electricity.2 Most offshore wind capacity is in Europe, where there are 3,072 grid-connected offshore wind turbines at 82 farms spanning 11 countries, for a total of 10,393.6 MW of wind energy capacity as of June 30, 2015.3 China, the leader in offshore wind in Asia, had 718.9 MW of installed capacity; Japan, 52 MW; and South Korea, 5 MW as of October 2015.4, 5, 6 In comparison, the United States is just beginning to invest in offshore wind energy, and is rapidly approaching the operational launch of its first commercial offshore wind farm. There is incredible potential for offshore wind development in the United States – the National Renewable Energy Laboratory (NREL) has estimated the United States has over 4,000 gigawatts (GW) of offshore wind potential, enough to power the country four times over.7 Installed Capacity European Union Offshore Wind Installed Capacity Offshore Wind (as of first quarter 2015) (as of first quarter 2015) Netherlands, 361 MW, 3% Sweden, 212 MW, 2% 10,393.60 Other, 60 MW, 1% Belgium, 712 MW, 7% United Kingdom, Germany, 5,017.00 2,760 MW, MW, 48% 27% 0.02 776 UNITED STATES E U R O P E A N CHINA, JAPAN, Denmark, 1,271 MW, 12% UNION SOUTH KOREA Figure 1: Megawatts of offshore wind in the world8 Figure 2: E.U.
    [Show full text]
  • Planning for Wind Power: a Study of Public Engagement in Uddevalla, Sweden
    Planning for Wind Power: A Study of Public Engagement in Uddevalla, Sweden by Michael Friesen A Thesis submitted to the Faculty of Graduate Studies of The University of Manitoba In partial fulfilment of the requirements of the degree of MASTER OF CITY PLANNING Faculty of Architecture, Department of City Planning Winnipeg, MB Copyright © 2014 by Mike Friesen Abstract Despite seemingly widespread support, wind power initiatives often experience controversial development processes that may result in project delays or cancelations. Wind power planning – often derided for ignoring the concerns of local residents – is ideally positioned to engage citizens in determining if and where development may be appropriate. Following the process of a dialogue based landscape analysis in Uddevalla, Sweden, the research endeavours to better understand the ties between landscape and attitudes towards wind power, how concerned parties express these attitudes, and how these attitudes may change through public engagement. In contrast to many existing quantitative studies, the research uses one-on-one interviews with participants of the planning processes to provide a rich qualitative resource for the exploration of the topic. Five themes emerging from the interviews and their analysis, are explored in depth. These themes include: landscape form and function; the expression of public attitudes; changing attitudes; frustration with politicians and processes; and engagement and representation. Consideration is also given to landscape analysis as a method, wind
    [Show full text]
  • Renewables Rising
    ©iStockphoto.com/gmcoop Renewables rising Here comes the sun – the wind, hydro and the rest Industry focus — renewables November 2014 Published by Edison Investment Research Renewables rising Sector primer Here comes the sun – the wind, hydro and the rest Industrials 1 With regard to renewables, those lyrics, “Here Comes the Sun”, finally 24 November 2014 seem to be coming to fruition, as evidenced by the recent performance of many companies in the alternative energy/renewables sector. The recent plethora of yield company spin-offs, as well as similarly missioned “total Companies in this report return” companies, has provided visibility to the sector, validating it Abengoa Yield (ABY) further, and offering investors a unique way to play the alternative Brookfield Renewable Energy Partners (BEP) energy/renewables space in terms of both yield and growth potential. Capstone Infrastructure (CSE.TO) While volatility is likely to be high, overall, we are bullish on the alternative Hannon Armstrong Sustainable Infrastructure (HASI) energy/renewables sector, and believe the “total return” concept offers NextEra Energy Partners (NEP) investors the potential for diversification, higher yield and more secured cash flows associated with renewable assets. In this report, we initiate NRG Yield (NYLD) coverage of the alternative energy/renewables sector, and present an Pattern Energy Group (PEGI) overview of climate change, snapshots of the main subsectors and TransAlta Renewables (RNW.TO) spotlights on select “yieldco/total return” companies in the space. TerraForm Power (TERP) Bluefield Solar Income Fund (BSIF.L) We need more… Greencoat UK Wind (UKW.L) Energy and electricity. Despite some progress with energy efficiency, long-term population growth, increased demand for energy as developing countries further Analysts industrialize their economies and finite supplies of fossil fuels will ultimately drive Cynthia Motz, CFA +1 646 653 7026 demand for alternative and renewable sources.
    [Show full text]
  • Wind Energy in Sweden – Opportunities and Threats
    Wind energy in Sweden – opportunities and threats Almedalen 2009 • Potential • Support system • Financial crisis • Local production The projects under construction together with smaller projects and single WTG’s are expected to contribute an additional 2 TWh of electricity before the end of 2010. Today Sweden produces 2 TWh of wind electricity, some 1.5 % of the Swedish consumption This map shows projects with all necessary permits in hand. Due to the global financial crisis, most of these projects will face a delay in terms of financial close. Almost all projects south of Lake Vänern are offshore projects and will only be built if the Government introduces a separate support system. Support system 1 Every electricity wholesaler has to show at least a certain Photovoltaic amount of these in their mix. He does this by buying certificates from the Wind power producer The amount of necessary certificates (the quota) Small hydro power rises up to 2016 Year 2016 Sweden will have 17 TWh more Bio power renewable electricity as compared to 2002 5 Support system 2 Two products to sell Electricity Price of electricity (€43/MWh) MWh Certificate Price of certificates (€30/MWh) 6 This example: €73 /MWh Wind investment in Sweden • Support system – Tradable green certificate system since 2003 • Works well and will result in 17 TWh new RES•E until 2016 – About 7 wind, 9 biomass CHP and 1 hydro • The system will be extended in time and volume to generate 25 TWh RES•E until 2020 – All of the additional 8 TWh will be wind • Required investment – Additional 13 TWh wind energy • requires about 5 000 MW installed capacity • Equals 2 500 2MW WTG’s • 7.5 billion euro The Financial Crisis • All industrial sectors are affected • Renewable energy sector will come out earlier than others.
    [Show full text]
  • Sgs Reference Projects Wind Power Industry
    WIND TURBINE MANUFACTURERS SGS REFERENCE PROJECTS WIND POWER INDUSTRY CLIENT PROJECT SCOPE OF SERVICE FOCUS EXECUTION YEAR COUNTRY Sany Group Manufacturing Supervision Towers China 2011 QA/QC Fuhrländer AG Loading and Unloading Germany 2009 Supervision, Visual Inspection NN Technical Due Diligence, Turbine Onshore Wind Turbines Korea 2009 Inspection, Wind Turbine Blade 750 kW and 2 MW Inspection, Vibration Measurement of Drive Train, Video-Endoscope Inspection of Gearbox, Thermography Inspection of Electrical Components and Oil Analysis Pioneer Wincon Various Manufacturing Supervision, Nacelle Components India 2009 Quality Audit / Approval of Manufacturers Siemens Loading and Unloading Onshore Wind Turbines Denmark 2009 Windpower Supervision, QA/QC Management and Inspection SGS IS THE WORLD’S LEADING INSPECTION, VERIFICATION, TESTING AND CERTIFICATION COMPANY. © SGS Group Management SA – 2013 – All rights reserved – SGS is a registered trademark of SGS Group Management SA WWW.SGS.COM WIND TURBINE MANUFACTURERS SGS REFERENCE PROJECTS WIND POWER INDUSTRY CLIENT PROJECT SCOPE OF SERVICE FOCUS EXECUTION YEAR COUNTRY Vestas Wind Lac Tukana Wind Regulatory Compliance Project Consultancy Kenya 2009 Systems Farm Saint Nikola Wind HSE Management and Project Consultancy Bulgaria 2009 Farm Project Supervision, Construction Supervision Various Legal Requirement Due Project Consultancy Bulgaria, 2009 Diligence Russia, Romania Gamesa Manufacturing Inspection Shafts and Flanges Korea 2008 NN Blade Inspection and NDT Wind Turbine Blades Germany 2008 Repower Vendor Assessment/ Wind Turbine Towers Korea 2008 Technical Audit Repower Vendor Assessment/ Wind Turbine Blades China, India 2008 Technical Audit WinWinD Various Manufacturing Supervision and Towers India 2008 Power Energy Final Acceptance Inspection Private Limited Design Verification Foundations Germany 2008 SGS IS THE WORLD’S LEADING INSPECTION, VERIFICATION, TESTING AND CERTIFICATION COMPANY.
    [Show full text]
  • Realizing British Columbia's Second Renewable Electricity Revolution
    Realizing British Columbia’s Second Renewable Electricity Revolution An Outlook 2020 Topic Paper prepared by OnPoint Consulting Inc. for the Business Council of British Columbia March 2010 Sponsored by The opinions expressed in this document are those of the authors and do not necessarily reflect those of the Business Council of British Columbia. Permission to use or reproduce this report is granted for personal or classroom use without fee and without formal request provided that it is properly cited. Copies may not be made or distributed for profit or commercial advantage. Executive Summary A renewable electricity revolution is sweeping across the globe. Many jurisdictions are accelerating the development of renewable electricity in response to concerns about climate change, energy security and supporting economic development. The United States is now the fastest growing jurisdiction for renewable electricity; however, China and India are both beginning to make a significant shift toward renewable electricity generation. The growth in renewable electricity is being supported by the rapidly evolving renewable electricity technology. As technology continues to rapidly improve, the cost of renewable electricity is also falling. British Columbia is already a renewable electricity leader, with more than 87% of the province’s generating capacity coming from renewable sources. Much of the province’s renewable electricity generation is based on a massive wave of large hydroelectric facilities constructed between the 1960’s and 1980’s to support the development of electricity‐intensive industries in the province. There is now an opportunity to create a second renewable electricity wave based on smaller renewable electricity (wind, small hydro, geothermal, ocean and biomass).
    [Show full text]
  • Community Wind in Alberta
    Status of Social Economy Provision of Wind Electric Energy in Alberta Photo: Wind turbines at Pincher Creek, AB Julie MacArthur BALTA B6 Researcher January 4, 2010 Wind electricity in Canada and Alberta Wind power is one of the fastest growing energy sources in the world and Canada is no exception to this. 2009 was a record year for the development of wind power in Canada and it now occupies the 11th country spot in total installed capacity according to the World Wind Energy Association 2009 report. Total installed capacity in Canada is now at 3,319MW (CanWEA, 2009a1), which is up from 2,370MW at the end of 2008 (40% increase) and 1,770MW in 2007 (StatsCan, 2009). Every province now has some installed capacity (with the opening of Bear Mountain Wind Park in Dawson Creek, BC). In fact, using the CanWEA numbers, installed capacity from 2000 to 2009 grew at an average of 40% every year. According to a CanWEA press release “current provincial targets and policy objectives would result in a further quadrupling of installed wind energy capacity in the next six years” (CanWEA, 2009a). While this growth is impressive, it is important to keep in mind that Canada still has one of the most underdeveloped wind resources in the world. Germany, for example, which is 28 times smaller than Canada has 10 times more installed wind capacity (Valentine 2009, p.3). Only 0.6 per cent of Canada’s total electricity production in 2008 was from wind and tidal sources (NEB, Source: CanWEA 2009(http://www.canwea.ca/farms/index_e.php) 2009, p.43- see table 1).
    [Show full text]
  • Report Download
    Low-Impact Renewable Energy Policy in Canada: Strengths, Gaps and a Path Forward February, 2003 Prepared by: Andrew Pape-Salmon Jonathan Dogterom Carissa Wieler Mark Anielski Pembina Institute About the Pembina Institute The Pembina Institute is an independent, citizen-based organization involved in environmental education, research, public policy development and client-confidential environmental consulting services. Its mandate is to develop and promote policies and practices that lead to environmental protection, resource conservation and environmentally sound and sustainable energy and resource management. The mission of the Pembina Institute is to implement holistic and practical solutions for a sustainable world. Incorporated in 1985, the Institute’s head office is in Drayton Valley, Alberta, with offices in Ottawa and Calgary, and research associates in Edmonton, Vancouver and other locations across Canada. For more information on the Pembina Institute’s work, and details of the capabilities and services offered, please visit www.pembina.org. About the Authors Andrew Pape-Salmon is the Director of Sustainable Energy at the Pembina Institute. He is a professional engineer and resource manager with a focus on sustainable energy policy, low-impact renewable energy technologies and community energy planning. He has led several sustainable energy policy advocacy efforts in Canada and has authored several related reports, including, “A Smart Electricity Policy for Alberta,” available free of charge on the Pembina Institute Web site. (For further information about the report, please contact the author at [email protected].) He has worked extensively on the implementation of low-impact renewable energy and energy efficiency at a community level with First Nations and small municipal government partners in Alberta, British Columbia and the Yukon.
    [Show full text]
  • The European Offshore Wind Industry - Key Trends and Statistics 2009
    Photo: Dong Energy The European offshore wind industry - key trends and statistics 2009 January 2010 The european Wind energy associaTion 1 The european offshore Wind indusTry - Key Trends and sTaTisTics 2009 Contents Executive summary 3 2009 annual market 4 Market outlook: 2010 and beyond 6 Cumulative market 6 Trends: turbines, foundations, water depth and distance to shore 9 Financing highlights and developments 11 Industry highlights and developments 12 Offshore supergrid developments 13 International opportunities 14 2 The european Wind energy associaTion Executive summary 2009 offshore wind market and outlook: • 199 wind turbines installed and grid connected totalling 577 MW during 2009, up 54% from the previous year; • Turnover in 2009 was approximately €1.5 billion, and is expected to double in 2010 to approximately €3 billion; • 1,000 MW expected to be installed during 2010, a 75% market growth compared to 2009; • 17 wind farms under construction, totaling over 3,500 MW and a further 52 wind farms have been fully consented, totaling more than 16,000 MW; • More than 100 GW of offshore wind farms currently being planned by project developers and utilities. Cumulative market: • 828 wind turbines now installed and grid connected, totaling 2,056 MW in 38 wind farms in nine European countries; • Average wind turbine size is 2.9 MW; • 65% of substructures are monopiles, 23% are gravity foundations. Trends: • The average offshore wind farm size in 2009 was 72.1 MW, up from 62.2 MW the previous year; • Average water depth of offshore wind farms installed during 2009 was 12m, 0.5m deeper than the previous year, but substantially less than the 21.8m for farms currently under construction; • Average distance to shore of offshore wind farms installed during 2009 was 14.4km, 3.9km further than the previous year, but substantially less than the 30.1km for farms currently under construction.
    [Show full text]
  • Offshore Wind Power and the Challenges of Large
    Offshore Wind Walt Musial Power and the Manager Offshore Wind Challenges of and Ocean Power Systems Large Scale National Renewable Energy Laboratory Deployment Inaugural Meeting of the North American Wind Energy Academy August 7th - 9th, 2012 Photo: Baltic I – Wind Plant University of Massachusetts Amherst Germany 2010 Credit: Fort Felker William E. Heronemus University of Massachusetts Circa 1973 UMass has Pioneered Offshore Wind Energy • 51 projects, 3,620 MW installed (end of 2011) • 49 in shallow water <30m • 2-5 MW upwind rotor configuration (3.8 MW ave) • 80+ meter towers on monopoles Vestas 2.0 MW Turbine Horns Rev, DK • Modular geared drivetrains • Marine technologies for at sea operation. • Submarine cable technology • Oil and gas experience essential • Capacity Factors 40% or more • Higher Cost and O&M have contributed to project risk. Alpha Ventus – RePower Siemens 2.0 MW Turbines 5-MW Turbine Middlegrunden, DK Offshore Wind Power 3 National Renewable Energy Laboratory Offshore Wind Projects Cumulative And Annual Installation; The U.K. And Denmark Account For Nearly 75% Of Capacity 1,600 4,000 1,400 3,500 1,200 3,000 (MW) (MW) 1,000 2,500 Capacity Capacity 800 2,000 Installed Installed 600 1,500 Annual Cumulative 400 1,000 200 500 ‐ ‐ 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 Offshore Wind Power 4 National Renewable Energy Laboratory Offshore Wind Projects Installed, Under Construction, and Approved 30 25,585 MW 25 20 (GW) 15 Capacity 10 3,500 MW 5 3,620 MW 0 Installed Under Construction Approved Offshore
    [Show full text]